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Abstract: We illustrate the errors inherent in the conventional empty
beam correction of full field X-ray propagation imaging, i.e. the division
of intensities in the detection plane measured with an object in the beam
by the intensity pattern measured without the object, i.e. the empty beam
intensity pattern. The error of this conventional approximation is controlled
by the ratio of the source size to the smallest feature in the object, as is
shown by numerical simulation. In a second step, we investigate how to
overcome the flawed empty beam division by simultaneous reconstruction
of the probing wavefront (probe) and of the object, based on measurements
in several detection planes (multi-projection approach). The algorithmic
scheme is demonstrated numerically and experimentally, using the defocus
wavefront of the hard X-ray nanoprobe setup at the European Synchrotron
Radiation Facility (ESRF).
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“Sampling in x-ray ptychography,” Phys. Rev. A 87, 053850 (2013).

29. D. L. Misell, “An examination of an iterative method for the solution of the phase problem in optics and electron
optics: I. Test calculations,” J. Phys. D: Appl. Phys. 6, 2200–2216 (1973).

30. B. M. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, “Phase-retrieved pupil functions in wide-field
fluorescence microscopy,” J. Microsc. 216, 32–48 (2004).

31. L. J. Allen, W. McBride, and M. P. Oxley, “Exit wave reconstruction using soft x-rays,” Opt. Commun. 233,
77–82 (2004).

32. L. J. Allen, W. McBride, N. O’Leary, and M. P. Oxley, “Exit wave reconstruction at atomic resolution,” Ultrami-
croscopy 100, 91–104 (2004).

33. D. R. Luke, “Relaxed averaged alternating reflections for diffraction imaging,” Inverse Probl. 21, 37–50 (2005).
34. S. C. Kramer and J. Hagemann, “SciPAL: Expression templates and composition closure objects for high perfor-

mance computational physics with CUDA and OpenMP,” ACM Trans. on Parallel Comput. (submitted).
35. J. N. Clark, C. T. Putkunz, M. A. Pfeifer, A. G. Peele, G. J. Williams, B. Chen, K. A. Nugent, C. Hall, W. Fullagar,

S. Kim, and I. McNulty, “Use of a complex constraint in coherent diffractive imaging,” Opt. Express 18, 1981–
1993 (2010).

36. L. J. Allen, H. M. L. Faulkner, K. A. Nugent, M. P. Oxley, and D. Paganin, “Phase retrieval from images in the
presence of first-order vortices,” Phys. Rev. E 63, 037602 (2001).

37. L. J. Allen and M. P. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun.
199, 65–75 (2001).

#203649 - $15.00 USD Received 10 Jan 2014; revised 25 Mar 2014; accepted 30 Mar 2014; published 6 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.011552 | OPTICS EXPRESS  11553



38. A.-L. Robisch and T. Salditt, “Phase retrieval for object and probe using a series of defocus near-field images,”
Opt. Express 21, 23345–23357 (2013).

39. C. Homann, J. Hagemann, T. Salditt, and T. Hohage, “Remarks on the product approximation in the detector
plane,” (in prepartion).

1. Introduction

X-ray propagation full field imaging and tomography have become powerful imaging tech-
niques, based on successful development of phase retrieval algorithms [1–5]. In the detection
plane, the contrast for both absorbing and phase shifting features is generated by the inherent
near-field diffraction behind a sample which is illuminated (probed) by an extended x-ray wave-
front P of sufficiently high spatial coherence. The exit wavefront and hence the complex-valued
sample transmission function of the object O can be reconstructed from the intensity distribu-
tion in the detection plane at some (defocus) distance z behind the object plane, based, for
example, on the transport-of-intensity equation (TIE) or various iterative algorithms [1, 6, 7].
A wide spectrum of applications ranging from material science [8], paleontology [9], histol-
ogy [10], small arthropod biology [11] has emerged, taking advantage of the unprecedented 3D
imaging capability, including fast tomography applications of dynamic processes [12]. While
this development has been driven by the brilliance and coherence of synchrotron radiation, to
some extent the method can be translated to compact laboratory-scale µ-CT instruments, pre-
serving fully quantitative reconstruction [13]. Furthermore, in order to achieve higher spatial
resolution, propagation imaging and tomography can be extended from the parallel beam case
to quasi-spherical beams, allowing for adjustable geometric magnification [14–16]. With this
approach, projection micrographs and tomograms of biological cells [16,17], tissues and small
organisms [18] can be recorded with quantitative density contrast and pixel size below 50 nm.

The necessary diverging spherical wavefronts for high magnification are created by nano-
focus x-ray optics, such as Kirkpatrick-Baez (KB) mirror systems [19, 20]. For such optical
systems, already small imperfections like mirror figure errors result in strong phase aberrations
due to the small wavelength of x-rays [21]. The empty beam far-field patterns are therefore
strongly affected and never correspond to the clean homogeneous flat field distribution ideally
assumed. This aberrated empty beam, however, constitutes the probing field P for O. Accord-
ing to current wisdom, the problem is dealt with by simple division of the recorded image with
object by that of the empty beam [17, 22]. In fact, the raw images are hardly ever presented in
publications. Hence, significant errors can be expected in the subsequent phase retrieval pro-
cess. While the simple flat field correction scheme by division is actually a crude approxima-
tion, it still works in some cases, whereas going terribly wrong in others. Figure 1 illustrates the
basic problem investigated here. The inhomogeneities in P cause distortions which cannot be
divided out. Strong artifacts of the mirror system are still observed in the ‘corrected’ hologram
of a polystyrene sphere. The goal of the present work is to investigate the errors of the common
flat field correction. In which cases are they strong, and in which cases are they negligible? In
a second step, algorithmic approaches beyond the simple empty beam correction are presented,
and tested numerically as well as experimentally.

Simultaneous reconstruction of probing beam P and object O have been achieved by pty-
chographic algorithms [23, 24], based on the redundancy generated by lateral scanning with
partial overlap. The method was first developed for far-field coherent diffraction data collected
from a compact probe in the object plane [23, 24], but some recent generalizations to near-
field (Fresnel) diffraction data have been demonstrated [25]. However, to this end P had to be
further scrambled by a wavefront diffuser in order to generate enough diversity. Further, for
the case of an illumination by a Fresnel zone plate, special reconstruction schemes were de-
vised [26], based on constraints in several planes including the pupil of the zone plate to define
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Fig. 1. Illustration of the flat field problem, for a 10µm (diameter) polystyrene sphere posi-
tioned at a defocus distance of z1 = 10 mm behind the focal plane of the KB mirror system
at beamline ID22NI (ESRF, Grenoble), recorded at a detector distance of z1+z2 = 525 mm
and photon energy of E = 17 keV. (a) Empty beam recording showing the artifacts stem-
ming from mirror imperfections. (b) Raw hologram of the sphere. (c) Corrected hologram
as obtained by division of (b) by (a), i.e. the standard flat field or empty beam correction
scheme. All data sets are normalized to the respective mean intensity. Scale bar of 2µm
indicates the corresponding distance in the object plane.

the probe’s support. Unfortunately, both ptychography based on lateral scanning and the multi-
plane Fresnel-CDI scheme [26, 27] turn out to be unsuited for the problem of the empty beam
reconstruction in full field propagation imaging, since the necessary redundancy/diversity is
generally not provided by lateral scanning. For a discussion of redundancy/diversity as well as
of the sampling criteria relevant for ptychography, see also [28]. This is why we turn to an ap-
proach based on multiple detection planes in this work in order to reconstruct P. A multi-plane
reconstruction scheme was first introduced in optics and electron optics in 1973 [29]. Since
then this scheme and variations thereof have been used in microscopy to recover the complex
valued point-spread-function (PSF) [30], and also in the field of x-ray imaging to reconstruct
an exit wavefield P ·O [31, 32]. However, in [31, 32] the multi-plane detection has not been
used to recover P itself, simultaneously with the object O, which is provided here. We therefore
extend near-field imaging in a similar manner as ptychography has previously done for far-field
coherent imaging [23, 24].

The manuscript is organized as follows: Section 2 further defines the problem of the wave-
front distortions and the associated correction schemes. The notation and the basic concepts
of the work are introduced. Section 3 presents the experimental setup and parameters. Sec-
tion 4 presents a single distance approach for the reconstruction of P, which we denote as
divide&update. Finally, we turn to the reconstruction of P based on multiple detection planes
in Section 5, before the paper closes with conclusions and outlook in Section 6.

2. How wrong is the standard empty beam correction?

Before we turn to reconstructions of P let us address the validity of the standard empty beam
correction, i.e. the approximation

|Dz(O)|2 ' |Dz(P ·O)|2

|Dz(P)|2
, (1)
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Fig. 2. (a) Sketch of the imaging scheme with the mirrors, the focus, the object and the
detector. The probing beam P is generated by a pair of KB-mirrors at the distance f in
front of the focal plane. The sample is placed at a distance z1 behind the focal plane, and the
sample to detector distance is z2. (b) The equivalent parallel beam geometry corresponding
to (a) with zeff = z1z2/(z1 + z2) and a geometrically reduced detection plane with M =
(z1 + z2)/z1. (c) The phantom of P used in the numerical simulations. A mandrill monkey
image serves as the input for the phases, Dürer’s Melencolia I as input for the amplitudes,
both images are taken from MATLAB. The phases are in the range of [-0.4 0.4] rad and
the amplitudes in [0.8 1.2]. The image size is 512× 512 pixel. (d) The object O used for
the numerical simulations consisting of a phase shifting 2D sine grating, here shown for
a periodicity of 32 px and a phase shift of -0.3 rad. (e) The test object used for multiple
plane reconstructions. The image of a stone sculpture serves as phases. The phases are in
the range [-0.4 0] rad, the amplitudes are uniformly 1, thus we have a purely phase shifting
object.

where Dz denotes the Fresnel propagation over the propagation distance z, with coordinates
defined in Fig. 2. Dz is given by

Dz(Ψ) = exp(i2π/λ z)F−1 [exp
(
−iπλ z(k2

x + k2
y)
)
F (Ψ)

]
, (2)

where F denotes the Fourier transform, λ the wavelength and kx,y the spatial frequencies.
The correction according to Eq. (1) can be justified for point sources, or equivalently plane
waves, see also appendix A. Only in idealized cases, the measured |Dz(P ·O)|2 can be written
as |Dz(P)|2 |Dz(O)|2. In all other cases in particular for P resulting from focusing the x-rays to
a finite spot size, |Dz(P ·O)|2 corresponds to a convolution of P and O, and cannot be ‘decon-
voluted’ by applying Eq. (1). Note that propagation of parallel and spherical wavefronts can be
treated in the same way, after application of a simple variable transform introducing an effec-
tive defocus distance z→ zeff = z1z2/(z1 + z2) as well as a geometric magnification of the pixel
size M = (z1 + z2)/z1 (Fresnel scaling theorem) [2]. For numerical calculation, the divergent
(cone) beam case can therefore be easily transformed to an equivalent parallel beam case, see
Fig. 2(b). By rearranging Eq. (1) we can introduce a metric δ to measure the error of the flat
field correction

δ = |Dzeff(O)|2−
|Dzeff(P ·O)|2

|Dzeff(P)|2
. (3)
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Fig. 3. The error δ̄ as function of the normalized cut-off frequency ξ/ξmax in the filter
applied to the probe P, for different periodicities ∆xO (grid spacings). The alternative x-
label on the top indicates the effective source size a in units of pixels, corresponding to ξ .
The simulation can be carried out in unit-less pixel variables and Fresnel numbers.

Since δ yields a matrix of errors, we use for our purposes δ̄ for the mean error over all pixels
in the image in the simulations below:

δ̄ =
1

N2 ∑
all pixel

δ , (4)

where N is the number of pixels in one direction. In order to study the dependence of δ̄ on
the geometric parameters, we perform a numerical simulation. The relevant parameters are the
source size a generating the probe P and the characteristic length of the object ∆xO. To be able
to work in the (numerically convenient) equivalent geometry of parallel beams, a correlation
length of the probe ∆xP is introduced, characterizing the smallest length scale on which P
shows variations. In other words ∆xP quantifies the smoothness of the image representing P cf.
Fig. 2(c). Next, in view of the physical interpretation, we can relate ∆xP to a source size a, since
the correlation length is limited by diffraction

a(∆xP) =
z1λ

2∆xP
. (5)

In the simulation we prescribe different ∆xP by a Fourier filtering of P according to Pfilt =
F−1[F (P) ·H(kx,ky)]. Different filter kernels can be used, such as Gaussian, hat profile, etc.
In fact the simulation results below are found to be very similar. Finally, we chose a rectangular
filter

H(kx,ky) =

{
1 if max(kx,ky)< ξ

0 if max(kx,ky)≥ ξ
, (6)

with the cutoff parameter ξ as the control variable. ξ is related to the effective source size (in
the divergent beam geometry) according to a(ξ ) = z1λξ

2π
. Stated differently, the filter is used to

blur the probe P(x,y), in order to make it appear more like a plane wave on local scales. With
∆xP as the second control parameter, the error δ̄ can be studied for any chosen example of P and
objects O of varied feature size in pixel units, such as a sine grating with periodicity ∆xO. Note
that the filter kernel is not introduced to take the effect of partial coherence into account, which
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are of course relevant but not considered here. We always assume a fixed phase relationship
between different points on the wavefront, i.e. a spatially fully coherent but aberrated probe.

In the simulation, we then evaluate δ̄ for the probe phantom shown in Fig. 2(c), denoted as the
mandrill-Dürer-probe, where the amplitudes of P are given by the Dürer carving, and the phases
by a mandrill monkey. The test object is chosen as a purely phase shifting object consisting of
a sine grating with a grid constant (periodicity) ∆xO. Both probe and object are represented
by a N ×N matrices with N = 512. The error (of the conventional empty beam correction
according to Eq. (4) is then evaluated for a constant Fresnel number F = ∆x2/(λ zeff) = 0.0015,
as a function of ∆xO in the range from 16 px to 128 px and as a function of the filter cutoff ξ ,
which was varied in the range from 2π/(N∆x) to π/∆x, with ∆x the pixel size in the plane of
the object. Note that this formulation in terms of the natural units of pixel units and Fresnel
number has been chosen in view of the generality. The value of F corresponds in particular to
the following (experimental) parameters: λ = 0.07 nm, ∆x = 25 nm, z1 = 6 mm, z2 = 519 mm
and zeff= 5.93 mm. Next, we note that the varied range of the filter cutoff parameter can be
transformed to a range of a from 0.34 px to 349.92 px, according to Eq. (5), evaluated for the
above (experimental) parameters.

The expectation is that δ̄ increases when either the source size a is increased, or the feature
size ∆xO is decreased. Figure 3 shows the simulation results for δ̄ for different ∆xO as function
of ξ/ξmax, with ξmax = π/∆x. The alternative x-axis label on the top indicates the correspond-
ing a. As expected δ̄ decreases if the bandwidth decreases, i.e. if P is filtered more strongly
with a smaller cut-off frequency ξ . Furthermore, the error δ̄ is always larger for smaller grid
parameters than for larger grid parameters. The smaller the structure, the more stringent is the
requirement to keep the source size a small or the correlation length of the wavefront aberra-
tions ∆xP large. From this we can infer that small structures in the object will not be transferred
correctly after application of the empty beam division, while the contrast of larger objects may
not suffer so much. Interestingly, the experimental example shown in Fig. 1 seems to be in con-
tradiction to the simulation results. The hologram of a 10 µm sphere which is illuminated by
a beam emanating from a KB-focus with 100 nm spot size should not be affected by artifacts
due to empty beam division. The paradox is resolved by the fact that while the full width at
half maximum (FWHM) of the focal spot is well below 100 nm, the KB focus is characterized
by long tails which extend over several µm. It is these tails which render the effective source
size too large for a ‘clean’ empty beam division. This conclusion has been validated experi-
mentally by placing a pinhole with 1.4 µm diameter in the focal plane, which then results in a
less disturbed, i.e. cleaner empty beam, see Fig. 4.

3. Experimental setup

The experiment was performed at the nano-focusing beamline ID22NI at ESRF (Grenoble) at a
photon energy of 17 keV (0.0729 nm). The source size (FWHM of the focus of the KB-mirror-
system [21]) was determined to be 67 nm(vertical) and 73 nm(horizontal), as measured by a
fluorescence knife edge scan. The sample and detector stage can be moved within a defocus
range of 0− 300 mm and 300− 1500 mm, respectively. A FReLoN HD 4m detector (ESRF)
equipped with a LSO:Tb (20 µm) scintillator and an optical magnification scheme was used,
with an effective pixel size of 756 nm. In the first configuration the detector was placed at
z1+z2 = 525 mm. The variation of zeff is achieved by placing the sample at different z1. Figure 4
shows the measured intensity patterns recorded in this setup. The left column corresponds to
the empty beam, the center to the raw hologram of a grid and the right column to the empty
beam corrected hologram, for the data recorded without (top row) and with (bottom row) a
‘cleaning’ pinhole of 1.4 µm diameter positioned in the focal plane. P and P ·O were recorded
quickly after each other, so that the flat field correction is not affected by temporal drifts.
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Fig. 4. Examples of images recorded for a gold grid test pattern with 1.5 µm spacing at a
defocus distance z1 = 26 mm. (a) Empty beam measurement P. (b) Recorded (raw) holo-
gram of P ·O.(c) Standard empty beam correction obtained by division of (b) by (a). (d),
(e), (f) same as (a), (b), (c), but with a pinhole of 1.4 µm (diameter) inserted in the focal
plane, which cuts the tails of the KB-beam, leading to a filtering of P. All data sets are
shown after normalization to the average intensity. Scale bar indicates 2 µm in the sample
plane.

In the second configuration the detector is moved and the sample (gold grid) is kept at a con-
stant z1 (25 mm). This approach also yields different zeff but the relative variation in zeff is much
smaller if only z2 is changed. The detector was placed at z2 = {500,501,510,600}mm. For each
distance 100 images with and without O were recorded over a total of 40 minutes. Figure 5
shows data recorded using this configuration. Here, the time span between the measurements
of P and P ·O was 20 minutes. This delay has visible influence on the quality of the flat field
correction (c). Thus the primary prerequisite for the empty beam division is of course a station-
ary illumination field, or a correspondingly small sampling interval, in order to avoid temporal
drift. While this trivial reason for possible artifacts is not our main concern, it does affect some
of the experimental data. For this reason phase reconstructions run on data as Fig. 5(c) yield
poor results as depicted in Fig. 5(d). The multiple detection plane reconstruction (Section 5)
suffers also from this issue. For comparison, using data, collected over a considerably smaller
time interval, as shown in Fig. 4(c) to run the phase reconstruction yields Fig. 7(c), as dis-
cussed further below. All relevant experimental parameters for the measurements shown are
summarized in Tab. 1.
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Fig. 5. Examples from a data set using the same object as in Fig. 4, but recorded in the
detector scan (z2 variation at fixed z1). (a) Raw hologram of P ·O for z2 = 510 mm. (b)
Corresponding empty beam P. (c) Empty beam correction: (a) divided by (b). (d) Phases
of a reconstruction based on GS using (c) as measurement constraint and the projection
on amplitude 1 and negative phases as sample constraint (cf. Section 4). (a), (b), (c) share
the same colorbar shown below (c). (a) and (b) show the average of 100 measurements of
the object and the empty beam, respectively, normalized by the mean intensity. Scale bar
indicates 4 µm in the sample plane.

4. Reconstructions from a single distance

In order to overcome the errors involved with the conventional empty beam division, as il-
lustrated above, we now turn to reconstruction strategies of P and O. To this end, we use the
common class of projection algorithms for the reconstruction [5], such as Gerchberg-Saxton
(GS), Hybrid-Input-Output (HIO), Relaxed Averaged Alternate Reflection (RAAR) [33] etc.
The algorithms were implemented using the SciPAL library [34] and are based on two alternat-
ing projections in two different planes: the projection PM adapts the current iterate of the wave

#203649 - $15.00 USD Received 10 Jan 2014; revised 25 Mar 2014; accepted 30 Mar 2014; published 6 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.011552 | OPTICS EXPRESS  11560



Table 1. Main parameters for the datasets shown in Figs. 1, 4, 5.
polystyrene grid grid pinhole grid detector

sphere Fig. 1 Figs. 4(a)–4(c) Figs. 4(d)–4(f) scan Fig. 5
∆x[nm] 14.4 37.4 37.4 {36, 35.9, 35.3, 30.2}
z1[mm] 10 26 26 25
z2[mm] 515 499 499 {500, 501, 510, 600}

exposure time [s] 0.5 0.1 0.1 0.1

field Ψ to the recorded measurements in the plane of detection

PM(Ψ)≡D−zeff

(
Dzeff(Ψ)∣∣Dzeff(Ψ)

∣∣√I

)
, (7)

where I denotes the measured intensities. The second projection PS acts in the plane of O and
can imply different constraints on O. For example positivity of the electron density variation,
meaning O implies negative phase shifts φ with respect to air/vacuum. PS could thus keep the
negative φ and set all positive φ values of the iterate to zero. It can be formulated as

PS(Ψ)≡

{
Ψ(~x) ∀φ(~x)≤ 0
A(~x) · exp(i ·0) ∀φ(~x)> 0

, (8)

where ~x denotes the coordinates in the plane perpendicular to the propagation axis and A the
(reconstructed) amplitude at a given ~x. Combinations of different constraints are also possible
for example negative phase as well as a support constraint [17]. However, none of these con-
straints is sufficient for reconstruction of P from a single intensity measurement, since (i) P fills
the whole field of view so that no compact support can be used, (ii) amplitudes and phases of P
are in the general case not proportional (coupled) or zero in any plane, and (iii) positivity may
apply to the electron density which determines O, but figure errors of the mirrors can induce
both positive and negative phases. Thus more information in form of additional measurements
has to be used. The first idea which comes to mind is to bring a well known O into the beam
and take images with and without O. To this end, in the experiment a 200 nm gold grid with
3 µm period and 50% duty cycle (referred to as grid below) was used, see Figs. 4(a) and 4(b)
for the measurements used in the reconstruction discussed further below. The basic principle of
the algorithm for coupled reconstruction of O and P is sketched in Fig. 6(a). We will denote it
as the divide&update (d&u) algorithm.

The right side of the sketch shows PM(ΨP·O
n ) and PM(ΨP

n ) where n denotes the iteration
index. The left side shows the update of P and O. In order to obtain a separation of the exit
wave field P ·O, we need an initial guess for O. A guess for O is easily obtained by running
a phase reconstruction step on the empty beam corrected measurements. One iteration of d&u
starts with applying PM(ΨP·O

n ) and PM(ΨP
n ) on P and O. P0 and (P ·O)0 (the initializations)

are chosen with uniform amplitude 1 and phase 0. After application of PM(ΨP·O
n ) we can use

the guess of O to obtain an update for P (blue arrow). We likewise use PM(ΨP
n ) to update O

(red arrow). The updated versions On+1 and Pn+1 are then used to compute the new exit wave
(P ·O)n+1 (green arrows). This concludes one iteration of d&u. In practice, a few enhancements
were added to the algorithm, and several additional constraints were tested. First, in the spirit of
hybrid input-output, the update Pn+1 is calculated as an average of Pn and the update, same holds
for On+1. Second, On+1 and Pn+1 were always projected on negative phases, see Eq. (8). We can
consider this negativity (or positivity) constraint to be based on a physical relationship, such as
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Fig. 6. Algorithm sketch for divide&update (d&u) and simulated reconstructions. (a) Prin-
cipal sketch of d&u. Further explanations in Section 4. (b) Phases of the reconstructed
mandrill-Dürer-probe and (c) corresponding amplitudes. (d) Phases of the first guess of O
as obtained by the GS algorithm applied to the empty beam corrected hologram. (e) Phases
of O after 200 iterations of d&u, showing the improvement by the nested update. (f) and
(g) show reconstructions from a pure phase probe, i.e. a beam with phases represented by
the mandrill image, and amplitudes equal to one (denoted as mandrill-1-probe). Besides the
negative phase constraint also the projection to uniform amplitude is used. (f) Phases of P,
amplitudes of P not shown. (g) Phases of O after 200 iterations of d&u. Scale bar indicates
4 µm.
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positivity of the electron density (implying negativity of the object phase with respect to the
vacuum wave). Therefore, one may be tempted to conclude that it would not hold for scattering
length distributions which can change sign (as for neutrons), or for a sample embedded in a
matrix. In the latter case the density of the object could be larger or lower than the matrix.
Since a global phase offset is irrelevant, translating or reflecting all pixel values to negative
or positive sign thus is not restrictive in our case, but is found to stabilize the algorithms by
‘aligning’ the phases. Finally, we projected O to unit amplitude 1, implying the constraint for a
purely phase shifting O.

4.1. Simulation results

Figures 6 (b) and (c) show the result for the simulation of the d&u algorithm, after 200 iter-
ations of d&u. The phantom used for P is the mandrill-Dürer probe introduced in Fig. 2(c).
While the reconstructed phases shown in (b) resemble the mandrill image, the reconstructed
amplitudes (c) are far off the Dürer input and exhibit significant contaminations of the phase
(mandrill image). Hence, the phases of P are reconstructed to some extent, while the amplitudes
are not. The object O, on the other hand shows a better quality, compare the result shown in (e)
to the initial guess (d), which was computed from the standard empty beam corrected hologram
by a GS-algorithm. The reconstruction in the d&u scheme is clearly better then the GS-solution
which is spoiled by the wrongful empty beam division. However, the d&u result still shows
residual cloudy artifacts, which show that the separation of O and P is not sufficient. If we use
a purely phase shifting P in the simulation and imply the corresponding constraint, the recon-
struction quality is excellent, see the reconstructions of P in (f), and of O in (g), respectively.
The amplitudes of P are not shown but exhibit±15% (max.) variations around 1. This variation
is due to the fact, that the final reconstruction is generated after a last application of PM , we use
this procedure for every reconstruction.

4.2. Experimental data

Figure 7 shows the d&u reconstruction of the experimental data recorded for the gold grid.
Close inspection of the reconstructed phases of P (a) show again regular structures which are
artifacts stemming from the gold grid. The amplitudes of P (b) look reasonable, with no bigger
imprints of the grid. Here, the reconstruction quality cannot be improved significantly by as-
suming a constraint of coupled real and imaginary component of the index of refraction (diper-
sion and absorption correction), such as proposed in [35]. The results also do not improve if we
take a second z1 position for the same object into account such that two positions in the same P
are probed.

5. Reconstructions from multiple detector distances

The previous section has shown that images of the object and probe at a single distance do not
fully constrain the reconstruction of P. We thus turn to an approach of using multiple measure-
ments of the beam in parallel. By moving the detector coordinate z2, the effective propagation
distance zeff is modified both for P ·O and the empty beam P, which is measured at each detector
distance. This experimental setup is sketched in Fig. 8. For the geometry of high magnification,
z2 � z1, zeff changes only very little with the variation of z2, since for z2 → ∞, zeff → z1. We
use the multi-distance (multi-magnitude) projection algorithm proposed by Allen et al. [36] to
reconstruct the wave fields. The algorithm is denoted as mmp (multi-magnitude projection) and
is rather straight forward. It uses only the measurements in the different detection planes as
constraints, with no constraint in the sample plane. Using 4 detection distances, we have

Ψn+1 = PM4(PM3(PM2(PM1(Ψn)))) , (9)
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Fig. 7. Reconstructions of experimental data with the divide&update algorithm. (a) Phases
and (b) amplitudes of the reconstructed P. (c) Phases of the first guess of O (gold grid) as
obtained by the GS algorithm applied to the empty beam corrected hologram. (d) Phases of
O after 200 iterations of d&u, clearly showing the improvement over (c). Scale bar indicates
4 µm in the sample plane.

where PMi denotes the projection on the i-th measurement. We stress that no constraints on O
are used in the multi-plane algorithm. The algorithm has been used before in the literature to
reconstruct the exit wave in x-ray imaging [37]. Instead of the sequential scheme implemented
here, one could alternatively also update via an average over all detection planes, i.e. in a paral-
lel manner [32]. mmp was demonstrated to be robust against noise, and can deal with first order
phase jumps. But to our knowledge the algorithm has not been used for the reconstruction of
P. We mention two small deviations from the original algorithm (i) the measurements are not
equally spaced (ii) PM brings Ψ always back in the plane of O before projecting on the next
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Fig. 8. Detector distance variations. In this approach z2 is varied and z1 is kept constant.

measurement. The original implementation projects directly on the next measurement.

5.1. Simulation

The simulated reconstruction was carried out for the same four detector distances as in
the experimental case discussed below, but in the equivalent (parallel beam) geometry with
zeff = {23.810,23.812,23.832,24} mm. Poisson noise was added to each pixel of the simu-
lated holograms of P and P ·O for an expected number of 109 detector photons. For P the
mandrill-Dürer-probe was used as above. For the phase of O, the image of a stone sculpture
was used with phases in the range of [-0.4 0] rad, see Fig. 2(e). Amplitudes of O were set to 1
(purely phase shifting object).

Figure 9 shows the simulation results for 1000 mmp iterations. The reconstructed phases and
amplitudes of P, as shown in (a) and (b), respectively, are in very good agreement with the
phantom, see Fig. 2(c). The amplitudes show only a faint imprint of the phases. The recon-
struction of P ·O (c) and (d) is also very good, and illustrates the fact that the exit wavefield is
dominated by P, which corresponds to the case of a heavily aberrated probe. The information
on O is visible only in form of contours of the stone sculpture in the phases. Dividing the recov-
ered P ·O by P finally yields O (e) and (f), again of very good quality, cf. Fig. 2(e). The phases
of O shown in (e) also only expose a faint imprint of the mandrill’s whiskers. The amplitudes of
O show an imprint of the phases of P and O but the distortions are only in the range of ±10%
(max.). The error metric ∆ on the reconstructions is defined by

∆ =
1

N2 ∑
∀pixel
|original− reconstruction| , (10)

where N2 is the number of pixels, and is given in the titles of the sub-figures for each re-
construction. We notice that ∆ is about 3 times larger for the phase reconstructions than for
the amplitude reconstructions. Also the reconstruction of P ·O has a higher error value than
the one of P. The reconstruction results and error values are already quite good, despite the
small changes in zeff (corresponding to the experimental values). As expected, the simulations
show that by choosing propagation distances with more variation in zeff (translational diversity)
the errors can be further decreased by several orders of magnitude. The challenge is therefore
clearly to cover a sufficient zeff range in the experimental implementation.

5.2. Experimental data

Motivated by the successful numerical results, the next step was to apply the mmp algorithm to
experimental data. The data was recorded in the second configuration as described in Section
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Fig. 9. Reconstruction of the simulated detector scan experiment with 4 distances using the
multiple magnitude projection algorithm (Eq. (9)). The left column shows phase and the
right column shows amplitude. (a), (b) Reconstructed P. (c), (d) Reconstructed P·O. (e), (f)
Reconstructed O, from division of P ·O by P. The ∆ in the title denotes the reconstruction
error as defined in Eq. (10). Scale bar indicates 4 µm in the sample plane.
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Fig. 10. Reconstruction of the experimental detector scan with the multiple magnitude pro-
jection algorithm (Eq. (9)). The left column shows phase and the right column shows am-
plitude of the reconstruction. (a), (b) Reconstructed P. (c), (d) Reconstructed P·O. (e), (f)
Reconstructed O, from division of P ·O by P. The pixel size is 36 nm. The colorbar below
the last image in a column applies to all images of the column. Scale bar indicates 4 µm in
the sample plane.
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3, exemplary data is depicted in Fig. 5. Due to the cone beam geometry and different magni-
fications the recorded images must be rescaled and aligned. The images were cropped to the
smallest field of view. We have reconstructed the two data sets with and without O indepen-
dently.

Figure 10 shows the results of the reconstruction of experimental data. The reconstructions
of phase and amplitude of P are shown in (a) and (b), respectively. The result looks similar but
more plausible than the reconstruction of P in Figs. 7(a) and 7(b). Comparing the reconstruction
of P and P ·O in (c) and (d) we can also identify the same structures in both, which indicates
that the reconstructions are consistent. However, when extracting O from the reconstruction of
P ·O by dividing by P, certain artifacts remain, and the result looks worse than the result for O
reconstructed from a single distance as before in the d&u approach, shown in Fig. 7(d). This is
attributed to the fact that this data set is more affected by temporal drift of P, simply because the
delay between measuring P and P ·O was much too long, namely about 20 min. It is surprising
that the reconstruction of P is still possible at this point. For an optimized scan, a time interval
between subsequent images of less than a minute is realistic, in view of the necessary detector
movement. This could sufficiently avoid drift of P and enable reconstructions of similar quality
as those in the numerical simulation.

6. Summary and Conclusion

The first aim of this work was to illustrate the problems associated with the standard flat field
correction, both numerically and with experimental data. To this end, we have used an error
metric δ Eq. (4). We have investigated, under which conditions the division of intensity images
of P and P ·O in the detection plane is a sufficient approximation, in terms of object and source
size. From the simulation we can conclude that the reconstruction of the probe P is an important
step towards higher resolution in propagation imaging, since otherwise good data quality can
only be expected for feature sizes much larger than the source size.

As a first attempt, we have presented 2 algorithms to reconstruct the empty beam P in x-ray
propagation imaging. The first algorithm d&u, devised for a single distance data set, uses a
nested scheme to update P and O. This scheme works well for purely phase modulated P and
O, but it breaks down for the general case of an amplitude and phase modulated P. We have also
inferred from this approach that it is not sufficient to use one image of P and P ·O each, even if
O is known. The second algorithm mmp is already known in literature but has not been used to
reconstruct P. The algorithm requires multiple distance measurements of P. mmp yields good
reconstructions in simulations even for noisy data with small variation in zeff. In order to probe
P at different distances in the experiment, the sample-detector distance z2 was changed, which
is intrinsically different from changing the sample position z1. Analyzing this data set showed
that in order to get a good reconstruction of P the time between measurements should be short.
This is of course also well known for the standard empty beam correction. However, in order
to cover a sufficient diversity (range in Fresnel numbers), the detector has to be moved over a
rather wide range, which makes this approach more prone to temporal drift. Flight tubes are
another experimental difficulty in implementing this approach, unless the detector is contained
in the flight tube. For the experimental strategy, the number of detector positions and the shift
δ z2 must be optimized in view of sufficient diversity while keeping the total measurement
time as small as possible in view of drift elimination. Interestingly, a recent generalization
of ptychography to longitudinal scanning (OAP, on-axis ptychography) has also shown, that
a defocus scan with constant detector position, i.e. moving only the sample, is not sufficient
for simultaneous reconstruction of P and O [38]. However, numerical simulations have yielded
good results already for two detector distances. This still awaits experimental verification, but
it can be anticipated that more than one algorithm will be suitable to perform the simultaneous
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reconstruction P and O.

7. Appendix A
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Fig. 11. The mean error of Eq. (11) as a function of the normalized cut-off frequency
ξ/ξmax in the filter applied to the probe P, for different periodicities ∆xO (grid spacings).
The alternative x-label on the top indicates the effective source size a in units of pixels,
corresponding to ξ .

The error of the standard flat field correction can be analyzed based on a rigorous mathemat-
ical proof starting from the stationary wave equation and resulting in an upper bound for the
error as a function of all relevant parameters. This result will be presented elsewhere [39], and
used an alternative definition of the error metric

δ =
‖Dzeff(P ·O)− exp(−i2π/λ zeff)Dzeff(O)Dzeff(P)‖∞

‖Dzeff(P)‖∞‖Dzeff(O)‖∞

, (11)

which differs from the heuristic expression given in Eq. (4). The numerator of δ measures the
difference of Dzeff(P ·O) and the product Dzeff(O)Dzeff(P). This difference is then normalized
by the modulus of the propagated P and O. It is shown in [39] that the supremum of Eq. (11) is
bounded by √

2 zeff λ

8 π ∆xP ∆xO

∫
R2 |F (P)|dk

∫
R2 |F (O)|dk

‖Dzeff(P)‖∞|Dzeff(O)‖∞

. (12)

Figure 11 shows the results obtained with the metric Eq. (11). The simulation was carried out,
following the same procedure as described in Section 2 also using the same set of parame-
ters. Both errors Fig. 3 and Fig. 11 show the same behavior, regarding the strength of filtering
(ξ/ξmax varied) and the variation of object periodicity ∆xO. In fact it is possible to define sev-
eral other metrics, showing the same general behavior as here, but without the mathematical
foundation as Eq. (11).
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