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Abstract—Optimising the properties of catalysts for industrial processes requires a detailed knowledge
of their structure and properties on multiple length scales. Synchrotron light sources are ideal tools
for characterising catalyts for industrial R&D, providing data with high temporal and spatial
resolution, under realistic operating conditions, in a non-destructive way. Here, we describe the
different synchrotron techniques that can be employed to gain a wealth of complementary
information, and highlight recent developments that have allowed remarkable insight to be gained
into working catalytic systems. These techniques have the potential to guide future industrial catalyst
design.

Résumé — La diffusion des rayons X synchrotron : un outil pour la caractérisation des
catalyseurs sur les multiples échelles de longueur — Afin d’optimiser les propriétés des
catalyseurs pour les processus industriels, il est nécessaire d’avoir une profonde connaissance de
leurs structures et propriétés sur les multiples échelles de longueurs. Les sources de lumière
synchrotron sont les outils idéaux pour la caractérisation des catalyseurs dans la R&D industrielle. Ils
permettent d’étudier des processus catalytiques avec une haute résolution spatiale et temporelle, dans
des conditions opératoires réelles, de façon non destructive. Nous décrivons ici les différentes
méthodes synchrotrons qui peuvent être utilisées pour obtenir une grande quantité des données
complémentaires, et souligner quelques développements récents avec lesquels on a gagné de
nouvelles connaissances remarquables. Ces méthodes ont le potentiel de guider la conception des
catalyseurs industriels du futur.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 70 (2015), No. 3, pp. 429-436
� J.M. Hudspeth et al., published by IFP Energies nouvelles, 2015
DOI: 10.2516/ogst/2014056

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/articles/ogst/abs/2015/03/contents/contents.html
http://ogst.ifpenergiesnouvelles.fr/
http://ifpenergiesnouvelles.fr/
http://ifpenergiesnouvelles.fr/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


INTRODUCTION

The intelligent design of catalysts is key to effective and
energy efficient processes. Optimising the properties of these
catalysts, which are used widely across all areas of industry,
including the oil and gas industry, requires intimate under-
standing of their atomic structure [1]. Recent advances in
controlling materials structure and properties at the nano-
scale mean that this is the key length scale [2-4]. A further
challenge is the coupling of this structure with properties
on the micrometre length scale, for example porosity in cat-
alysts supports, or optimising the spatial distribution of an
active ingredient. Finally, characterisation tools must not
only be able to probe multiple length scales, but should be
non-destructive and able to detect changes under realistic
operating conditions. In this short review, we argue
that synchrotron X-ray sources such as the European
Synchrotron Radiation Facility (ESRF) in Grenoble, France,
provide a unique combination of these attributes. Further-
more, these facilities are available for both blue sky funda-
mental research, as well as proprietary commercial
applications.

In brief, a synchrotron X-ray source consists of a powerful
particle accelerator (the ESRF operates with relativistic
6.05 GeVelectrons). These particles are injected into a circu-
lar storage ring and lose energy by producing a broad spec-
trum of light, from the IR to gamma rays. Multiple
measurement stations, or beamlines, view the X-ray source
at tangents to the ring, and each is optimised for a different
type of measurement. Synchrotrons are large scale facilities
(the circumference of the ESRF storage ring is ca. 800 m),
and are funded by national governments or international
consortia. In the case of the ESRF, twenty one countries con-
tribute funding.

Synchrotron X-rays have numerous advantages for
studying catalytic processes under realistic operating con-
ditions. The high energy X-rays produced by synchrotron
sources can penetrate bulky or dense samples and sample
environments. High brilliance allows measurements to be
performed with high spatial and temporal resolution, mak-
ing them ideal for in situ, time resolved studies of chem-
ical processes. In addition, the X-ray energies can be tuned
to perform element specific measurements and speciation
studies.

1 TECHNIQUES

Avariety of synchrotron X-ray techniques can be employed to
provide valuable information about the structure and properties
of catalytic systems on different lengths scales. The comple-
mentary nature of the information obtained by different meth-
ods means that it is often useful to use multiple techniques to
obtain a complete understanding of the catalytic process of
interest. A selection of synchrotron X-ray techniques and the
information that can be obtained from them are described
below, and summarised in Table 1, along with the relevant
beamlines that perform these techniques at ESRF.

1.1 X-Ray Powder Diffraction (XRPD)

XRPD can be used to identify, refine the structure, and quan-
tify the relative fraction of crystalline phases in a sample. For
in situ catalysis studies XRPD can provide valuable insight
into the reaction pathways and intermediate phases [5-9].
Since only average structure information is obtained, it is
often useful to combine XRPD with a local structure

TABLE 1

A summary of the information that can be gained from the various synchrotron X-ray techniques and the relevant beamlines at ESRF for catalysis studies

Information of interest Technique Beamlines

Identification, quantification and structural
refinement of crystalline phases

X-ray powder diffraction High resolution: ID22, BM01, BM25
Standard: ID11, ID15, BM26

Structure of surface phases Surface X-ray diffraction ID03

Identification and quantification of nano-
crystalline and amorphous phases

Pair distribution function analysis ID15, ID22, ID11

Spatial distribution of crystalline phases and
crystallite sizes

X-ray diffraction computed tomography ID15, ID11

Spatial distribution of amorphous phases and
nanoparticle sizes

Pair distribution function computed tomography ID15

Local environment and chemical bonding
around a specific element

X-ray absorption spectroscopy: EXAFS,
XANES

ID26, ID24, ID21, BM01, BM08, BM23, BM25,
BM30, BM26

Spatial distribution of a specific element X-ray fluorescence ID16, ID21, ID13
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technique such as pair distribution function analysis or X-ray
absorption spectroscopy (described below).

1.2 Surface X-Ray Diffraction (SXRD)

Understanding the surface structure of heterogeneous
catalysts is particularly important since exposure to reac-
tants can cause entirely new structures to form. These
structures can strongly influence the reaction by, for
example, “poisoning” or by acting as the active phase.
In situ SXRD studies have provided new insight into the
surface structures formed and their role in catalytic reac-
tions [10-12].

1.3 X-Ray Diffraction Computed Tomography (XRD-CT)

For heterogeneous catalysis, controlling the nature and dis-
tribution of the active phases, particularly at operating tem-
peratures and conditions, is crucial for optimising catalytic
performance. Hence, it is important not only to quantify
the phases present but also to be able to map their spatial
distribution in 2D and 3D. This has been achieved by the
development of XRD-CT (Fig. 1) which can be used to
map the distribution of phases with micrometre resolution
in a time-resolved manner [14, 15]. The crystallite size dis-
tribution can also be mapped by using the diffraction peak
widths.

1.4 Pair Distribution Function (PDF) Analysis

Many catalytic processes rely on nanoscale structures (e.g.
metallic nanoparticles on porous support material) making

local structure information essential for optimising perfor-
mance. PDF analysis is a valuable tool for the study of nano-
crystalline materials [16] and has been used to investigate a
variety of catalytic systems [17-19]. PDF analysis gives the
probability of finding any two atoms at a given interatomic
distance in real space. It is a total scattering technique and pro-
vides information on both local and intermediate length scales
(10-20 Å). PDF analysis can be used to identify and quantify
the amorphous and nanocrystalline phases present in the sam-
ple as well as obtaining information about nanoparticle size.

1.5 Pair Distribution Function Computed Tomography
(PDF-CT)

Similarly to XRD-CT, PDF analysis can be coupled with
computed tomography to investigate the distribution of
nanocrystalline and amorphous phases [20]. The data
obtained by PDF-CT enables physicochemical profiling of
the nanoscale properties of materials and their distribution
with lm resolution.

1.6 X-Ray Absorption Spectroscopy (XAS)

XAS is an element specific technique that determines the
local environment and chemical state of the absorbing atom
and has been applied to a wide variety of catalytic systems
[21-24]. Samples can be in the gas, liquid or solid phase.
Hard X-ray absorption spectroscopy is particularly useful
since it does not require a high-vacuum environment around
the sample making it suitable for in situ reactions studies at
realistic operating conditions.

XAS data are collected by tuning the photon energy to a
particular energy range where the core electrons from 1s, 2p,
3d, etc., can be excited. There are three main regions which
can be recorded by XAS: pre-edge region, main-edge region
and post-edge region (Fig. 2). Spectra recorded at the pre-
edge and the main-edge regions are known as X-ray Absorp-
tion Near-Edge Structure (XANES). Measurements of the
post-edge transitions are known as Extended X-ray Absorp-
tion Fine Structure (EXAFS). XANES is useful for deter-
mining the chemical state while EXAFS can be employed
for understanding the local structure.

1.7 X-Ray Fluorescence (XRF)

XRF techniques can be used to map the spatial distribution of
thefluorescing element.For catalysis, this canprovide valuable
information about, for example, the loss of active elements and
the retention of contaminating elements [15, 25, 26]. Using
synchrotron XRF, trace elements can be detected with concen-
trations down to the attogram and their distributions mapped
with nanometre scale resolution.

Ni precursor Support

μ-XRD-CT
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2.2
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Z
 (
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m

)

Figure 1

In XRD-CTa series of transmission projection measurements is
made at different rotation angles while the sample is exposed to
X-ray radiation. A 2D image slice is then reconstructed from
these measurements using an algorithm based on the difference
in the diffraction signal for the crystalline phases present.
Adapted from Reference [14] with permission from The Royal
Society of Chemistry.
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1.8 Sample Environments

A variety of sample environments are available for perform-
ing experiments in situ with realistic operating conditions.
These include gas flow cells and gas pressure systems with
static loadings of up to 200 bar [27, 28]. Temperatures rang-
ing from 4 to 1800 K are accessible using a variety of ancil-
lary equipment. Custom built sample environments can also
be produced for specific applications to match academic and
industrial research needs. Further, there is the capability to
combine X-ray measurements with other techniques such
as Raman spectroscopy and mass spectrometry to gain addi-
tional in situ complementary information about the system
[28, 29].

2 INDUSTRY

Characterisation is at the heart of modern industrial materi-
als R&D, feeding materials innovation and process refine-
ment. As such, industry is a growing user and partner of
synchrotron facilities – both for routine characterisation
needs and for more complex R&D requirements, and
from Technology Readiness Levels (TRL) spanning pre-
competitive work up to operational and production issues
[30, 31]. This potential was recognised even at the outset
of synchrotron light development in the 1940s [32].
Nowadays, most synchrotron light sources operate an
in-house business development or industry liaison office
whose mission is to build interactions with industry through

flexible and rapid paid-for proprietary access, collaborations
and partnerships, and free peer review access where the work
is publishable.

In the domain of catalysts, screening of catalyst structure
and components is made feasible and cost effective using
high-throughput measurements with high energy X-rays,
such as for PDF, and tunable X-rays for spectroscopy.
Sometimes longer-term R&D projects require novel sample
environments and more complex experiments and data
analysis. In these cases, industry can come forward with
funding for PhD students or even a staff exchange to
allow internal knowledge of the techniques and facilities to
be built up.

With the growing impact of synchrotron light in industry,
nimble start-up companies are helping to bridge the gap
between the facilities and industrial clients. Examples
include Finden (UK), Novitom (France), Colloidal
Resources (Sweden) and Excelsus (Belgium). These,
together with academic partners, allow the business and
industrial offices to best respond to industrial R&D needs.
Europe has also realised the power of such central facilities,
with a number of opportunities being put forward by
community-led integrating activities and industrially
directed public-private partnerships in the Horizon 2020
programme, which is aiming to build a bridge across the
traditional divide between academia and business.

3 EXAMPLES

3.1 Example 1: In Situ Reduction Study of Cobalt Model
Fisher-Tropsch Synthesis Catalyst [7]

Fischer-Tropsch (FT) synthesis, developed in 1925, is an
important industrial process still used today to produce a
variety of liquid hydrocarbons from a mixture of carbon
monoxide and hydrogen. Al2O3 supported cobalt oxide
phases are commonly used as catalyst precursors but must
undergo a reduction or activation treatment before FT syn-
thesis can occur. Understanding the reaction pathway and
intermediates is important for improving the performance
of industrial cobalt based catalysts.

Sasol investigated the reduction process of a model
Co/Al2O3 catalyst (Co oxide phases deposited on micro-
metre c-Al2O3 support particles shown in Fig. 3) under real-
istic conditions using in situ synchrotron high resolution
XRPD. In addition to conventional XRPD analysis, total
scattering (PDF) analysis was employed to probe the local
structure changes.

Figure 3 shows the evolution of the XRPD patterns
collected with increasing temperature and time during reduc-
tion under a flow of H2 at ambient pressure. The Co3O4 was
completely reduced to CoO by 240�C. The reduction of
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Figure 2

The pre-edge, main-edge and post-edge regions of an XAS
spectrum for the Ce L3 edge in CeO2.
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CoO to cobalt metal proceeded more slowly and the
reduction in the CoO abundance coincided with an
increase in both the Co metallic and amorphous phase
fractions.

The quantification of the amorphous Co phase was
beyond the limits of the XRPD analysis but all of the Co
present could be accounted for by the PDF analysis which
showed that mainly face-centred cubic (fcc) Co metal
remained after reduction. The combination of PDF with
standard XRPD analysis therefore provided a more complete
understanding of the evolution of the Co containing phases
in the catalyst particles. This approach could be used to
provide additional insight into many other processes.

3.2 Example 2: Catalyst Active Phase Evolution from
X-Ray Diffraction Computed Tomography [13]

Metals and metal oxides anchored to porous support materi-
als are used extensively as heterogeneous catalysts in indus-
trial processes. They are often employed as millimetre sized
catalyst bodies and the efficiency of the catalytic system
depends on the nature and distribution of the active phases.
Understanding the factors that influence the distribution dur-
ing the preparation is crucial for optimising the design and
performance.

Time resolved XRD-CT was used to examine a Ni sup-
ported c-Al2O3 catalyst body during the calcination stage

of the preparation process. These catalysts are widely
employed for hydrogenation reactions. The cylindrical cata-
lyst body was impregnated with a Ni catalyst precursor
material and calcination was performed under N2.

Figure 4 shows the evolution of the Ni containing phases
during the calcination process. Two routes to the formation
of metallic fcc Ni active phase from two different decompo-
sitions of the precursor were observed, with one precursor
phase located at the periphery and the other located in the
centre. Although both phases lead to the formation of the
active fcc phase, the edge precursor did so in a one step
process whereas the centre precursor took three to four steps.

500°C

500°C

375°C

125°C

250°C

20

18

17

15

10

5

T
im

e 
sl

ic
e 

no
.

T
im

e/
te

m
p.

22

20

18

14

23.5 nm

18

20 nm

11.5

25 nm

5

Figure 4

Reconstructed 2D images of crystalline components’ features
observed in the diffraction patterns as a function of time/
temperature during thermal activation of a c-Al2O3-supported
Ni catalyst precursor. a) The colour maps indicate the following
distribution of solid-state phases: precursor 1 (green), precursor
2 (cyan), subsequent breakdown phases associated with precur-
sor 2 (yellow, magenta, white and red), and fcc Ni (blue).
b) The thermal colour maps show the variation in crystallite
size (nm). When plotted with a common colour axis (shown
beneath) these indicate the growth of fcc Ni crystallite size as
the growth of the phase proceeds. For slices 18 and 22, the data
have been re-plotted with bespoke colour axes (right).
Reprinted from Reference [13], Copyright 2011, with permis-
sion from Wiley-VCH.
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The experimental diffractograms during reduction of the Co
oxide phases under 5% H2 from 80�C to 425�C indicating, in
particular, the peaks from the Si reference (very narrow), and
the evolution of the cobalt oxides to metallic cobalt. The inset
shows one of the Al2O3 particles (~80 lm) on which the cobalt
oxides are deposited. Adapted from Reference [7] with permis-
sion from the PCCP Owner Societies.
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The two different processes also lead to different particle
sizes of the fcc Ni, with larger particle sizes in the centre than
at the periphery, which is important for the activity/selectiv-
ity of the catalyst body in a reaction.

The new information that can be gained from XRD-CT
could have important implications for developing better
control over the particle size and distribution of the
active species and ultimately lead to improved catalytic
performance.

3.3 Example 3: Pair Distribution Function Computed
Tomography [20]

Catalytic materials are often most effective when deposited
in nanocrystalline form. Being able to track the distribu-
tion of such phases is therefore important for optimising
performance but is largely beyond the limits of XRD-
CT. PDF analysis can be used to study nanocrystalline
and amorphous materials so combining PDF analysis with
CT allows nano-structural information to be mapped and
quantified.

Pd catalysts are used as the active component in both
hydrogenation and oxidation reactions. Both XRD-CT and
PDF-CT were used to investigate the distribution of Pd
loaded in c-Al2O3 industrial catalyst bodies during calcina-
tion and reduction in 5% H2/Ar.

Figure 5a shows the reconstructed distributions of PdO
and fcc Pd under reducing conditions from both the XRD-
CT and PDF-CT measurements. The distributions were
determined based on characteristic peaks in the XRPD
and PDF measurments for the two phases. In the XRD-
CT map, only the fcc Pd phase appears to be present
and is predominantly located at the edge of the catalyst
body. In contrast, the PDF-CT map, while consistent with
the XRD-CT result, also shows some additional intensity
within the main body of the sample from both PdO and
Pd, indicating the presence of “diffraction silent” nanoma-
terial.

Additional quantitative analysis of representative PDF
from voxels at the periphery and in the core, shown in
Figure 5b, was used to verify the observation of “diffraction
silent” Pd. The PDF signal from the “diffraction silent”
nanoparticles in the centre of the catalyst body dies out very
quickly suggesting these nanoparticles must be very small.
Using a spherical approximation for the shape of the nano-
particles in the PDF calculations, a good fit was obtained
with a nanoparticle diameter of ~1.4 nm the catalyst body
centre, whereas those at the edge exceed ~4 nm.

The ability to detect “diffraction silent” materials means
that PDF-CT can provide a more complete picture of the
evolution of different species within the catalyst body than
XRD-CT, making it a promising technique for developing

more robust structure-activity relationships in real catalyst
samples and guiding catalyst design.

3.4 Example 4: In Situ XANES Study of Catalytically
Active CeO2 Nanoparticles [24]

Cerium dioxide (CeO2) nanoparticles or nanoceria are
unique and multifunctional materials with a wide range of
applications in catalysis, photochemistry and biomedicine.
These applications appear to rely on the capability of nan-
oceria to store or release oxygen through conversion
between Ce(IV) and Ce(III) formal oxidation states. In order
to understand the performance of CeO2 nanoparticles in
materials applications, a large number of studies has been
dedicated to their catalytic activity, chemical reactivity, and
electronic and structural properties in relation to different
synthesis techniques.

In a recent in situ study, high energy resolution XANES at
the Ce L3 edge was used to investigate the chemical
state of Ce during the conversion of Ce(NO3)3.6H2O into
CeO2 nanoparticles. Performing such experiments in situ is
particularly important since the electronic structure of nan-
oceria is critically dependent on the reaction environment.
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Figure 5

a) Comparison of the information from XRD-CT (left) and
PDF-CT (right) after sample reduction. b) Distribution of par-
ticle sizes of fcc Pd within the catalyst body under reducing
conditions and portions of the PDF data for selected pixels at
the edge and interior of the catalyst body. Adapted and rep-
rinted by permission from Macmillan Publishers Ltd from
Reference [20], copyright 2013.
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Figure 6 shows an example of the pre-edge transitions
recorded at the Ce L3 edge for bulk Ce2(CO3)3 and bulk
CeO2 which have oxidation states of Ce(III) and Ce(IV)
respectively. The spectrum for the synthesised 3 nm CeO2

nanoparticles is also shown. The shape and the energy posi-
tion of the pre-edge structure in the nanoceria spectrum are
similar to features for bulk CeO2 (Ce(IV)).

It was concluded that the formation of Ce(III) sites is not
necessarily to account for the chemical activity of nanoceria,
contrary to that which had previously been assumed based
on ex situ experiments. These results highlight the complex-
ity of the electronic structure in nanoceria and the impor-
tance of performing experiments under realistic operating
conditions.

CONCLUSION

Synchrotron light is a unique probe for observing catalyst
materials, providing detailed spatially and temporally
resolved data on catalysts in action under real working con-
ditions. The progress in this area in the last years has been
remarkable, with new developments bringing together
X-ray techniques such as tomography and PDF or powder
diffraction to provide unprecedented insights into working

catalysts. Synchrotron light facilities are combining more
than just X-rays, adding complementary data with Raman
and mass spectroscopy.

The field has enormous potential in industry to make
application to catalyst tailoring and development more effi-
cient. With light sources being increasingly open and acces-
sible for industrial R&D, the impact of the results coming
out from such experiments, for industry and on the economy,
is only just starting to be seen.
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