Helene Canot, Emmanuel Frénod

To cite this version:

HAL Id: hal-01572329
https://hal.archives-ouvertes.fr/hal-01572329
Submitted on 6 Aug 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Helene Canot, Emmanuel Frenod

Abstract—The purpose of this article is to study behavior of the electromagnetic field in 3D in and near composite material. For this, time-harmonic Maxwell equations, for a conducting two-phase composite and the air above, are considered. This paper is considered a first part in two parts study. In this part we give the setting of the problem, and we propose a rescaling of time-harmonic Maxwell system, then with a view to the homogenization, we demonstrate the uniqueness and the existence of a solution as well as an estimate.

Index Terms—Harmonic Maxwell Equations; Electromagnetic Pulses, Electromagnetism; Homogenization; Asymptotic Analysis; Asymptotic Expansion; Two-scale Convergence; Effective Behavior; Frequencies; Composite Material.

I. INTRODUCTION

We are interested in the time-harmonic Maxwell equations in and near a composite material with boundary conditions modeling electromagnetic field radiated by an electromagnetic pulse (EMP). An electromagnetic pulse is a short burst of electromagnetic energy. It may be generated by a natural occurrence such like a lightning strike. We study the electromagnetic pulse caused by this lightning strike and what happens over a period of time of a millisecond during the peak of the first return stroke.

EMP interference is generally damaging to electronic equipment. A lightning strike can damage physical objects such as aircraft structures, either through heating effects or disruptive effects of the very large magnetic field generated by the current. Structures and systems require some form of protection against lightning. Every commercial aircraft is struck by lightning at least once a year in average. With the increasing of use of composite materials, up to 53% for the latest Airbus A350, and 50% for the Boeing B787, aircrafts offer increased vulnerability facing lightning. Earlier generation aircrafts, whose fuselages were predominantly composed of aluminum, behave like a Faraday cage and offer maximum protection for the internal equipment. For these reasons, aircraft manufacturers are very sensitive to lightning protection and pay special attention to aircraft certification through testing and analysis.

We evaluate the electromagnetic field within and near a periodic structure when the period of this microstructure is small compared to the wavelength of the electromagnetic wave. Our model is composed by air above the composite fuselage and we study the behavior of the electromagnetic wave in the domain filled by the composite material, representing the skin aircraft, and the air. We build the 3D model, under simplifying assumptions, using linear time-harmonic Maxwell equations and constitutive relations for electric and magnetic fields. Composite materials consist of conducting carbon fibers, distributed as periodic inclusions in a matrix (epoxy resin). We impose a magnetic permeability \(\mu_0 \) uniform and an electrical permittivity \(\epsilon = \epsilon_0 \epsilon^* \), where \(\epsilon^* \) is the relative permittivity depending of the medium.

We account for some characteristic values, we focus on the boundary conditions as we consider them as the source. Then, we use on the upper frontier, the magnetic field induced by the peak of the current of the first return stroke

\[
\mathbf{H}_a = \frac{I}{2\pi r},
\]

with current intensity \(I = 200 \text{ kA} \) and \(r \) the radius of the lightning strike, this is the worst aggression that can suffer an aircraft, and we deduce a characteristic electric field \(E = 20 \text{ kV/m} \). In our model we consider that we have very conductive - but not perfect conductors - carbon fibers and an epoxy resin whose conduction depends on its doping rate. The conductivity of the air is non-linear. Air is a strong insulator [1] with conductivity of the order of \(10^{-14} \text{ S/m} \) but beyond some electric solicitation, the air loses its insulating nature and locally becomes suddenly conductive. The ionization phenomenon is the only cause that can make the air conductor of electricity. The ionized channel becomes very conductive.

On of the parameter we account for in our model: \(\delta = \sqrt{\frac{\pi \mu_0}{\omega}} \), where \(\pi \) is the characteristic conductivity and \(\omega \) the order of the magnitude of the pulsation shares much with the definition of theoretical thickness skin \(\delta = \sqrt{\frac{2}{\pi \mu_0 \omega}} \). The thickness skin is the depth at which the surface current moves to a factor of \(e^{-1} \). Indeed, at high frequency, the skin effect phenomenon appears because the current tends to concentrate at the periphery of the conductor. On the other side, at low frequencies, in our case, the penetration depth is much greater than the thickness of the plate which means that a part of the electric field penetrates the composite plate.

A. Notations and setting of the problem

We consider set \(\Omega = \{(x, y, z) \in \mathbb{R}^3, \tilde{y} \in (-\tilde{T}, d)\} \) for \(\tilde{T} \) and \(d \) two positive constants, with two open subsets \(\Omega_a \) and \(\tilde{P} \). The air fills \(\Omega_a \) and we consider that the composite

Helene Canot and Emmanuel Frenod are with the Department of Mathematics of University of Bretagne Sud (LMBA), Centre Yves Coppens, Bat. B, 1er et., Campus de Tohannic BP 573, 56017 VANNES, FRANCE e-mail: helene.canot@univ-ubs.fr, emmanuel.frenod@univ-ubs.fr
material, with two materials periodically distributed, stands in domain \mathcal{P}.

We assume the geometrical model of our composite material is couple (Ω_e, Ω_a). Now, it remains to set the domain that contains the air: $\Omega_a = \{(x, y, z) / 0 \leq y < d\}$. We consider that d is of the same order as \mathcal{T} and we introduce the upper frontier $\Gamma_e = \{(x, y, z) / y = d\}$ of domain Ω_e. On this frontier we will consider that the electric field and magnetic field are given. We also introduce the lower frontier $\Gamma_a = \{(x, y, z) / y = -T\}$ with those definitions we have $\Omega_a \cap \Omega_e = \emptyset$, $\Omega_e \cap \Omega_t = \emptyset$, $\Omega_t = \Omega_e \cup \Omega_a$, $\Omega = \Omega_e \cup \Omega_a$, and for any $(x, y, z) \in \partial \Omega = \Gamma_d \cup \Gamma_L$ and, we write \tilde{n}, the unit vector, orthogonal to $\partial \Omega$ and pointing outside Ω. We have : $\tilde{n} = -e_z$ on Γ_d.

In the following we need to describe what happens at the interfaces between resin and carbon fibers, and resin and air. So we define $\Gamma_{ra} = \{(x, y, z) / y = 0\}$ and Γ_{cr} the interface between the resin and the carbon fiber.

B. Time-harmonic Maxwell equations

We consider the harmonic version of the Maxwell equations which describe the electromagnetic radiation, they are written:

\[
\begin{align*}
\nabla \times \tilde{H} - i\omega \varepsilon_0 e^* \tilde{E} &= \sigma \tilde{E}, & \text{Maxwell - Ampere equation} \\
\nabla \times \tilde{E} + i\omega \mu_0 \tilde{H} &= 0, & \text{Maxwell - Faraday equation} \\
\n\sqrt{\nabla \cdot \varepsilon_0 e^* \tilde{E}} &= \tilde{\rho}, \\
\n\sqrt{\nabla \cdot \mu_0 \tilde{H}} &= 0,
\end{align*}
\]

where $\tilde{E}(t, \tilde{x}, \tilde{y}, \tilde{z}) = \text{Re}(\tilde{E}(\tilde{x}, \tilde{y}, \til{z}) \exp \tilde{i} \omega t)$ and $\tilde{H}(t, \til{x}, \til{y}, \til{z}) = \text{Re}(\til{H}(\til{x}, \til{y}, \til{z}) \exp \tilde{i} \omega t)$, $\forall t \in R^+$, $(\til{x}, \til{y}, \til{z}) \in \til{\Omega}$, μ_0 and ε_0 are the permeability and permittivity of free space. e^* is the relative permittivity of the domains defined by

\[
\varepsilon_{\tilde{\Omega}_a}^* = 1, \varepsilon_{\til{\Omega}_e}^* = \varepsilon, \varepsilon_{\til{\Omega}_e}^* = \varepsilon, \tag{3}
\]

defining ε_σ and ε_τ are the positive constants. ε is the electric conductivity. Its value depends on the location: $\varepsilon_{\til{\Omega}_a} = \sigma_a$, $\varepsilon_{\til{\Omega}_e} = \sigma\til{r}$, $\varepsilon_{\til{\Omega}_e} = \sigma_e$, where $\til{\Omega}_a$, $\til{\Omega}_e$ and $\til{\Omega}_e$ were defined in the first paragraph. The magnetic field \til{H} can be directly computed from the electric field \til{E}

\[
\til{H} = -\frac{1}{i\omega \mu_0} \nabla \times \til{E}. \tag{4}
\]

Inserting $\nabla \times \til{H}$ in Maxwell - Faraday equation we get the following equation for the electric field:

\[
\nabla \times \nabla \times \til{E} + (-\varepsilon^2 \mu_0 \varepsilon e^* + i\omega \mu_0 \varepsilon) \til{E} = 0 \text{ in } \til{\Omega}. \tag{5}
\]

Taking the divergence of the equation Maxwell - Ampere equation yields the natural gauge condition:

\[
\nabla \cdot ([i\omega \varepsilon_0 e^* + \varepsilon] \til{E}) = 0 \text{ in } \til{\Omega}. \tag{6}
\]

Notice that $i\omega \varepsilon e_0 + \varepsilon$ is equal to $i\omega \varepsilon e_0 + \varepsilon_a$ in $\til{\Omega}_a$, to $i\omega \varepsilon e_0 + \varepsilon_r$ in $\til{\Omega}_r$ and to $i\omega \varepsilon e_0 + \varepsilon_e$ in $\til{\Omega}_e$, those quantities being all nonzero. Then (6) is equivalent to:

\[
\nabla \cdot \til{E}_{\til{\Omega}_a} = 0 \text{ in } \til{\Omega}_a, \quad \nabla \cdot \til{E}_{\til{\Omega}_r} = 0 \text{ in } \til{\Omega}_r, \quad \nabla \cdot \til{E}_{\til{\Omega}_e} = 0 \text{ in } \til{\Omega}_e. \tag{7}
\]

with the transmission conditions

\[
\begin{align*}
(i\omega \varepsilon_0 + \varepsilon_a) \til{E}_{\til{\Omega}_a} \cdot \til{n} &= (i\omega \varepsilon_0 e_0 + \varepsilon_r) \til{E}_{\til{\Omega}_r} \cdot \til{n} \text{ on } \Gamma_{ra}, \\
(i\omega \varepsilon_0 e_0 + \varepsilon_e) \til{E}_{\til{\Omega}_e} \cdot \til{n} &= (i\omega \varepsilon_0 e_0 + \varepsilon_e) \til{E}_{\til{\Omega}_e} \cdot \til{n} \text{ on } \Gamma_{cr}.
\end{align*} \tag{8}
\]

Summarizing, we finally obtain the PDE model:

\[
\nabla \times \nabla \times \til{E} + (-\varepsilon^2 \mu_0 \varepsilon e^* + i\omega \mu_0 \varepsilon) \til{E} = 0 \text{ in } \til{\Omega}. \tag{9}
\]

We have to set boundary conditions on Γ_d and Γ_L. On Γ_d we will write conditions that translate that \til{E} and \til{H} are given by the source located in $y = d$. The way we chose consists in setting:

\[
\til{E} \times \til{n} = \til{E}_d \times \til{n}, \quad \til{H} \times \til{n} = \til{H}_d \times \til{n} \text{ on } \til{\Gamma}_d, \tag{10}
\]

where \til{E}_d, \til{H}_d are functions defined on $\til{\Gamma}_d$ for any $t \in R$. On $\til{\Gamma}_L$, we choose something simple, i.e :

\[
\nabla \times \til{E} \times \til{n} = 0 \text{ on } \til{\Gamma}_L, \tag{11}
\]

that translate that \til{E} does not vary in the \til{y}-direction near $\til{\Gamma}_L$. According to the tangential trace of the Maxwell-Faraday equation (2) we obviously obtain that using boundary condition (10), is equivalent to using:

\[
\nabla \times \til{E} \times e_2 = -i\omega \mu_0 \til{H}_d(\til{x}, \til{z}) \times e_2 \text{ on } \til{\Gamma}_d. \tag{12}
\]

And on $\til{\Gamma}_L$ we have the following boundary condition:

\[
\nabla \times \til{E} \times e_2 = 0 \text{ on } \til{\Gamma}_L. \tag{13}
\]
The characteristic thickness of the plate L is about 10^{-3}m and the size of the basic cell c is about 10^{-5}m. Since c is much smaller than the thickness of the plate L, it is pertinent to assume the ratio $\frac{L}{c}$ equals a small parameter ε:

$$\frac{L}{c} \sim 10^{-2} = \varepsilon.$$ \hfill (21)

The lightning is seen as a low frequency phenomenon. Indeed, energy associated with radiation tracers and return stroke are mainly burn by low and very low frequencies (from 1kHz to 300kHz). Components of the frequency spectrum are however observed beyond 1GHz see [2]. In our study we will consider $\varepsilon = \omega = 10^6 \text{rad/s}$, for medium frequency we set $\varepsilon = 10^{10} \text{rad/s}$ and for high frequency phenomena $\varepsilon = 10^{12} \text{rad/s}$. Then, concerning the characteristic electric conductivity it seems to be reasonable to take for ε the value of the effective electric conductivity of the composite material. Yet this choice implies to compute a coarse estimate of this effective conductivity at this level.

For this we take into account that the composite material is composed of carbon fibers and epoxy resin. In our model, the resin can be doped, which increases strongly its conductivity. We also account for the fact there is not only one effective electric conductivity but a first one in the fiber direction : the effective longitudinal electric conductivity , and a second effective electric conductivity, in the direction transverse to the fibers. In this context, we consider the basic model which is based on the electrical analogy and the law of mixtures. It corresponds to the Wiener limits: the harmonic average and the arithmetic average. The effective values are the extreme limits of the conductivity of the composite introduced by Wiener in 1912 see S. Berthier p 76 [3].

The effective longitudinal electric conductivity corresponding of the upper Wiener limit is expressed by the equation:

$$\sigma = \sigma_{\text{long}} = f_c \sigma_c + (1-f_c) \sigma_r,$$ \hfill (22)

where $f_c = \pi \frac{a^2}{4}$ is the volume fraction of the carbon fiber.

The effective transverse electric conductivity corresponding of the lower Wiener limit is expressed by

$$\begin{align*}
\sigma &= \sigma_{\text{trans}} = \frac{1}{c_{\text{trans}}} + \frac{(1-c_{\text{trans}})}{c_{\text{trans}}} \\
\text{For the computation, we take values close to reality. We consider composite materials with similar proportions of carbon and resin, this means that c is close to } &\frac{1}{2} \text{. When the resin is not doped $\sigma_c \sim 10^{-10} \text{S.m}^{-1}$ is much smaller than $\sigma_c \sim 40000 \text{S.m}^{-1}$. Then, $\sigma = \sigma_{\text{long}}$ is close to $\pi \frac{a^2}{4} \sigma_c \sim \sigma_c$ and }\sigma &\sim \sigma_{\text{trans}} \text{ close to } \frac{\sigma_c}{(1-\pi \frac{a^2}{4})} \sim \sigma_r.
\end{align*}$$

Now, we express the electric conductivity of the air in terms of σ. We consider a situation with a ionized channel, so σ_a being $\sigma_{\text{lightning}} = 42425 \text{S.m}^{-1}$ for an ionized lightning channel see [4]. In our model we perform the study for $\omega = 10^6 \text{rad.s}^{-1}$, which corresponds to the air ionized, a resin doped and the effective longitudinal electric conductivity of the carbon fibers.

Now, we will discuss on the values of \overline{E} and $\overline{\rho}$. It seems that the density of electrons in a ionized channel is about $10^{10} \text{part.m}^{-3}$. Hence we take $\overline{\rho} = 10^{10}$. When the air is not ionized, the charge density is much smaller, and we choose: $\overline{\rho} = 1$.

\begin{align*}
C. \text{ Scaling} \\
\text{In this subsection we propose a rescaling of system (9)-(13), we will consider a set of characteristic sizes related to our problem. Physical factors are then rewritten using those values leading to a new set of dimensionless and unitless variables and fields in which the system is rewritten. The considered characteristic sizes are } \overline{\sigma} \text{ the characteristic pulsation, } \overline{E} \text{ the characteristic electric conductivity, } \overline{\mathbf{H}} \text{ the characteristic magnetic \ldots} &
\end{align*}
For the boundary conditions, in our context, we consider the peak of the current of the first return stroke. Then the magnetic field magnitude \mathbf{H} is \mathbf{H}_d given by (1).

Then the dimensionless boundary conditions (12) writes:

$$\nabla \times E(x, \omega) \times e_2 = -i \omega \mu_0 \frac{T}{E} \mathbf{H}_d(x, z) \times e_2,$$

where $\mathbf{H}_d(x, z) = \hat{H}_d(Tx, Tz)$ and where $\frac{T}{E} \mathbf{H}_d$ being of order 1, with the characteristic electric field $E = 20 \text{kV/m}$.

From the physical spatial coordinates $(\tilde{x}, \tilde{y}, \tilde{z}) \in \tilde{\Omega}$ we define $y = (\xi, \nu, \zeta)$ with $\xi = \frac{\tilde{x}}{\sqrt{2}}, \nu = \frac{\tilde{y}}{\sqrt{2}}, \zeta = \frac{\tilde{z}}{\sqrt{2}}$ or equivalently $\xi = \frac{\tilde{x}}{\sqrt{2}}, \nu = \frac{\tilde{y}}{\sqrt{2}}, \zeta = \frac{\tilde{z}}{\sqrt{2}}$. And we now introduce Y, the basic cell. It is built from: $Z = [-\frac{1}{2}, \frac{1}{2}] \times [-1, 0] \times R$ and the set $D = R \times C$ with the disc D defined by:

$$D = \{(\xi, \nu) \in R^2 / \xi^2 + (\nu + \frac{1}{2})^2 < R^2\},$$

and $R = \frac{2}{\sqrt{2}}$. The set Ω_{c} is then defined as:

$$\Omega_{c} = \{(i, j, 0) + C, i \in Z, j \in Z^2\}.$$

We denote Y_{c} as $Y_{c} = Z\cap C$ and then the set

$$\Omega_{c} = \{(i, j, 0) + Y_{c}, i \in Z, j \in Z^2\}.$$

Then unit cell Y is defined as $Y = (Y_{c}, C)$. Finally, we define the domain Ω_{a}:

$$\Omega_{a} = \{y = (\xi, \nu, \zeta) / \nu > 0\}. $$

Using this, we will give a new expression of the sets in which the variables range in equations (19). We see the following:

$$\mathbf{L}(x, y, z) \in \tilde{\Omega}_{c} \Leftrightarrow \begin{cases} (Tx, Ty, Tz) \in \tilde{P}, \\ (\frac{\tilde{x}}{\sqrt{2}}, \frac{\tilde{y}}{\sqrt{2}}, \frac{\tilde{z}}{\sqrt{2}}) \in \Omega_{c}, \end{cases}$$

i.e.

$$\mathbf{L}(x, y, z) \in \tilde{\Omega}_{c} \Leftrightarrow \begin{cases} (Tx, Ty, Tz) \in \tilde{P}, \\ (\frac{\tilde{x}}{\sqrt{2}}, \frac{\tilde{y}}{\sqrt{2}}, \frac{\tilde{z}}{\sqrt{2}}) \in \tilde{\Omega}_{c}. \end{cases}$$

In the same way:

$$\mathbf{L}(x, y, z) \in \tilde{\Omega}_{c} \Leftrightarrow \begin{cases} (Tx, Ty, Tz) \in \tilde{P}, \\ (\frac{\tilde{x}}{\sqrt{2}}, \frac{\tilde{y}}{\sqrt{2}}, \frac{\tilde{z}}{\sqrt{2}}) \in \tilde{\Omega}_{c}, \end{cases}$$

and:

$$0 \leq Ty \leq d \Leftrightarrow \begin{cases} y \in R^2, \\ Ly \leq d, \end{cases}$$

or

$$\mathbf{L}(x, y, z) \in \tilde{\Omega}_{a} \Leftrightarrow \begin{cases} Ty \leq d, \\ (\frac{\tilde{x}}{\sqrt{2}}, \frac{\tilde{y}}{\sqrt{2}}, \frac{\tilde{z}}{\sqrt{2}}) \in \tilde{\Omega}_{a}. \end{cases}$$

We define:

$$\Sigma^{c}(y) = \Sigma^{c}(\xi, \nu, \zeta) = \begin{cases} \Sigma^{c}_{0} & \text{in } \Omega_{a}, \\ \Sigma^{c}_{e} & \text{in } \Omega_{e}, \\ \Sigma^{c}_{r} & \text{in } \Omega_{r}, \end{cases}$$

where $\Sigma^{c}_{0} = \frac{\omega}{\mu} \frac{T}{\sqrt{2}}$, $\Sigma^{c}_{e} = \frac{\omega}{\mu} \frac{T}{\sqrt{2}}$ and $\Sigma^{c}_{r} = \frac{\omega}{\mu} \frac{T}{\sqrt{2}}$ have their expressions in term of ε. The detail of this expressions are in the article [5]. The model that we present is the case $\omega = 10^6 \text{rad/s}$, $\eta = 5$, $\Sigma^{c}_{0} = \varepsilon$, $\Sigma^{c}_{e} = \varepsilon^4$ and $\Sigma^{c}_{r} = 1$.

Defining also mapping

$$\psi^{c}_e : R^3 \rightarrow R^3 \begin{pmatrix} x, y, z \end{pmatrix} \rightarrow \begin{pmatrix} \frac{x}{\sqrt{2}}, \frac{y}{\sqrt{2}}, \frac{z}{\sqrt{2}} \end{pmatrix},$$

we can set Ω^{c}_{0} as $\psi^{-1}_{c}(\Omega_{a}) \cap (R \times [0, \frac{1}{2}] \times R)$. Ω^{c}_{e} as $\psi^{-1}_{c}(\Omega_{e}) \cap \Omega^{c}_{0}$ and Ω^{c}_{r} as $\psi^{-1}_{c}(\Omega_{r}) \cap \Omega^{c}_{0}$. We also define the boundaries $\Gamma_{d} = \{x \in R^3, y = \frac{d}{T}\}$ and $\Gamma_{L} = \{x \in R^3, y = -\frac{d}{T}\}$ and interfaces $\Gamma_{ra} = \{x \in R^3, y = 0\}$ and $\Gamma_{re} = \{x \in R^3\}$. Hence equation (19) reads:

$$\nabla \times \nabla \times E^{c} + (\omega^{2}\varepsilon^{2}\varepsilon^{c} + i \omega \sigma^{c}(x, y, z))E^{c} = 0$$

in Ω_{c}, (36)

where $\Omega = \Omega^{c}_{0} \cup \Omega^{c}_{e} \cup \Omega^{c}_{r} = \{x \in R^3, \eta < y < \frac{d}{T}\}$ does not depend on ε. Only its partition in $\Omega^{c}_{0}, \Omega^{c}_{e}$ and Ω^{c}_{r} is ε-dependent where

$$\sigma^{c}(x, y, z) = \Sigma^{c}(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}, \frac{z}{\varepsilon}),$$

with Σ^{c} given by (34) and

$$\varepsilon^{c} = \frac{4\pi^{2}\varepsilon^{2}}{\lambda^{2}},$$

we replace E by E^{c}, to clearly state that it depends on ε. Equation (36) is provided with the following boundary conditions:

$$\nabla \times E^{c}_{x} \times e_{2} = -i \omega \mathbf{H}_{d}(x, z) \times e_{2} \text{ on } R \times \Gamma_{d},$$

coming from (24). And, coming from (20),

$$\nabla \times E^{c} \times e_{2} = 0 \text{ on } \Gamma_{L}.$$

From (36) we can deduce the condition on the divergence of E^{c} which can be written in two ways. As previously in (6), (7) and (8) we obtain:

$$\nabla \cdot [\varepsilon \sigma^{c} E^{c} + i \omega \varepsilon^{c} E^{c} + \varepsilon^{c} \omega^{2} \varepsilon^{2} E^{c}] = 0 \text{ in } \Omega_{c},$$

which will be preferentially used with (36) and its second one

$$\nabla \cdot E^{c}_{x} = 0 \text{ in } \Omega^{c}_{0}, \quad \nabla \cdot E^{c}_{e} = 0 \text{ in } \Omega^{c}_{e}, \quad \nabla \cdot E^{c}_{r} = 0 \text{ in } \Omega^{c}_{r},$$

with the transmission conditions on the interfaces Γ_{ra} and Γ_{re}

$$\begin{cases} (-\omega^{2}\varepsilon^{c}_{0} + i \omega \varepsilon^{c}_{0}) E^{c}_{x} |_{\Gamma_{ra}} = (-\omega^{2}\varepsilon^{c}_{e} + \omega \varepsilon^{c}_{e}) E^{c}_{x} |_{\Gamma_{ra}}, \\ (-\omega^{2}\varepsilon^{c}_{r} + i \omega \varepsilon^{c}_{r}) E^{c}_{r} |_{\Gamma_{re}} = (-\omega^{2}\varepsilon^{c}_{e} + \omega \varepsilon^{c}_{e}) E^{c}_{r} |_{\Gamma_{re}}. \end{cases}$$

Before treating mathematically the question we are interested in, we make a last simplification. Since it seems clear that physical relevant phenomena occur in the upper part of the plate. The boundary condition on the lower boundary of the plate has very little influence on the physics of what happens in the upper part, we consider that the lower boundary of the plate is located in $y = -\infty$ in place of $y = -1$, making the second boundary condition useless. Besides, as \mathbf{L} and Γ are of the same order it seems reasonable to set $\Gamma_{d} = \{x \in R^3, y = 1\}$ and consequently

$$\begin{cases} \Omega = \{x \in R^3, \eta < 1\} = \Omega^{c}_{0} \cup \Omega^{c}_{e} \cup \Omega^{c}_{r}, \\ \Omega^{c}_{e} = \psi^{-1}_{c}(\Omega_{e}), \\ \Omega^{c}_{r} = \psi^{-1}_{c}(\Omega_{r}). \end{cases}$$

with ψ_{e} defined in (35). We have that the border of Ω is Γ_{d}. In the following section we will establish existence and uniqueness results.
II. MATHEMATICAL ANALYSIS OF THE MODELS

A. Preliminaries

We are going to make precise the variational formulation. First of all, we need to introduce the following functional spaces. We have the standard function spaces $L^2(\Omega^c)$ and $H^1(\Gamma_d, R^3)$, defined by

\[H^1(\Gamma_d, R^3) = \{ u \in L^2(\Gamma_d) : \nabla \cdot u \in L^2(\Gamma_d) \}, \]

with the usual norms:

\[\|u\|^2_{H^1(\Gamma_d, R^3)} = \|u\|^2_{L^2(\Gamma_d)} + \|\nabla \cdot u\|^2_{L^2(\Gamma_d)}. \]

They are well known Hilbert spaces.

We use the trace spaces $H^{\frac{1}{2}}(\Gamma_d, R^3)$ and $H^{-\frac{1}{2}}(\Gamma_d, R^3)$ defined by

\[H^{\frac{1}{2}}(\Gamma_d, R^3) = \{ u \in H^{\frac{1}{2}}(\Gamma_d, R^3) \}, \]

where the surface divergence $\nabla \cdot u |_{\Gamma_d}$ and the surface rotation $\epsilon \times u |_{\Gamma_d}$ are defined for $u \in C^1(\Gamma_d)$

\[(\nabla \cdot u |_{\Gamma_d}, \phi) = -\int_{\Gamma_d} \nabla \cdot (u \phi) - \int_{\Gamma_d} \epsilon \times u \cdot (\epsilon \times \phi), \]

and the surface gradient $\nabla u |_{\Gamma_d}$ is defined by the orthogonal projection of ∇u on Γ_d. Finally we recall the trace theorems, see J.C. Nédélec [6] for the demonstration, stating that the traces mappings $\gamma_T : H^1(\Omega^c, \Gamma_d) \rightarrow H^{\frac{1}{2}}(\Gamma_d, R^3)$, that assigns any $u \in H^1(\Omega^c, \Omega)$ its tangential components $u \cdot n$ is continuous and surjective, that is:

\[\|\gamma_T(u)\|^2_{H^{\frac{1}{2}}(\Gamma_d, R^3)} \leq C_{\gamma_T} \|u\|^2_{H^1(\Omega^c, \Omega)}, \quad \forall u \in H^1(\Omega^c, \Omega). \]

Moreover, $H^{-\frac{1}{2}}(\Gamma_d, R^3)$ is the dual of $H^{\frac{1}{2}}(\Gamma_d, R^3)$ and one has the Green’s formula $\forall u, v \in H^1(\Omega^c, \Omega)$

\[\int_{\Omega^c} \nabla \cdot (u v) - \int_{\Gamma_d} (\nabla \cdot u) v - \int_{\Gamma_d} (\epsilon \times u) \cdot (\epsilon \times v)\, dx = \int_{\Gamma_d} u v\, d\sigma. \]

We define the next space:

\[X(\Omega) = \{ u \in H^1(\Omega^c, \Omega) \mid \nabla \cdot u |_{\Gamma_d} \in L^2(\Gamma_d), \quad \nabla u |_{\Gamma_d} \in L^2(\Gamma_d^c) \}. \]

Our variational space is:

\[X^\epsilon(\Omega) = \{ u \in X(\Omega) \mid (\omega^2 u^2 + i \omega \Sigma^\epsilon) u |_{\Omega^c} \cdot e_2 = (\omega^2 u^2 \epsilon + i \omega \Sigma^\epsilon) u |_{\Omega^c} \cdot e_2, \]

Finally

\[X^\epsilon(\Omega) = \{ u \in X(\Omega) \mid (\omega^2 u^2 + i \omega \Sigma^\epsilon) u |_{\Omega^c} \cdot e_2 = (\omega^2 u^2 \epsilon + i \omega \Sigma^\epsilon) u |_{\Omega^c} \cdot e_2, \]

\[(\omega^2 u^2 \epsilon + i \omega \Sigma^\epsilon) u |_{\Omega^c} \cdot e_2 = (\omega^2 u^2 \epsilon + i \omega \Sigma^\epsilon) u |_{\Omega^c} \cdot e_2, \]

C. Regularized Maxwell equations for the electric field

The sesquilinear form $a^{\epsilon,n}$ is not coercive on $X^\epsilon(\Omega)$, so we regularize it adding terms involving the divergence of E^ϵ in Ω^c, Ω^c and Ω^c. Thanks to the additional terms, existence and uniqueness of the regularized variational formulation solution will be established by the Lax-Milgram theorem. Let
\[\Delta(\psi) = \varphi. \]

Then, we conclude that
\[\nabla \cdot \mathbf{E}(\Omega) = 0. \]

A similar argument in \(\Omega \) yields \(\nabla \cdot \mathbf{E}(\Omega) = 0 \) for \(s \) such that \(\omega^2 e^{-i\omega \Sigma s} \) is not an eigenvalue of \((\Delta_{dir}, \Omega) \).

So, (61) becomes (57). Applying Green’s formula, we find (36).

Theorem 3: Under the assumptions of Theorem 2, \(E \in X(\Omega) \) solution of (61) satisfies
\[\| E \|_{X(\Omega)} \leq C \]
with \(C = \frac{C_0}{C_0} \| H_d \|_{H(\text{curl}, \Omega)} \).

The propositions and theorems above have been proved in [5].

Proof: The sesquilinear form \(a_R^{\Omega}(E, E') \) is coercive, weak formulation (61) becomes:
\[C_0 \| E \|_{X(\Omega)}^2 \leq \text{Re}(\omega^2 e^{-i\omega \Sigma s}) \| E \|_{X(\Omega)}^2 \]

Uniformly follows from that if \(E_1 \) and \(E_2 \) are two solutions to (36) with the boundary condition (40) their difference \(e = E_2 - E_1 \) satisfies the problem (36) with (40). Then it comes
\[\int_{\Omega} \nabla \times e \nabla d^2 x + \int_{\Omega} \omega^2 e^{-i\omega \Sigma s} \| e \|_{X(\Omega)}^2 \leq 0 \]
and then \(e = 0 \).

Let us consider the reciprocal assertion, according to the same proof of S. Hanssini, S. Nicaise, A. Maghnouji in [8], we define \(H_1(\Omega, \Delta) \) the subspace of \(\psi \in H_1(\Omega, \Delta) \) such that \(\Delta(\psi) \in L^2(\Omega) \).

Let \(E \) be the solution of the regularized formulation (61). In (61) we take a test function \(V = \nabla \psi \) where \(\psi \in H_1(\Omega, \Delta) \), extended by zero outside \(\Omega \). We get:
\[\int_{\Omega} \nabla \times E \nabla \psi d^2 x + \int_{\Omega} \omega^2 e^{-i\omega \Sigma s} \| e \|_{X(\Omega)}^2 \leq 0 \]

By Green’s formula, \(\psi \in H_1(\Omega, \Delta) \), we obtain:
\[\int_{\Omega} \nabla \times E \nabla (\Delta \psi + \frac{\omega^2 e^{-i\omega \Sigma s}}{s} \psi) d^2 x = 0. \]

Thus, if we choose \(s \) such that \(\omega^2 e^{-i\omega \Sigma s} \) is not an eigenvalue of \((\Delta_{dir}, \Omega) \); the Laplacian operator in \(\Omega \) with

REFERENCES

