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Abstract—The aim of this paper is to apply probabilistic
load flow methods on a three phases, unbalanced low voltage
distribution network. We use a point estimate method and a
Monte Carlo simulation based method to estimate the electrical
characteristics (buses voltage, phases and neutral conductors
currents) of a distribution grid in presence of a large number
of small size photovoltaic generators. Probabilistic load flow
allows us to take into account the uncertainty of photovoltaic
production and load consumption in load flow computation. The
literature shows that PEM method gives good accuracy results
while requiring less time simulation than Monte Carlo simulation.
In this paper, we aim to check if this assumption is still right with
different kinds of probability density function and for a large size
electrical network. Usually, random parameters are modeled as a
normal distribution. In this work, a generalized extreme value is
used to model load consumption behaviour instead of a normal
one. The uncertainty of photovoltaic production is supposed to
be directly linked to the sky clear index which is modeled as a
beta distribution.

Index Terms—Low voltage network, Monte Carlo simulation,
Point estimate method, Probabilistic load flow

I. INTRODUCTION

Nowadays, the climate changes combined with oil’s prices
fluctuation lead to look for alternatives to fossil primary
sources of energy. In this context actions are taken to promote
use of renewable energy sources (PV, wind power, biomass...)
that implies rise of injection from generators connected to the
power distribution grid.

Electrical power system scheme is composed by production
system, transmission and distribution networks. The distribu-
tion network plays an important role in this energy transition
context as it is the interface between small and medium size
power distributed generator and the rest of electrical system.
The problem is, historically, for technical reasons, this distribu-
tion network was not designed to receive production units. So,
currently, one existing challenge is to ensure good operating
conditions of the electrical network in this presence of DGs by
respecting the technical constraints standards (voltage limits,
current limits, unbalance...).

For that, DSO need a good estimation of impacts of DG
on those technical constraints which are directly linked to the

network reliability. For the sake of convenience with reality,
the estimation tool should be able to take into account the
uncertainty of production and consumption at a given time.
Probabilistic load flow concept is suitable to do it.

Load flow is used to determine voltage magnitude and phase
angle at each node of the network under a given operating
condition (load and generation profile). Usually, deterministic
load flow is used but in that case, load and generation profiles
at each node of the network are supposed to be exactly
known at each time step; what does not take into account
the uncertainty on production and consumption . That is why,
in this paper, we plan to achieve load flow calculation taking
into account the random aspect of the demand and production.

In the literature three main methods of probabilistic load
flow are noticed:

The simulation based method known as MonteCarlo [1],
[2]. It consists of solving a deterministic non linear load
flow problem for several scenarios of power production and
consumption. Scenarios are generated randomly from a proba-
bility density function. Although the MCs method might give
accurate results, it requires a large number of simulation to
converge.

The analytical methods [3] are based on the linearization
of the power flow equation. These methods don’t need long
time simulation but the use of approximate equations implies
a lack of accuracy.

An alternative approximation method called Point Estimate
Method has been developed and applied in case of probabilistic
load flow in presence of wind turbines. It solves the determin-
istic load flow at several sample points and then weights them
to estimate the output moments [4].

In this paper, we will apply a point estimate method and
Monte Carlo simulation method to estimate PV impacts on
voltage, current, power and voltage unbalance of low voltage
electrical network.

In the following sections, we first discuss impacts of PV on
chosen technical constraints which are voltage, current, power
and voltage unbalance. After that we describe the applied
PLF method. Then, we present the simulation parameters:
the network test model, the probabilistic load and production



model. To finish, we compare results from PEM method to
those obtained from the Monte Carlo one.

II. IMPACT OF PV INTEGRATION ON LV DISTRIBUTION
NETWORK

Injection from DGs such as PV implies many technical
impacts on power distribution network [5]. In our case, we
have focused on impacts of PV generation units on nodes
voltage, current intensity in phase and neutral conductors and
voltage unbalance.

A. Voltage rise issue

The power produced by PV varies the power flows in the
network, which impacts the voltage profile. In the AC power
system, the voltage difference between two points can be
approximated by (1) where P is the active power, Q the
reactive power, R, X respectively the line resistance and
reactance and Vn the mean voltage [6].

∆V ≈ P ×R+Q×X
Vn

(1)

In transmission network, voltage variation due to injection of
active power can be ignored due to the fact that X/R is high
because of the low resistance value. The problem is more
crucial in distribution network with higher value of R, so PV
power injection tends to increase local voltage value.

B. Over current and overcharge issue

Over current can cause thermal problems due to the Joule
effect. In case of low PV penetration, i.e when installed PV
capacity is relatively small compared to consumption, the
produced electricity is consumed locally and it reduces the
consumption of the customer from the source and therefore the
current amplitude is also reduced. However, with high penetra-
tion of PV, it is possible to have a backward power flow. The
worst case is when the difference between PV production and
consumption, exceeds the line or local transformer capacity.
Over current increases the lines and transformer temperature
and affect their lifetime [7], [8].

C. Voltage unbalance issue

The connection of PV to low voltage distribution network
is made in single phase form. Naturally, there is voltage
unbalance because most households use single-phase electrical
appliances and the lines are not always transposed as they are
in the case of transmission network. In practice, the load may
be well distributed so that the powers circulating on different
phases are the same and therefore the network is close to
equilibrium. The injection of single-phase PV is a source of
unbalance if it is not well distributed [9]. That is why DSO
limit the minimal power of single-phase connected DG to quite
lower values than three-phase connected ones. There is more
than one definition of voltage unbalance [10]. We have used a
V oltageunbalancefactor (2) that is derived from Fortescue
transformation.

%V oltageunbalancefactor(V UF ) =
Vneg
Vpos

× 100 (2)

Where the negative sequence component Vneg and the positive
sequence component Vpos are given by (3) and (4):

Vn =
Vab + a2.Vbc + a.Vca

3
(3)

Vp =
Vab + a.Vbc + a2.Vca

3
(4)

where a = 1 6 120◦ and a2 = 1 6 240◦ and Vij is the phase to
phase voltage calculated in pu .

D. Neutral current

The considered LV distribution is a three-phase, four-wires
system. The neutral current is a vector sum of the three line-to-
neutral current. In perfectly balanced power distribution, this
current is nul. In low voltage distribution network supplying
single-phase load, there is phase current unbalance and so a
resulting neutral current [11].

In LV distribution system, neutral conductors are sized for a
nominal current intensity. Injection of single-phase residential
PV may increase the current phase unbalance and therefore
the neutral current amplitude which can exceed a conductor
limit [12].

III. CHOSEN PLF METHOD

The point estimate method allows to compute a moment
of random variable that is the function of m random variable
inputs.

The power flow can be mathematically modeled as a set of
non linear function Fi that relates random parameters pi (bus
power injection? line parameters. . . ) and network electrical
quantity Zi (bus voltage and angle, power losses in line,
current. . . ) (5).

Zi = Fi(p1, p2, p3, . . . , pm) (5)

In our study case, we consider uncertainty on load con-
sumption and PV generators output at a given moment.

We have used the point estimate method developed in [14]-
[15]. It is based on the use of few statistical moments (mean,
variance, skewness and kurtosis) of the random input param-
eters pi to compute the moments of the random variable Zi.
There are different types of point estimate method depending
on the number of needed standard moments. For example, for
the 2m scheme, we just need mean, variance and skewness
to perform it while the 3m scheme requires mean, variance,
skewness and kurtosis.

Each input random parameter pl, with l ∈ 1, . . . ,m is
identified by its concentration which is a couple pl,k, wl,k,
k ∈ 1, . . . ,K which are respectively the location and the
weight. K is an integer number which depends on the chosen
PEM type. At the first stage, we begin with K = 2, which
corresponds to the 2m scheme. The location is given by (6)
where µpl and σpl are the mean and standard deviation of the
input random variable. ξl,k represents the standard location.

pl,k = µpl + ξl,k × σpl (6)



The standard location and the weight are obtained by
solving the non linear system of equation [15] where λl,k is
the jth standard moment of the random variable pl.{ ∑K

k=1 wl,k = 1∑K
k=1 wl,k(ξl,k)j = λl,k

with j = 1, 2, . . . , 2K − 1.
Equation (5) is computed K times for each parameter pl.

For each evaluation, the parameter pl is set equal to its location
pl,k and others parameters are represented by their mean (µ),
see (8).

Z(l, k) = F (µp1, µp2, µp3, . . . , pl,k, . . . , µpm) (8)

The deterministic load flow is computed using OpenDSS
[20]. The calculation principle described in [16] is based on
an iterative method which computes voltages from system
admittance matrix and injection current of power converter
elements (loads and generators).

By using the evaluated Z(l, k) associated to the weighting
factors wl,k, the jth moment of the load flow output random
variable Z is estimated by (9)

E[Z]j '
m∑
l=1

K∑
k=1

wl,k(Z(l, k)j) (9)

IV. SIMULATION

A. Network Test

We have used a ckt5 network test which is one of the
benchmark test networks developed by EPRI [17]. These
models are representative of actual small, medium and large
circuit from various utilities. The network test cover a voltage
range from 115 KV to 208V and serves 1379 household
customers with a photo voltaic generation units on their roof.
The one-line diagram of the test feeder is shown in (figure 1).
The household position is set arbitrary through all the network.

Fig. 1. One-line diagram of network test feeder

B. Input data

The input of our model, we need the probability density
functions of considered input random parameters which are:
the power delivered by PV and load consumption. From
those pdf we determine statistical moments (mean, standard
deviance, skewness) of each parameter.

1) Load model: We have considered 1379 single-phase
loads. They are random parameters which are modeled by a
probability density function of their active power. We suppose
that the power factor is fixed and all the loads have the same
pdf type.

The probability density functions of loads active power are
build from house consumption data available in pecanstreet
project [18]. The sets of data are power consumption measured
during one year with one hour time step. So, for each hour, we
have 365 measured values for active power. Data are classified
by season and then fitted to a probability density function using
a matlab pdf fitting function (figure 2). So each load’s active
power, at each hour is modeled by a generalized extreme value
distribution. Mean value for all loads varies from 167W to
5kW .
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Fig. 2. Probability density function of active power of load1 at 15h

2) PV production model: The electrical power from a
photovoltaic generation unit at each time can be expressed
by (10) where I(t) is the clear sky irradiance (W/m2) at
time t depending on the inclination of the panel, S the panel
installed surface (m2) and η the panel efficiency. We model
1379 PV units which are connected at the same nodes than the
household load and randomly distributed through the grid. All
PV panels are supposed to have the same efficiency η which is
set equal to 12%. For each house, the installed panels surface
is a uniformly pseudo random distributed integer varying from
5 to 10m2.

Ppv(t) = (1− c(t))× I(t)× S × η (10)

c(t) is a random parameter which varies from 0 to 1. It
models a sky clear index, at each time t, which impact directly
the photovoltaic production. The presence of clouds implies



high value of c (around 1) and so low PV production. In
contrary, low value of c (around 0) reflects a perfect clear
sky and therefore a maximum PV production.

The random character of the PV production due to its
irregularity is modeled here by the clear index c(t). The PDF
of this clear index is estimated from measured clear index data
available in SCE project. The fitting process applied to those
data lead to conclusion that beta distribution is the best suited
as it shown in (figure 3).
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Fig. 3. Probability density function of sky clear index

C. Results

1) Average value: The prosed PEM method is applied to
the network test using openDSS combined with Matlab. In
PLF studies, results from Monte Carlo simulation are taken as
reference to verify accuracy of others methods. That’s why
in this work, estimated voltages, currents and powers are
compared to the estimations obtained from a Monte Carlo
simulation with 10 000 samples. High number of Monte Carlo
sampling is chosen to guarantee a good accuracy of the esti-
mated value. Those values are also compared to results from a
deterministic load flow. The DLF is computed with hypothesis
that active power loads consumption and PV generation are
known perfectly and equal to the mean of random input
parameters.

Figure 4, 5, 6 show estimated mean of nodes voltage, one
phase conductor and neutral current through lines. For a good
plot readability, we selected only few number of lines and
nodes. In order to check accuracy of the PEM method, we
define a relative error indice for each output estimated random
value Z.

EZµ = |µ
Z
MC − µZPEM

µZMC

| (11)

EZσ = |σ
Z
MC − σZPEM

σZMC

| (12)

EZµ and EZσ represents respectively error in the mean and stan-
dard deviation of the output random variable Z. As explained
before, Z can be a node voltage, line current or neutral current
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value. µZMC and σZMC are mean and standard deviation values
obtained from MCs, which is taken as reference. In the same



way, µZPEM and σZPEM are mean and standard deviation value
estimated from the PEM method. Figure 7 shows error indice
(in pu) on mean of estimated value for all nodes and lines.
Figure 7 shows that the voltage mean estimation error for
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Fig. 7. Error indices between mean values estimated from PEM method and
MC method

all electrical network nodes is less than 1%. Average phase
conductor current mean estimation is equal to 12% and it is
noticed that neutral current one reaches 40%. By integrating a
Kurtosis coefficient in a PEM method, i.e choosing (K = 3),
we notice a net decreasing of this average estimation error.
Table I sums the averages estimation error between Monte
Carlo method and PEM method with K = 2 and K = 3.
This can be explained by the fact that the concentrations in
PEM method with K = 2 depends on the number of random
parameters; that is not the case for (K = 3) PEM scheme.
So the larger the size of the problem is, the less accurate the
(K = 2) method is. Here we have 1380 random parameters.
To my knowledge the largest number of parameters have seen
in the literature corresponds to 170 parameters [15].

TABLE I
AVERAGE ESTIMATION ERRORS OF VOLTAGE, CURRENT AND NEUTRAL

CURRENT MEAN VALUE

PEME scheme V I In
PEM (K = 2) 0.0025 0.2862 0.3476
PEM (K = 3) 0.0013 0.0837 0.1774

2) Probability distribution: The mean and standard de-
viation presented above does not reflect variation of the
estimated element and are insufficient to have any idea on the
potential risk to have any voltage or current violation. To take
into account the possible variation of estimated element, and
therefore be able to quantify the risk to be out of the normal
network operating limit, it is necessary to get the probability
density function of this element. The displayed results are
those from a bus which supply four houses connected to its
phase C. We call it bus B.
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V. CONCLUSION

This work aims to apply known PLF methods (Point
estimate and Monte Carlo) on an unbalanced low voltage
distribution network to estimate the impact of distributed
generators on voltage, neutral current, phase current and
voltage unbalance factor. A generalized extreme value and beta
distribution have been used to model the random behavior
of active power load consumption and photovoltaic power
generation instead of normal distribution which is usualy used.
Although results show an acceptable error between voltage
mean estimated from PEM method and MC, a high error indice
is noticed for the estimation of phase conductor and neutral
current mean. Average errors for these two last elements are
40% for neutral current and 12% for phase conductor current.
Those errors are decreased when using the (2m + 1) PEM
scheme (i.e K = 3) which is more suitable for large size
problem. The accuracy of the PEM method is really dependent
on the size of the applied network, for this reason Monte Carlo



simulation is more suitable in this case even if it requires 4
times simulation duration.

VI. ANNEXE

Here follow, the used point estimate method flow chart as
it’s developed by the work in [15].
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Fig. 10. Flow diagram of the algortihme.
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