Mathematical Analysis of Robustness of Two-Level Domain Decomposition Methods with respect to Approximate Coarse Solves

F. Nataf

To cite this version:
F. Nataf. Mathematical Analysis of Robustness of Two-Level Domain Decomposition Methods with respect to Approximate Coarse Solves. 2017. hal-01573197v2

HAL Id: hal-01573197
https://hal.archives-ouvertes.fr/hal-01573197v2
Submitted on 8 Nov 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Mathematical Analysis of Robustness of Two-Level Domain Decomposition Methods with respect to Approximate Coarse Solves

F. Nataf

1Laboratoire J.L. Lions, UPMC, CNRS, Equipe LJL-INRIA Alpines, nataf@jll.math.upmc.fr, Paris, France

November 8, 2017

Contents

1 Introduction 2

2 Basic definitions 3

3 Approximate Coarse Solves for GenEO 5

4 Approximate Coarse Solves for GenEO2 9

Auxiliary results on GEVP 12

5 Conclusion 16

Abstract

Convergence of domain decomposition methods rely heavily on the efficiency of the coarse space used in the second level. The GenEO coarse space has been shown to lead to a fully robust two-level Schwarz preconditioner which scales well over multiple cores [27, 19] as has been proved rigorously in [27]. The robustness is due to its good approximation properties for problems with highly heterogeneous material parameters. It is available in the finite element packages FreeFem++ [5], Feel++ [12] and recently in Dune [1] and is implemented as a standalone library in HPDDM [6]. But the coarse component of the preconditioner can ultimately become a bottleneck if the number of subdomains is very large and exact solves are used. It is therefore interesting to consider the effect of approximate coarse solves. In this paper, robustness of GenEO methods is analyzed with respect to approximate coarse solves. Interestingly, the GenEO-2 method introduced in [3] has to be modified in order to be able to prove its robustness in this context.
1 Introduction

Convergence of domain decomposition methods rely heavily on the efficiency of the coarse space used in the second level, see \cite{9,15,11} and references therein. The GenEO coarse space has been shown to lead to a fully robust two-level Schwarz preconditioner which scales well over multiple cores \cite{27,19} as has been proved rigorously in \cite{27}. The robustness is due to its good approximation properties for problems with highly heterogeneous material parameters. It is available in the finite element packages FreeFem++ \cite{5}. Feel++ \cite{12} and recently in Dune \cite{11} and is implemented as a standalone library in HPDDM \cite{6}. But the coarse component of the preconditioner can ultimately become a bottleneck if the number of subdomains is very large and exact solves are used. It is therefore interesting to consider the effect of approximate coarse solves. In this paper, robustness of GenEO methods is analyzed with respect to approximate coarse solves. Interestingly, the GenEO-2 method introduced in \cite{3} has to be modified in order to be able to prove its robustness in this context. In the context of domain decomposition methods, the robustness of BDDC w.r.t. approximate coarse solves has been studied in \cite{16,17} and in \cite{8}. We focus here on GenEO methods.

The general framework of our work is the following. Let M^{-1} be a preconditioner enhanced by a second level correction based on a rectangular matrix Z whose columns are a basis of a coarse space V_0. The coarse space correction is

$$Z(Z^T A Z)^{-1}Z^T,$$

and the coarse operator is defined by

$$E := Z^T A Z.$$

Let M^{-1} denote a one-level preconditioner, the two-level method is defined by:

$$M^{-1}_2 := Z E^{-1} Z^T + (I_d - Z E^{-1} Z^T A) M^{-1} (I_d - AZ E^{-1} Z^T),$$

see the balancing domain decomposition method by J. Mandel \cite{7} and also the BFGS algorithm as described in e.g. \cite{10}.

We consider GenEO methods, where the coarse space V_0 spanned by the columns of Z is built from solving generalized eigenvalue problems in the subdomains. Since it is a purely parallel task with no communication involved, this part of the computation is not penalizing parallelism. Actually, in strong scaling experiments where the number of degrees of freedom of subdomains is smaller and smaller the scaling of this task is perfect. On the other hand, as the size of matrix $Z^T A Z$ typically increases linearly with the number of subdomains, the solving of the corresponding linear systems for instance with a LU factorization becomes a bottleneck in two-level domain decomposition methods. It is therefore interesting to estimate the robustness of the modified two-level method when in \cite{3} the operator E is approximated by some operator \tilde{E}:

$$\tilde{E} \simeq E.$$
since it paves the way to approximate coarse solves and three or more level methods. More precisely, formula (2) is modified and the preconditioner we study is defined by:
\[
\tilde{M}_2^{-1} := Z \tilde{E}^{-1} Z^T + (I_d - Z \tilde{E}^{-1} Z^T A) M^{-1} (I_d - AZ \tilde{E}^{-1} Z^T).
\]

2 Basic definitions

The problem to be solved is defined via a variational formulation on a domain \(\Omega \subset \mathbb{R}^d \) for \(d \in \mathbb{N} \):

Find \(u \in V \) such that : \(a_\Omega(u, v) = l(v) \), \(\forall v \in V \),

where \(V \) is a Hilbert space of functions from \(\Omega \) with real values. The problem we consider is given through a symmetric positive definite bilinear form \(a_\Omega \) that is defined in terms of an integral over any open set \(\omega \subset \Omega \). Typical examples are the Darcy equation (\(K \) is a diffusion tensor)

\[a_\omega(u, v) := \int_\omega K \nabla u \cdot \nabla v \, dx, \]

or the elasticity system (\(C \) is the fourth-order stiffness tensor and \(\varepsilon(u) \) is the strain tensor of a displacement field \(u \)):

\[a_\omega(u, v) := \int_\omega C : \varepsilon(u) : \varepsilon(v) \, dx. \]

The problem is discretized by a finite element method. Let \(\mathcal{N} \) denote the set of degrees of freedom and \((\phi_k)_{k \in \mathcal{N}} \) be a finite element basis on a mesh \(T_h \). Let \(A \in \mathbb{R}^{\#\mathcal{N} \times \#\mathcal{N}} \) be the associated finite element matrix, \(A_{kl} := a_\Omega(\phi_l, \phi_k) \), \(k, l \in \mathcal{N} \). For some given right hand side \(F \in \mathbb{R}^{\#\mathcal{N}} \), we have to solve a linear system in \(U \) of the form

\[AU = F. \]

Domain \(\Omega \) is decomposed into \(N \) (overlapping or non overlapping) subdomains \((\Omega_i)_{1 \leq i \leq N} \) so that all subdomains are a union of cells of the mesh \(T_h \). This decomposition induces a natural decomposition of the set of indices \(\mathcal{N} \) into \(N \) subsets of indices \((\mathcal{N}_i)_{1 \leq i \leq N} \):

\[\mathcal{N}_i := \{ k \in \mathcal{N} \mid \text{meas}(\text{supp}(\phi_k) \cap \Omega_i) > 0 \}, \quad 1 \leq i \leq N. \quad (3) \]

For all \(1 \leq i \leq N \), let \(R_i \) be the restriction matrix from \(\mathbb{R}^{\#\mathcal{N}} \) to the subset \(R^{\#\mathcal{N}_i} \), and \(D_i \) be a diagonal matrix of size \(\#\mathcal{N}_i \times \#\mathcal{N}_i \), so that we have a partition of unity at the algebraic level,

\[\sum_{i=1}^N R_i^T D_i R_i = I_d, \quad (4) \]

where \(I_d \in \mathbb{R}^{\#\mathcal{N} \times \#\mathcal{N}} \) is the identity matrix.
We also define for all subdomains $1 \leq j \leq N$, the $\#N_j \times \#N_j$ matrix defined by
\[
V^T_j \hat{A}^j U_j := a_{\Omega_j} \left(\sum_{t \in N_j} U_{jt} \phi_t, \sum_{t \in N_j} V_{jt} \phi_t \right), \quad U_j, V_j \in \mathbb{R}^{N_j}.
\] (5)

When the bilinear form a results from the variational solve of a Laplace problem, the previous matrix corresponds to the discretization of local Neumann boundary value problems. For this reason we will call it “Neumann” matrix even in a more general setting.

We also make use of two numbers k_0 and k_1 related to the domain decomposition. Let
\[
k_0 := \max_{1 \leq i \leq N} \# \left\{ j \mid R_j A R_i^T \neq 0 \right\}
\] (6)
be the maximum multiplicity of the interaction between subdomains plus one. Let k_1 be the maximal multiplicity of subdomains intersection, i.e. the largest integer m such that there exists m different subdomains whose intersection has a non zero measure.

Let \tilde{P}_0 be defined as:
\[
\tilde{P}_0 := Z \tilde{E}^{-1} Z^T A,
\] (7)
the operator \tilde{P}_0 is thus an approximation to the A-orthogonal projection on V_0
\[
P_0 := Z E^{-1} Z^T A
\] which corresponds to an exact coarse solve.

Note that although \tilde{P}_0 is not a projection it has the same kernel and range as P_0:

Lemma 2.1 We have
\[
\ker P_0 = \ker \tilde{P}_0 = V_0^\perp \quad \text{and} \quad \operatorname{Im} P_0 = \operatorname{Im} \tilde{P}_0 = V_0,
\]
where V_0^\perp is the vector space A-orthogonal to V_0, that is when $\mathbb{R}^{\#N}$ is endowed with the scalar product induced by A: $(x, y)_A := (x, Ay)$.

Proof First note that the kernel of \tilde{P}_0 contains $\ker Z^T A$. On the other hand, we have:
\[
\tilde{P}_0 x = Z \tilde{E}^{-1} Z^T Ax = 0 \Rightarrow (Z \tilde{E}^{-1} Z^T Ax, Ax) = (\tilde{E}^{-1} Z^T Ax, Z^T Ax) = 0.
\]
Since \tilde{E} is SPD, it means that $Z^T Ax = 0$, that is $x \in \ker Z^T A$. We have thus $\ker \tilde{P}_0 = \ker Z^T A$. Note that
\[
Z^T Ax = 0 \Leftrightarrow \forall y \ (Ax, Zy) = 0 \Leftrightarrow x \in V_0^\perp.
\]
As for the image of \tilde{P}_0, since the last operation in its definition is the multiplication by the matrix Z we have $\operatorname{Im} P_0 \subset V_0$. Conversely, let $y \in V_0$, there exists β such that $y = Z \beta$. It is easy to check that $y = \tilde{P}_0 (Z (ZAZ)^{-1} \tilde{E} \beta)$. Thus, $\operatorname{Im} \tilde{P}_0 = V_0$.

The same arguments hold if \tilde{E} is replaced by E. Thus, \tilde{P}_0 and P_0 have the same kernel and image. \[\square\]
3 Approximate Coarse Solves for GenEO

The GenEO coarse space was introduced in [13] and is defined as follows:

Definition 3.1 (Generalized Eigenvalue Problem for GenEO) For each subdomain $1 \leq j \leq N$, we introduce the generalized eigenvalue problem

$$D_j R_j A R_j^T D_j V_{jk} = \mu_{jk} \tilde{A} V_{jk}. \quad (8)$$

Let $\mu > 0$ be a user-defined threshold, we define $V^\mu_{\text{Geneo}} \subset \mathbb{R}^{#N}$ as the vector space spanned by the family of vectors $(R_j^T D_j V_{jk})_{\mu_{jk} > \mu, 1 \leq j \leq N}$ corresponding to eigenvalues larger than μ.

Let $\tilde{\pi}_j$ be the projection from $\mathbb{R}^{#N_j}$ on $\text{Span}\{V_{jk} | \mu_{jk} > \mu\}$ parallel to $\text{Span}\{V_{jk} | \mu_{jk} \leq \mu\}$.

In this section, Z denotes a rectangular matrix whose columns are a basis of the coarse space V^μ_{Geneo} defined in Definition (3.1). The dimension of Z is $#N \times #N_0$. The GenEO preconditioner with approximate coarse solve reads:

$$M^{-1}_{\text{GenEOACS}} := Z \tilde{E}^{-1} Z^T + (I_d - \tilde{P}_0) \left(\sum_{i=1}^N R_i^T (R_i A R_i^T)^{-1} R_i \right) (I_d - \tilde{P}_0^T). \quad (9)$$

The study the spectrum of $M^{-1}_{\text{GenEOACS}} A$ is based on the Fictitious Space lemma, see [2] for more details. For this purpose, we introduce

$$H_D := \mathbb{R}^{#N_0} \times \prod_{i=1}^N \mathbb{R}^{#N_i}$$

be endowed with the following bilinear form

$$\tilde{b} : H_D \times H_D \rightarrow \mathbb{R}$$

$$((U_0, (U_i)_{1 \leq i \leq N}), (V_0, (V_i)_{1 \leq i \leq N})) \rightarrow (\tilde{E} U_0, V_0) + (R_i A R_i^T U_i, V_i) \quad (10)$$

and $\tilde{\mathcal{R}} : H_D \rightarrow H$ is defined by

$$\tilde{\mathcal{R}}(\mathcal{U}) := Z U_0 + (I_d - \tilde{P}_0) \sum_{i=1}^N R_i^T U_i. \quad (11)$$

Recall that had we had used an exact coarse space solve, we would have introduced:

$$\mathcal{R}(\mathcal{U}) := Z U_0 + (I_d - P_0) \sum_{i=1}^N R_i^T U_i. \quad (12)$$

Note that we have

$$\tilde{\mathcal{R}}(\mathcal{U}) = \mathcal{R}(\mathcal{U}) + (P_0 - \tilde{P}_0) \sum_{i=1}^N R_i^T U_i.$$

It can be checked that the resulting preconditioner with approximate coarse solve $\tilde{\mathcal{R}} \tilde{B}^{-1} \tilde{R}^T$ is actually equal to M^{-1}_{GenEOACS}, see [3]. In order to apply the fictitious space Lemma, three assumptions have to be checked.
• \tilde{R} is onto.

Let $U \in H$, we have $U = P_0 U + (I_d - \tilde{P}_0) U$. By Lemma 2.1, $\tilde{P}_0 U \in V_0$ so that there exists $U_0 \in \mathbb{R}^{\#N_0}$ such that $\tilde{P}_0 U = Z U_0$. Thus we have

$$U = Z U_0 + (I_d - \tilde{P}_0) \sum_{i=1}^N R_i^T D_i R_i U = \tilde{R}(U_0, (D_i R_i U)_{1 \leq i \leq N}))$$

• Continuity of \tilde{R}

We have to estimate a constant c_R such that for all $U = (U_0, (U_i)_{1 \leq i \leq N}) \in H$, we have:

$$a(\tilde{R}(U), \tilde{R}(U)) \leq c_R b(U, U).$$

Let δ be some positive number and Using that the image of $P_0 - \tilde{P}_0$ is a-orthogonal to the image of $I_d - P_0$, Cauchy-Schwarz inequality and the a-orthogonality of the projection $I_d - P_0$, we have:

$$a(\tilde{R}(U), \tilde{R}(U)) = |\tilde{R}(U)||P_0 - \tilde{P}_0| \sum_{i=1}^N R_i^T U_i|^2_A$$

$$= |\tilde{R}(U)||P_0 - \tilde{P}_0| \sum_{i=1}^N R_i^T U_i|^2_A + 2 |Z U_0 + (I_d - \tilde{P}_0) \sum_{i=1}^N R_i^T U_i| \sum_{i=1}^N R_i^T U_i|^2_A$$

$$\leq |\tilde{R}(U)||P_0 - \tilde{P}_0| \sum_{i=1}^N R_i^T U_i|^2_A + 2 |(P_0 - \tilde{P}_0) \sum_{i=1}^N R_i^T U_i|^2_A$$

$$\leq |Z U_0|^2_A + \sum_{i=1}^N R_i^T U_i|^2_A + \delta |Z U_0|^2_A$$

$$\leq |Z U_0|^2_A + \sum_{i=1}^N R_i^T U_i|^2_A + \frac{1}{2} (1 + \frac{1}{\delta}) |P_0 - \tilde{P}_0| \sum_{i=1}^N R_i^T U_i|^2_A$$

$$\leq (1 + \delta) \lambda_{max}(E E^{-1}) \lambda_{max}(E E^{-1}) \lambda_{max}(E E^{-1}) k_0 \sum_{i=1}^N R_i^T U_i|^2_A$$

It is possible to minimize over δ the factor in front of $b(U, U)$ using the

Lemma 3.1 Let c, d, α and β be positive constant, we have

$$\min_{\delta \geq 0} \max(c + \alpha \delta, d + \beta \delta^{-1}) = \frac{d + c + \sqrt{(d-c)^2 + 4\alpha \beta}}{2}.$$

Proof The optimal value for δ corresponds to the equality $c + \alpha \delta = d + \beta \delta^{-1}$.

Let

$$\epsilon_A := \|P_0 - \tilde{P}_0\|_A = |Z^T ((Z^T A Z)^{-1} - E E^{-1}) Z^T A|_A,$$

the formula of Lemma 3.1 yields

$$c_R := \frac{k_0(1 + \epsilon_A^2) + \lambda_{max}(E E^{-1}) + \sqrt{(k_0(1 + \epsilon_A^2) - \lambda_{max}(E E^{-1}))^2 + 4\lambda_{max}(E E^{-1)}k_0(\epsilon_A^2 + 1)}}{2}.$$
Actually, ϵ_A can be expressed in term of the minimal eigenvalue of $E \hat{E}^{-1}$.

Lemma 3.2 Other formula for ϵ_A:

$$\epsilon_A = \sup_{U_0 \in \mathbb{R}^{\#N_0}} \frac{(E(E^{-1} - \hat{E}^{-1})E U_0, U_0)}{(E U_0, U_0)} = \max(|1 - \lambda_{\min}(E \hat{E}^{-1})|, |1 - \lambda_{\max}(E \hat{E}^{-1})|).$$

Proof Since $P_0 - \tilde{P}_0$ is A-symmetric, its norm is also given by

$$\epsilon_A = \sup_U \frac{|(P_0 - \tilde{P}_0)U, U)_A|}{\|U\|_A^2}.$$

We can go further by using the fact that P_0 is a A-orthogonal and that P_0 and \tilde{P}_0 have the same kernels and images:

$$\epsilon_A = \sup_U \frac{|(P_0 - \tilde{P}_0)(P_0 U + (I_d - P_0) U), P_0 U + (I_d - P_0) U)_A|}{\|P_0 U\|_A^2 + \|(I_d - P_0) U\|_A^2} = \sup_U \frac{|(P_0 - \tilde{P}_0)P_0 U, P_0 U)_A|}{\|P_0 U\|_A^2} = \sup_U \frac{|(P_0 - \tilde{P}_0)P_0 U, P_0 U)_A|}{\|P_0 U\|_A^2} = \sup_{U_0 \in \mathbb{R}^{\#N_0}} \frac{|(E(E^{-1} - \hat{E}^{-1})E U_0, U_0)|}{(E U_0, U_0)}.$$

This means that formula \((14)\) for ϵ_R can be expressed explicitly in terms of k_0 and of the minimal and maximal eigenvalue of $\hat{E}^{-1} E$.

- **Stable decomposition**

Let $U \in H$ be decomposed as follows:

$$U = P_0 U + (I_d - P_0) U = P_0 U + (I_d - P_0) \sum_{j=1}^{N} R_j^T D_j \hat{\pi}_j U = P_0 U + (I_d - P_0) \sum_{j=1}^{N} R_j^T D_j (I_d - \tilde{\pi}_j) R_j U + (I_d - P_0) \sum_{j=1}^{N} R_j^T D_j \tilde{\pi}_j R_j U = P_0 U + (\tilde{P}_0 - P_0) \sum_{j=1}^{N} R_j^T D_j (I_d - \tilde{\pi}_j) R_j U + (I_d - \tilde{P}_0) \sum_{j=1}^{N} R_j^T D_j (I_d - \tilde{\pi}_j) R_j U.$$

Let $U_0 \in \mathbb{R}^{\#N_0}$ be such that $Z U_0 = F U$, we choose the following decomposition:

$$U = \tilde{\phi}(U_0, (D_j(I_d - \tilde{\pi}_j)R_j U)_{1 \leq j \leq N}).$$

The stable decomposition consists in estimating a constant $c_T > 0$ such that:

$$c_T [(\tilde{E} U_0, U_0) + \sum_{j=1}^{N} (R_j A R_j^T D_j (I_d - \tilde{\pi}_j) R_j U, D_j (I_d - \tilde{\pi}_j) R_j U)] \leq a(U, U).$$

\[(15)\]
Since the second term in the left hand side is the same as in the exact coarse solve method, we have (see [2], page 177, Lemma 7.15):

\[
\sum_{j=1}^{N} (R_j A R_j^T D_j (I_d - \tilde{\pi}_j) R_j U, D_j (I_d - \tilde{\pi}_j) R_j U) \leq k_1 \tau a(U, U). \tag{16}
\]

We now focus on the first term of the left hand side of (15). Let \(\delta \) be some positive number, using again (16), the following auxiliary result holds:

\[
|FU|_A^2 \leq (1 + \delta) |P_0 U, P_0 U|_A^2 + (1 + \frac{1}{2}) \left| (P_0 - \bar{P}_0) \sum_{j=1}^{N} R_j^T D_j (I_d - \tilde{\pi}_j) R_j U \right|^2 \lesssim
\]

\[
(1 + \delta)(AU, U) + (1 + \frac{1}{2}) \left| (P_0 - \bar{P}_0) \sum_{j=1}^{N} \sum_{i=1}^{k_0} R_j^T D_j (I_d - \tilde{\pi}_j) R_j U \right|^2
\]

\[
\leq \left(1 + \delta + (1 + \frac{1}{2}) \left| (P_0 - \bar{P}_0) \sum_{j=1}^{N} \sum_{i=1}^{k_0} R_j^T D_j (I_d - \tilde{\pi}_j) R_j U \right| \right) a(U, U)
\]

The best possible value for \(\delta \) is

\[
\delta := \epsilon_A \sqrt{k_0 k_1 \tau}.
\]

Hence, we have:

\[
(Z^T A Z U_0, U_0) = |FU|_A^2 \leq (1 + \epsilon_A \sqrt{k_0 k_1 \tau})^2 a(U, U). \tag{17}
\]

Thus, we have:

\[
(\tilde{E} U_0, U_0) = (\tilde{E} E^{-1/2} E^{1/2} U_0, E^{-1/2} E^{1/2} U_0) = (E^{-1/2} \tilde{E} E^{-1/2} E^{1/2} U_0, E^{1/2} U_0)
\]

\[
\leq \lambda_{\text{max}}(E^{-1/2} \tilde{E} E^{-1/2}, E^{1/2} U_0, E^{1/2} U_0)
\]

\[
= \lambda_{\text{max}}(E^{-1/2} \tilde{E})(Z^T A Z U_0, U_0)
\]

\[
\leq \lambda_{\text{max}}(E^{-1/2} \tilde{E})(1 + \epsilon_A \sqrt{k_0 k_1 \tau})^2 a(U, U).
\]

This last estimate along with (15) prove that in (15), it is possible to take

\[
c_T = \frac{\lambda_{\text{min}}(E^{-1})}{(1 + \epsilon_A \sqrt{k_0 k_1 \tau})^2 + k_1 \tau}. \tag{18}
\]

Overall, with \(c_T \) given by (18) and \(c_R \) by (14), we have proved the following spectral estimate:

\[
c_T \leq \lambda(M_{\text{GenEOACS}}^{-1} A) \leq c_R. \tag{19}
\]

Constants \(c_T \) and \(c_R \) are stable with respect to \(\epsilon_A \) and the spectrum of \(E \tilde{E}^{-1} \) so that (19) proves the stability of preconditioner \(M_{\text{GenEOACS}}^{-1} \) w.r.t. approximate solves.
4 Approximate Coarse Solves for GenEO2

The GenEO-2 coarse space construction was introduced in [4,3], see [2] also § 7.7, page 186. It is motivated by domain decomposition methods for which the local solves are not necessarily Dirichlet solves e.g. discretization of Robin boundary value problems, see [14]. We were not able to prove the robustness of the GenEO-2 coarse space with respect to approximate coarse solves when used in the original GenEO-2 preconditioner \[39\], see remark 4.2. For this reason, we study here a slight modification of the preconditioner, eq. \[27\], for which we prove robustness.

For all subdomains \(1 \leq i \leq N\), let \(B_i\) be a matrix of size \(\#N_i \times \#N_i\), which comes typically from the discretization of boundary value local problems using optimized transmission conditions or Neumann boundary conditions. Recall that by construction matrix \(D_iR_iAR_i^TD_i\) is symmetric positive-semi definite and we make the extra following assumption:

Assumption 4.1 For all subdomains \(1 \leq i \leq N\), matrix \(B_i\) is symmetric positive semi-definite and either of the two conditions holds

- \(B_i\) is definite,
- \(B_i = \tilde{A}_i\) and \(D_iR_iAR_i^TD_i\) is definite.

In order to ease the redaction, we first consider the case where \(B_i\) is definite. The other case will be treated in Remark 4.3. We recall the coarse space defined in \[4,3,2\]. Let \(\gamma\) and \(\tau\) be two user defined thresholds. We introduce two generalized eigenvalue problems which by Assumption 4.1 are regular.

Definition 4.1 (Generalized Eigenvalue Problem for the lower bound)

For each subdomain \(1 \leq j \leq N\), we introduce the generalized eigenvalue problem

\[
\text{Find } (V_{jk}, \lambda_{jk}) \in \mathbb{R}^{\#N_j} \setminus \{0\} \times \mathbb{R} \text{ such that } \tilde{A}_jV_{jk} = \lambda_{jk}B_jV_{jk}. \tag{20}
\]

Let \(\tau > 0\) be a user-defined threshold and \(\tilde{\pi}_j\) be the projection from \(\mathbb{R}^{\#N_j}\) on \(V_j = \text{Span}\{V_{jk} | \lambda_{jk} < \tau\}\) parallel to \(\text{Span}\{V_{jk} | \lambda_{jk} \geq \tau\}\). We define \(V_{\gamma_{j,geneo}} \subset \mathbb{R}^{\#N}\) as the vector space spanned by the family of vectors \((R_i^TD_jV_{jk})_{\lambda_{jk} < \tau}\) corresponding to eigenvalues smaller than \(\tau\). Let \(V_{\gamma_{geneo}}\) be the vector space spanned by the collection over all subdomains of vector spaces \(V_{\gamma_{j,geneo}}\) for \(i \leq j \leq N\).

Definition 4.2 (Generalized Eigenvalue Problem for the upper bound)

For each subdomain \(1 \leq i \leq N\), we introduce the generalized eigenvalue problem

\[
\text{Find } (U_{ik}, \mu_{ik}) \in \mathbb{R}^{\#N_i} \setminus \{0\} \times \mathbb{R} \text{ such that } D_iR_iAR_i^TD_iU_{ik} = \mu_{ik}B_iU_{ik}. \tag{21}
\]

Let \(\gamma > 0\) be a user-defined threshold, we define \(V_{\gamma_{geneo}} \subset \mathbb{R}^{\#N}\) as the vector space spanned by the family of vectors \((R_i^TD_iU_{ik})_{\mu_{ik} > \gamma}\) corresponding to eigenvalues larger than \(\gamma\). Let \(V_{\gamma_{geneo}}\) be the vector space spanned by the collection over all subdomains of vector spaces \(V_{\gamma_{j,geneo}}\) for \(i \leq j \leq N\).
Now, let ξ_i denote the B_i-orthogonal projection from $\mathbb{R}^{\#N_i}$ on

$$V_i \gamma := \text{Span} \{ U_{ik} | \gamma < \mu_k \}$$
parallel to

$$W_i \gamma := \text{Span} \{ U_{ik} | \gamma \geq \mu_k \}.$$

By Lemma 7.6, page 167 in [2], we have:

Lemma 4.1 (Intermediate Lemma for GenEO-2) For all subdomains $1 \leq i \leq N$ and $U_i \in \mathbb{R}^{N_i}$, we have:

$$\tau ((I_d - \tilde{\pi}_i) U_i)^T B_j (I_d - \tilde{\pi}_i) U_i \leq U_i^T \tilde{\gamma} I_a U_i, \quad (22)$$

and

$$(R_d^T D_i (I_d - \xi_i) U_i)^T A R_d^T D_i (I_d - \xi_i) U_i \leq \gamma (B_i (I_d - \xi_i) U_i, (I_d - \xi_i) U_i). \quad (23)$$

Let b_i be the bilinear form related to B_i (i.e. $b_i(U_i, V_i) := (B_i U_i, V_i)$), we note that ξ_i is actually a b_i-orthogonal projection.

The coarse space V_0 built from the above generalized eigenvalues:

$$V_0 := V_{\text{geneo}} \bigoplus V_{\text{geneo}},$$

is spanned by the columns of a full rank rectangular matrix $Z = R_0^T$ with $\#N_0$ columns. Projection P_0 and its approximation \tilde{P}_0 are defined by the same formula as above, see [7].

In addition to Lemma 4.1, we have the following

Lemma 4.2 For $1 \leq j \leq N$, let us introduce the B_j-orthogonal projection p_j from $\mathbb{R}^{\#N_j}$ on

$$V_j, \gamma := V_{j, \tau} \oplus V_{j, \gamma}.$$

Then for all $U_j \in \mathbb{R}^{\#N_j}$, we have:

$$\tau (B_j (I_d - p_j) U_j, (I_d - p_j) U_j) \leq (\tilde{A}_j U_j, U_j).$$

Moreover, for all $U \in \mathbb{R}^{\#N}$, we have:

$$\tau \sum_{j=1}^{N} (B_j (I_d - p_j) R_j U, (I_d - p_j) R_j U) \leq k_1 a(U, U).$$

Proof Let $U_j \in \mathbb{R}^{\#N_j}$, we have:

$$\tau (B_j (I_d - \tilde{\pi}_j) U_j, (I_d - \tilde{\pi}_j) U_j) = (B_j (I_d - p_j + (p_j - \tilde{\pi}_j)) U_j, (I_d - p_j + (p_j - \tilde{\pi}_j)) U_j)$$

$$= \| (I_d - p_j) U_j \|_{B_j}^2 + \| (p_j - \tilde{\pi}_j) U_j \|_{B_j}^2$$

$$+ 2 (B_j (I_d - p_j) U_j, (p_j - \tilde{\pi}_j) U_j)$$

$$= 0 \text{ since } \tilde{\pi}_j U_j \subset V_{j, \tau} \subset V_{j, \gamma}$$

$$\geq \| (I_d - p_j) U_j \|_{B_j}^2 = (B_j (I_d - p_j) U_j, (I_d - p_j) U_j).$$

Since we have [22]:

$$\tau (B_j (I_d - \tilde{\pi}_j) U_j, (I_d - \tilde{\pi}_j) U_j) \leq (\tilde{A}_j U_j, U_j),$$
The definition of the stable preconditioner is based on a pseudo inverse of B_i that we introduce now. Let b_{W_i} denote the restriction of b_i to $W_{i\gamma} \times W_{i\gamma}$ where $W_{i\gamma}$ is endowed with the Euclidean scalar product:

$$b_{W_i} : W_{i\gamma} \times W_{i\gamma} \rightarrow \mathbb{R}$$

$$(U_i, V_i) \mapsto b_i(U_i, V_i).$$

By Riesz representation theorem, there exists a unique isomorphism $B_{W_i} : W_{i\gamma} \rightarrow W_{i\gamma}$ into itself so that for all $U_i, V_i \in W_{i\gamma}$, we have:

$$b_{W_i}(U_i, V_i) = (B_{W_i} U_i, V_i).$$

The inverse of B_{W_i} will be denoted by B_i^1 and is given by the following formula

$$B_i^1 = (I_d - \xi_i)B_i^{-1}.$$ \hfill (25)

In order to check this formula, we have to show that $B_{W_i}(I_d - \xi_i)B_i^{-1} y = y$ for all $y \in W_{i\gamma}$. Let $z \in W_{i\gamma}$, using the fact that $I_d - \xi_i$ is the b_i-orthogonal projection on $W_{i\gamma}$, we have:

$$(B_{W_i}(I_d - \xi_i)B_i^{-1} y, z) = b_i((I_d - \xi_i)B_i^{-1} y, z) = b_i(B_i^{-1} y, z) = (y, z).$$

Since this equality holds for any $z \in W_{i\gamma}$, this proves that $B_{W_i}(I_d - \xi_i)B_i^{-1} y = y$.

We study now the preconditioner given by:

Definition 4.3 (Preconditioner $M_{GenEO2ACS}^{-1}$) Let q_i denote the orthogonal projection from $\mathbb{R}^{|N_i|}$ onto $W_{i\gamma}$. We define the preconditioner $M_{GenEO2ACS}^{-1}$ as follows:

$$M_{GenEO2ACS}^{-1} := Z \tilde{E}^{-1} Z^T + (I_d - \tilde{P}_0) \left(\sum_{i=1}^N R_i^2 D_i q_i B_i^1 q_i D_i R_i \right) (I_d - \tilde{P}_0^T).$$

\hfill (27)

Remark 4.1 Note that $q_i B_i^1$ is actually equal to B_i^1 but its presence shows the symmetry of the preconditioner.

We can now define the abstract framework for the preconditioner. Let H_D be defined by

$$H_D := \mathbb{R}^{|N_0|} \times \prod_{i=1}^N W_{i\gamma}$$

denominated with the following bilinear form arising from local SPD matrices $(B_i)_{1 \leq i \leq N}$

$$\tilde{b} : H_D \times H_D \rightarrow \mathbb{R}$$

$$(\mathcal{U}, \mathcal{V}) \mapsto \tilde{b}(\mathcal{U}, \mathcal{V}) := (\tilde{E} \mathcal{U}_0, \mathcal{V}_0) + \sum_{i=1}^N (B_i \mathcal{U}_i, \mathcal{V}_i)$$

\hfill (28)

and $\tilde{R} : H_D \rightarrow H$ is defined using operator \tilde{P}_0 (see eq. (7)):

$$\tilde{R}(\mathcal{U}) := Z \mathcal{U}_0 + (I_d - \tilde{P}_0) \sum_{i=1}^N R_i^2 D_i \mathcal{U}_i.$$ \hfill (29)
Recall that had we had used an exact coarse space solve, we would have introduced:
\[\mathcal{R}(U) := Z U_0 + (I_d - P_0) \sum_{i=1}^{N} R_i^T D_i U_i. \] (30)

Note that we have
\[\hat{\mathcal{R}}(U) = \mathcal{R}(U) + (P_0 - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i U_i. \]

It can be checked that the resulting preconditioner with approximate coarse solve \(M^{-1}_{\text{GenEO2ACS}} := \hat{R} \hat{B}^{-1} \hat{R}^T \) is actually \(M^{-1}_{\text{GenEO2ACS}} \) defined in (27). Indeed, we have:
\[\hat{R}^T V = (Z^T V, (q_i D_i R_i (I_d - \hat{P}_0^T) V)_{1 \leq i \leq N}) \]

Auxiliary results on GEVP Beware, in this paragraph, \(A \) and \(B \) have nothing to do with the global problem to be solved:

Lemma 4.3 Let \(A \) be a symmetric positive semi definite matrix and \(B \) be a symmetric positive definite matrix. We consider the generalized eigenvalue problem:
\[AU = \lambda BU. \]

The generalized eigenvectors and eigenvalues are denoted by \((U_k, \lambda_k)_{k \geq 1} \). Let \(\tau \) be a positive number. We define
\[V_\tau := \text{Span}\{U_k | \lambda_k < \tau \}. \]

Let \(W \) be any linear subspace. We denote by \(p \) the \(B \)-orthogonal projection on \(V_\tau + W \).

Then, for all \(U \) we have the following estimate:
\[\tau (B (I_d - p) U, (I_d - p) U) \leq (A (I_d - p) U, (I_d - p) U). \] (31)

Similarly, let \(\gamma \) be a positive number. We define
\[V_\gamma := \text{Span}\{U_k | \lambda_k > \gamma \}. \]

Let \(W \) be any linear subspace. We denote by \(q \) the \(B \)-orthogonal projection on \(V_\gamma + W \).

Then, for all \(U \) we have the following estimate:
\[(A (I_d - q) U, (I_d - q) U) \leq \gamma (B (I_d - q) U, (I_d - q) U). \] (32)

Proof We have using \(V_\tau \subset V_\tau + W \):
\[\tau \leq \min_{U \in V_\tau^\perp} \frac{(AU, U)}{(BU, U)} \leq \min_{U \in (V_\tau + W)^\perp} \frac{(AU, U)}{(BU', U)}. \]

For all \(U \), the vector \((I_d - p) U\) is \(B \)-orthogonal to \(V_\tau + W \) and this ends the proof of (31). The proof of (32) follows similarly from
\[\gamma \geq \max_{U \in V_\gamma^\perp} \frac{(AU, U)}{(BU, U)}. \]
In order to apply the fictitious space Lemma to the study of the preconditioner \([27]\), three assumptions have to be checked.

- \(\hat{\mathcal{R}}\) is onto.

Let \(U \in H\), we have

\[
U = \hat{P}_0 U + (I_d - \hat{P}_0) U \\
= \hat{P}_0 U + (I_d - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i R_i U \\
= \hat{P}_0 U + (I_d - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i \xi_i R_i U + (I_d - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i (I_d - \xi_i) R_i U \\
= \hat{P}_0 U + (P_0 - P_0) \sum_{i=1}^{N} R_i^T D_i \xi_i R_i U + (I_d - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i \xi_i R_i U \\
= \hat{P}(U) + (I_d - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i (I_d - \xi_i) R_i U.
\]

Let us consider the last equality. Since \(F U\) is the sum two terms that belong to \(V_0\) there exists \(U_0\) such that \(ZU_0 = FU\). The third term is zero since \(\sum_{i=1}^{N} R_i^T D_i \xi_i R_i U \in V_0\). Note also that \((I_d - \xi_i) R_i U \in W_i\). Therefore, we have

\[
U = \hat{R}(U_0, ((I_d - \xi_i) R_i U)_{1 \leq i \leq N}).
\]

- Continuity of \(\hat{R}\)

We have to estimate a constant \(c_R\) such that for all \(U = (U_0, (U_i)_{1 \leq i \leq N}) \in H_D\) we have:

\[
a(\hat{R}(U), \hat{R}(U)) \leq c_R \hat{b}(U, U) \\
= c_R[(\hat{E} U_0, U_0) + \sum_{i=1}^{N} (B_i U_i, U_i)].
\]

Note that using \((I_d - \xi_i) U_i = U_i\) (recall that \(U_i \in W_i\)), we have:

\[
\hat{R}(U) = ZU_0 + (I_d - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i U_i \\
= ZU_0 + (P_0 - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i U_i + (I_d - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i U_i \\
= ZU_0 + (P_0 - \hat{P}_0) \sum_{i=1}^{N} \left(R_i^T D_i (I_d - \xi_i) U_i + (I_d - \hat{P}_0) \sum_{i=1}^{N} R_i^T D_i (I_d - \xi_i) U_i \right)_{i=1}^{N}
\]
We have thus the following estimate using the A-orthogonality of $I_d - P_0$:

$$
a(\tilde{\mathcal{R}}(U), \tilde{\mathcal{R}}(U)) = |ZU_0 + (P_0 - \tilde{P}_0) \sum_{i=1}^{N} R_i^T D_i (I_d - \xi_i) U_i + (I_d - P_0) \sum_{j=1}^{N} R_j^T D_j (I_d - \xi_j) U_j|^2_A
$$

$$

+ \| (I_d - P_0) \sum_{i=1}^{N} R_i^T D_i (I_d - \xi_i) U_i |^2_A

\leq (1 + \delta) \|ZU_0\|^2_A + \| (P_0 - \tilde{P}_0) \sum_{i=1}^{N} R_i^T D_i (I_d - \xi_i) U_i |^2_A

+ \| (I_d - P_0) \sum_{i=1}^{N} R_i^T D_i (I_d - \xi_i) U_i |^2_A

\leq (1 + \delta) |E_1 U_0, U_0| + \gamma_0 \sum_{i=1}^{N} R_i^T D_i (I_d - \xi_i) U_i |^2_A

+ (1 + \frac{1}{\gamma}) \|(P_0 - \tilde{P}_0)\|^2_A \gamma_0 \sum_{i=1}^{N} (B_i (I_d - \xi_i) U_i, (I_d - \xi_i) U_i)

\leq \max((1 + \delta) \lambda_{\text{max}}(E\tilde{E}^{-1}), \gamma_0 (1 + (1 + \frac{1}{\gamma}) \epsilon_A^2) \tilde{b}(U,U)).

Based on Lemma [4.1] we can optimize the value of δ and take

$$
e_R := \frac{k_0 \gamma (1 + \epsilon_A^2) + \lambda_{\text{max}}(E\tilde{E}^{-1}) + \sqrt{(k_0 \gamma (1 + \epsilon_A^2) - \lambda_{\text{max}}(E\tilde{E}^{-1}))^2 + 4\lambda_{\text{max}}(E\tilde{E}^{-1})k_0 \gamma (\epsilon_A^2 + 1)}}{2}.

\tag{33}
$$

- Stable decomposition

The stable decomposition estimate is based on using projections p_j defined in Lemma [4.2]. Let $U_H \in H$ be decomposed as follows:

$$
U = P_0 U + (I_d - P_0) \sum_{j=1}^{N} R_j^T D_j (I_d - \xi_j) R_j U + (I_d - P_0) \sum_{j=1}^{N} R_j^T D_j p_j R_j U

\underbrace{+ (I_d - P_0) \sum_{j=1}^{N} R_j^T D_j (I_d - \xi_j) R_j U + (I_d - P_0) \sum_{j=1}^{N} R_j^T D_j (I_d - \xi_j) R_j U}_{:= FU \in V_0}.
$$

We define U_0 such that $ZU_0 = FU$. We have that $(I_d - p_j) R_j U$ is B_j-orthogonal to $V_{\gamma j} + V_j$ and thus to $V_{\gamma j}$. This means that $(I_d - p_j) R_j U \in W_{\gamma j}$ and that we can choose the following decomposition:

$$
U = \tilde{\mathcal{R}}(U_0, ((I_d - p_j) R_j U)_{1 \leq j \leq N}).
$$

The stability of the decomposition consists in estimating a constant $c_T > 0$ such that:

$$
c_T [(\tilde{E} U_0, U_0) + \sum_{j=1}^{N} (B_j (I_d - p_j) R_j U, (I_d - p_j) R_j U)] \leq a(U, U).

\tag{34}
$$

Using Lemma [4.2] we have

$$
t \sum_{j=1}^{N} (B_j (I_d - p_j) R_j U, (I_d - p_j) R_j U) \leq k_1 a(U, U).

\tag{35}
$$
We now focus on the first term of the left hand side of \[34\]. Let δ be some positive number, the following auxiliary result will be useful:

\[
\|F U\|^2_A \leq (1 + \delta) \|P_0 U, R_0 U\|^2_A \\
+ (1 + \frac{1}{2}) \|(P_0 - \tilde{P}_0) \sum_{j=1}^N R_j^T D_j (I_d - p_j) R_j U\|^2_A \\
\leq (1 + \delta) (A U, U) \\
+ (1 + \frac{1}{2}) \|(P_0 - \tilde{P}_0) \|_A \| \sum_{j=1}^N R_j^T D_j (I_d - p_j) R_j U\|^2_A \\
\leq (1 + \delta) a(U, U) \\
+ (1 + \frac{1}{2}) \|(P_0 - \tilde{P}_0) k_0 \sum_{j=1}^N R_j^T D_j (I_d - p_j) R_j U\|^2_A \\
\leq (1 + \delta) a(U, U) \\
+ (1 + \frac{1}{2}) \|(P_0 - \tilde{P}_0) k_0 \sum_{j=1}^N (B_j (I_d - p_j) R_j U, (I_d - p_j) R_j U)\|_A \\
\leq ((1 + \delta) + (1 + \frac{1}{2})) \|(P_0 - \tilde{P}_0) k_0 \gamma^{-1} k_1) a(U, U) \\
\]

where we have used Lemma 4.3 [32] (applied with A replaced by $D_j R_j A R_j^T D_j$ and B by B_j) for the one before last estimate and Lemma 4.2 for the last estimate.

The optimal value for δ yields:

\[
\|F U\|^2_A \leq (1 + \epsilon_A \sqrt{k_0 k_1 \gamma \tau^{-1}})^2 a(U, U). \\
(36)
\]

We have

\[
(E U_0, U_0) \leq \lambda_{\text{max}}(E^{-1} \tilde{E})(E U_0, U_0) = \lambda_{\text{max}}(E^{-1} \tilde{E})(A Z U_0, Z U_0) \\
= \lambda_{\text{max}}(E^{-1} \tilde{E}) \|F U\|^2_A .
\]

so that with [36], this yields:

\[
(E U_0, U_0) \leq \lambda_{\text{max}}(E^{-1} \tilde{E}) (1 + \epsilon_A \sqrt{k_0 k_1 \gamma \tau^{-1}})^2 a(U, U) .
\]

Finally, in [34] we can take:

\[
c_T := \frac{1}{\lambda_{\text{max}}(E^{-1} \tilde{E}) (1 + \epsilon_A \sqrt{k_0 k_1 \gamma \tau^{-1}})^2 + k_1 \tau^{-1}}. \\
(37)
\]

Overall, with c_T given by [37] and c_R by [33], we have proved the following spectral estimate:

\[
c_T \leq \lambda(M^{-1}_{\text{GenEO2ACS}} A) \leq c_R . \\
(38)
\]

Constants c_T and c_R are stable with respect to ϵ_A and the spectrum of $E \tilde{E}^{-1}$ so that [38] proves the stability of preconditioner $M^{-1}_{\text{GenEO2ACS}}$ w.r.t. approximate solves.

Remark 4.2 Had we taken the GenEO-2 algorithm introduced in [33] and modified only the coarse space solves:

\[
\tilde{M}^{-1}_{\text{GenEO2}} = Z \tilde{E}^{-1} Z^T + (I_d - \tilde{P}_0) \left(\sum_{i=1}^N R_i^T D_i R_i^{-1} D_i R_i (I_d - \tilde{P}_0^T) \right), \\
(39)
\]
the estimate for the upper bound of the preconditioned system would be for arbitrary $\delta > 0$

$$
\lambda_{\text{max}} \leq \max(1 + \delta, k_0) + (1 + \frac{1}{\delta})^2 k_0 \max_{1 \leq i \leq N} \|B_i^{-1} D_i R_i A R_i^T D_i \frac{1}{2})
$$

and would depend on the product of ϵ_A with the largest eigenvalue of the local operators $B_i^{-1} D_i R_i A R_i^T D_i$. This last term can be very large and we were not able to guarantee robustness with respect to approximate coarse solves.

Remark 4.3 If for some subdomain i, $1 \leq i \leq N$, $B_i = \tilde{A}_i$ and \tilde{A}_i is symmetric positive semi-definite and $D_i R_i A R_i^T D_i$ is SPD, the eigenvalue problem will not contribute to the coarse space. More precisely, the contribution of the subdomain to the coarse space will be $R_i^T D_i \ker(\tilde{A}_i) \oplus V_i^{\text{geno}}$. Also in Definition 4.3, B_i^T is the pseudo inverse of B_i where $W_{\gamma i}$ is the image of B_i which is orthogonal to $\ker(\tilde{A}_i)$ and ξ_i is the orthogonal projection on $\ker(\tilde{A}_i)$ parallel to $W_{\gamma i}$.

5 Conclusion

We have proved the robustness of GenEO methods with respect to approximate coarse solves. It paves the way to three or more level methods in a multigrid fashion.

References

