
HAL Id: hal-01572310
https://hal.science/hal-01572310

Submitted on 6 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Finite element homogenization technique for the
characterization of d15 shear piezoelectric macro-fibre

composites
Marcelo Areias Trindade, Ayech Benjeddou

To cite this version:
Marcelo Areias Trindade, Ayech Benjeddou. Finite element homogenization technique for the char-
acterization of d15 shear piezoelectric macro-fibre composites. Smart Materials and Structures, 2011,
20 (7), �10.1088/0964-1726/20/7/075012�. �hal-01572310�

https://hal.science/hal-01572310
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Finite element homogenization technique
for the characterization of d15 shear
piezoelectric macro-fibre composites

M A Trindade1 and A Benjeddou2

1 Department of Mechanical Engineering, São Carlos School of Engineering,
University of São Paulo, Avenida Trabalhador São-Carlense, 400, São Carlos-SP, 13566-590,
Brazil
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Abstract
A finite element homogenization method for a shear actuated d15 macro-fibre composite (MFC)
made of seven layers (Kapton, acrylic, electrode, piezoceramic fibre and epoxy composite,
electrode, acrylic, Kapton) is proposed and used for the characterization of its effective material
properties. The methodology is first validated for the MFC active layer only, made of
piezoceramic fibre and epoxy, through comparison with previously published analytical results.
Then, the methodology is applied to the seven-layer MFC. It is shown that the packaging
reduces significantly the shear stiffness of the piezoceramic material and, thus, leads to
significantly smaller effective electromechanical coupling coefficient k15 and piezoelectric
stress constant e15 when compared to the piezoceramic fibre properties. However, it is found
that the piezoelectric charge constant d15 is less affected by the softer layers required by the
MFC packaging.

1. Introduction

Recent applications of piezoelectric sensors and actuators
require conformability and packaging standards not found in
monolithic piezoceramic patches [1]. The so-called macro-
fibre composites (MFCs) have become very popular since
they combine the conformability of epoxy matrix composites
and the electromechanical energy density of piezoceramic
materials [2]. The concept is based on the piezoelectric fibre
composites (PFCs) proposed before [3] that used extruded
piezoceramic fibres (circular cross-section) embedded in an
epoxy-based resin matrix and covered by copper electrodes
and protective Kapton and/or acrylic layers. However, MFCs
replace the extruded piezoceramic fibres by machined (diced)
rectangular fibres of a piezoceramic material. This innovation
led to a cheaper and more reliable manufacturing process and
allowed direct contact between fibres and electrodes, solving

the main problem of permittivity mismatch of PFCs. The
original MFC idea developed at NASA [2] used interdigitated
electrodes (IDE) to induce the longitudinal or 33 mode in
the fibres. But, nowadays, it is possible to find MFCs using
uniform field (continuous) electrodes that operate with the
transverse or 31 mode in the fibres.

More recently, an alternative MFC design, in which the
macro-fibres are oriented perpendicular to the direction of
motion, was proposed [4] to induce the transverse shear mode
(15 or 35) in the piezoceramic fibres. The transverse shear
mode, or thickness shear mode, of piezoceramic materials
can be obtained by the application of an electric field that
is perpendicular to the remanent polarization direction. This
leads to a rotation of the electrical dipoles which induces shear
stresses/strains in the material. The transverse shear mode
in commercially available piezoceramic patches is normally
obtained by polarization along the length or width direction
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followed by removal of the electrodes used for polarization and
deposition of new electrodes on the top and bottom surfaces.
The presence of the new electrodes imposes a dominant
electric field, either applied or induced, in the thickness
direction, thus perpendicular to the length or width poling
direction. Since the mid-1990s, the shear mode of monolithic
piezoceramic materials has been considered for applications in
the design of smart structures [5–8], including active [9–11]
and passive [12, 13] vibration control. From these studies,
the shear mode seems to be an interesting alternative for
stiffer structures, higher frequencies and non-standard shape
deflection patterns.

The main difficulty in the study of MFCs, as an alternative
to monolithic piezoceramic patches, is that their behaviour may
be much more complex since they are made of several different
materials (piezoceramic fibres, epoxy matrix, electrode layers
and protective layers). Therefore, it is necessary to
understand and model their behaviour to be able to quantify or
characterize their effective material properties and, thus, their
effectiveness as distributed sensors and actuators. Recently,
some research effort has been directed to the identification
and characterization of such transducers, in extension (33 or
31) [14–16] and transverse shear (15) [17] modes. It has been
shown that the effective properties depend not only on the
piezoceramic material used for the fibres and epoxy material
used for the matrix and epoxy-to-piezoceramic volume fraction
but also on the geometrical and material properties of the other
layers (Kapton, acrylic, electrodes). Some analytical methods
from the composite materials literature, such as the asymptotic
homogenization method (AHM) [17, 18] and the uniform field
method (UFM) [3], can be applied to obtain the effective
properties of the composite transducer from the properties of
its components. Alternatively, one may use techniques based
on finite element modelling of the composite transducer to
identify its effective properties [19].

In the present work, a finite element homogenization
method for a shear actuated d15 MFC made of seven layers
(Kapton, acrylic, electrode, piezoceramic fibre and epoxy
composite, electrode, acrylic, Kapton) is proposed and used
for the characterization of its effective material properties.
To validate the methodology, first, it is applied to obtain the
effective properties of the MFC active layer only, made of
piezoceramic fibre and epoxy, and the obtained results are
compared to those found using analytical methods [17]. Then,
the methodology is applied to the seven-layer MFC.

2. Macro-fibre composites

MFCs that are commercially available use either the 33 or 31
response modes, meaning that the piezoelectric constant that
characterizes their actuation/sensing behaviour is respectively
the d33 or d31, and therefore they are also known as d33 or
d31 MFCs. Schematic representations of the d33 and d31

MFCs are shown in figures 1 and 2, respectively. The major
differences between the two commercially available MFCs are
the electrode design and the poling direction of the fibres.
In the d31 MFC, the poling direction is perpendicular to the
fibres (along their thickness) so that transverse extension of

Figure 1. Schematic representation of the longitudinal ‘d33’
macro-fibre composite.

Figure 2. Schematic representation of the transverse ‘d31’
macro-fibre composite.

the fibres can be obtained through the d31 constant. On the
other hand, in the d33 MFC, the poling direction follows a
complex non-uniform distribution according to the disposition
of the interdigitated positive and negative electrodes aiming to
yield an equivalent macroscopic poling direction parallel to the
fibre length, so that longitudinal extension of the fibres can
be obtained through the d33 constant. The main problem of
the d33 MFC is that the equivalent macroscopic longitudinal
poling direction, and thus its performance, increases with the
distance between interdigitated electrode fingers which leads to
the requirement of a high actuation voltage (up to 1200 V) to
generate the necessary electric field. The d31 MFC, on the other
hand, requires much lower actuation voltages since the electric
field is uniform and in the direction of the actuator thickness,
which can be made quite small, but its piezoelectric constant
d31 is much smaller than d33.

The motivations for the development of a d15 MFC are
to take advantage of the high piezoelectric coupling constant
d15 that most piezoceramic materials have and the fact that
it couples directly to transverse shear strains. The first
concept of a d15 MFC was recently presented by Raja and
Ikeda [4], named as shear actuated fibre composite (SAFC)
by the authors, taking advantage of the known fabrication
procedures of the d31 and d33 MFCs. It basically consists
of piezoceramic fibres with poling direction perpendicular to
the fibre longitudinal axis, as for the d33 MFC, but instead
of orienting the fibres along the longitudinal direction of the
actuator, as for the d33 MFC, the fibres are oriented along
the width of the actuator so that the poling direction is in the
longitudinal direction of the actuator, as shown in figure 3.
Different from the proposition of [4], a continuous or woven-
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Figure 3. Schematic representation of the thickness shear ‘d15’
macro-fibre composite.

type electrode, such as those used in commercial d31 MFCs,
can be used to induce a uniform electric field in the direction
of the actuator thickness [17, 20]. As the fibres are poled in
their width direction, that is the longitudinal direction of the
actuator, a shear strain is induced in the fibres’ transversal
planes. The width-poled piezoceramic fibres can be made by
dice cutting either thickness-poled or longitudinal- or width-
poled piezoceramic plates. However, in the first case, proposed
by [4], the resulting fibres should be rotated 90◦ around their
axes before positioning them in the epoxy–copper electrode
layer, so that the poling direction of each fibre coincides with
the longitudinal direction of the actuator, which can be difficult
in practice. In the second case, several width-poled plates
can be aligned in the polymer film frame before dice cutting
of the ensemble leading to a probably cheaper process to
produce aligned fibres poled in the width direction, which after
packaging would be the longitudinal direction of the actuator.

3. Constitutive equations for shear piezoelectric
materials

The shear or d15 response mode requires that the poling vector
P and measured or applied electric field E be perpendicular
to each other. From the modelling point of view, this can
be achieved in one way, as in figure 3, by positioning the
reference axes such that the poling direction, width of fibre
or length of actuator, coincides with direction x3 or Z and the
fibre thickness and actuator thickness coincide with direction
x1 or X . The other way to achieve the d15 mode would be to
orient the fibre thickness in the x3 direction and the fibre width
and poling in the x1 direction. The latter has the advantage
of using the standard axes orientation for the analysis of thin
plates but requires a 90◦ rotation around the x2 direction of
the standard constitutive equations for piezoelectric materials
poled in the x3 direction. Therefore, for the present work, the
former method (as in figure 3) was used to provide easier result
interpretation as compared to commercial MFCs and standard
piezoelectricity notation.

Starting from the electric enthalpy for a linear orthotropic
piezoelectric material poled in the x3 direction, the constitutive
equations can be written in a mixed type form, the so-called
e-form, as
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where Tp and Sq , with p, q = 1, . . . , 6, denote the six
components of mechanical stress and strain in Voigt notation.
Di and Ek , with i, k = 1, 2, 3, denote the three components of
electric displacement and field. cE

pq , ekp and εS
ik denote the

elastic stiffness (at constant electric field), piezoelectric and
electric permittivity (at constant mechanical strain) constants.

These constitutive equations can be reduced by consid-
ering that the electrodes fully cover the top (x+

1 ) and bottom
(x−

1 ) surfaces so that a preferential or dominant x1 direction
is imposed for the electric field and displacement, such that
E2 = E3 = 0 or D2 = D3 = 0 (see figure 3). Under this
assumption, the reduced constitutive equations can be written
in terms of the relevant variables only as
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Table 1. Shear mode d15 properties of some commercially available
piezoceramic materials.

cE
55

(GPa) εT
11/ε0

d15

(pC N−1)
e15

(C m−2) k2
15 (%) k15 (%)

APC-840 26.9 1427 480 13.6 49.0 70
APC-850 21.8 1851 590 13.2 46.2 68
APC-855 22.4 3012 720 15.0 43.6 66
EC-76 21.9 2853 730 16.0 46.2 68
EC-64 25.7 1436 506 13.0 51.8 72
PIC-255 21.0 1650 550 11.6 43.6 66
PZT-5H 23.0 3130 740 17.0 45.6 68
PZT-5A 21.1 1730 584 12.3 46.9 68
PZT-7A 29.4 930 360 10.6 46.2 68
Sonox-P502 30.1 1950 560 16.9 54.8 74
Sonox-P504 24.8 1920 530 13.2 43.6 66
Sonox-P508 29.8 1700 550 16.4 50.4 71

Hence, the electromechanical coupling is between the
electric field and the displacement in the x1 direction and the
x1–x3 shear stress and strain. The electromechanical coupling
coefficient can be defined from the value of the coupling
or interaction coefficient relative to the principal or diagonal
coefficients [21] using the standard intensive type or d-form of
the constitutive equations, such that

k2
15 = d2

15

sE
55ε

T
11

, (3)

where

d15 = e15/cE
55, sE

55 = 1/cE
55, and εT

11 = εS
11 + e2

15/cE
55.

(4)
This expression can be also written in terms of the e15

constant present in the e-form of the constitutive equations but,
since this is a mixed type of the constitutive equations, one of
the principal constants should be taken from another form of
the constitutive equations in order to obtain a formula similar
to (3). A modification of (3) can, however, be considered in
terms of the principal constants only:

k2
15 = e2

15

cE
55ε

T
11

= e2
15

cD
55ε

S
11

= e2
15

cE
55ε

S
11 + e2

15

. (5)

This expression and its variations can also be found by
using the relations between the constants appearing in different
forms of the constitutive equations such as

k2
15 = 1 − cE

55/cD
55 = 1 − εS

11/ε
T
11. (6)

It is thus clear that the material properties d15, cE
55 and εT

11
are of major importance for the evaluation of the potential of
such material as a candidate for the development of transducers
(actuators and sensors). Table 1 presents typical values of these
constants for a number of commercially available piezoceramic
materials, calculated using the respective material data sheets
from the manufacturers [22–26].

In the case of the d15 MFC which is composed of a
number of different materials, it is important to identify the
effective properties of the ensemble based on the properties of
its constituents. For that, the representative volume element

(RVE) technique together with Ansys® finite element software
is used first for the active layer alone and then for the multilayer
transducer. The effective properties obtained are compared to
those from previous works using analytical homogenization
techniques [17].

4. Active layer effective material properties

4.1. Analytical homogenization using UFM and AHM

The asymptotic homogenization method (AHM) can be used
to model the d15 MFC active layer considering that it is
made of identical unit cells periodically distributed along the
poling direction. Asymptotical expansions of mechanical
displacements and electric potential are used to provide
asymptotical expansions of mechanical stresses and electric
displacements and to solve the equilibrium equations of
the heterogeneous active layer. Then, comparison of the
resulting equations with the averaged ones leads to the solution
of periodic functions of the local variable from which the
effective constants, or effective constitutive equations, can be
written [17, 18].

The uniform field method (UFM) is based on the
assumption that selected different fields are uniform in the
constituents of the heterogeneous media. It is a generalization
of the well known rules of mixtures which use parallel and
series additions to model effective properties of two-phase
materials [3]. The resulting effective coefficients are thus
dependent on the assumptions considered for selecting the
field variables that are uniform (equal) in the two phases and,
thus, also equal to the average field variables. Then, the
corresponding dual field variables are evaluated through linear
combination of the field variables of each phase in terms of
the fibre volume fraction (FVF). Rearranging the natural and
conjugate variables as desired, the corresponding constitutive
equations can be written in terms of the constituents’ material
constants and the fibre volume fraction.

4.2. Finite element numerical homogenization

In this section, a numerical homogenization using the finite
element method is applied to the d15 MFC active layer
RVE [19, 27]. It consists in imposing relative mechanical
displacement and electric potential boundary conditions on the
boundaries of the RVE (X−

1 , X+
1 , X−

2 , X+
2 , X−

3 , X+
3 ). In

the case of the RVE considered for the d15 MFC active layer,
shown in figure 4, these boundaries are X−

1 : x1 = 0, X+
1 :

x1 = h P , X−
2 : x2 = 0, X+

2 : x2 = w, X−
3 : x3 = 0, X+

3 :
x3 = L P + L E . Continuous electrodes are considered on the
surfaces Xe−

1 = X−
1 and Xe+

1 = X+
1 .

Average strains and electric fields can therefore be
imposed on the RVE using displacements and voltage
boundary conditions, such that

u
X+

j

i − u
X−

j

i = S̄i j (x
X+

j

j − x
X−

j

j ), i, j = 1, 2, 3, (7)

and

φX+
n − φX−

n = −Ēn(x
X+

n
n − x

X−
n

n ), n = 1, 2, 3. (8)
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Table 2. Boundary conditions (displacement/electric potential) and relations used to evaluate the effective material properties of a d15

piezoelectric MFC.

Problem X−
1 /X+

1 X−
2 /X+

2 X−
3 /X+

3 Xe−
1 /Xe+

1 Relation

1 ui+
1 − ui−

1 = q ui+
2 − ui−

2 = 0 ui+
3 − ui−

3 = 0 — cE
1 j = T̄j /S̄1 (13)

— φi+ − φi− = 0 φi+ − φi− = 0 φi+ = 0; φi− = 0

2 ui+
1 − ui−

1 = 0 ui+
2 − ui−

2 = q ui+
3 − ui−

3 = 0 — cE
2 j = T̄j /S̄2 (13)

— φi+ − φi− = 0 φi+ − φi− = 0 φi+ = 0; φi− = 0

3 ui+
1 − ui−

1 = 0 ui+
2 − ui−

2 = 0 ui+
3 − ui−

3 = q — cE
3 j = T̄j /S̄3 (13)

— φi+ − φi− = 0 φi+ − φi− = 0 φi+ = 0; φi− = 0

4 ui+
1 − ui−

1 = 0 ui+
3 − ui−

3 = q ui+
2 − ui−

2 = q — cE
44 = T̄4/S̄4 (14)

— φi+ − φi− = 0 φi+ − φi− = 0 φi+ = 0; φi− = 0

5 ui+
3 − ui−

3 = q ui+
2 − ui−

2 = 0 ui+
1 − ui−

1 = q — cE
55 = T̄5/S̄5 (14)

— φi+ − φi− = 0 φi+ − φi− = 0 φi+ = 0; φi− = 0 e15 = D̄1/S̄5 (15)

6 ui+
2 − ui−

2 = q ui+
1 − ui−

1 = q ui+
3 − ui−

3 = 0 — cE
66 = T̄6/S̄6 (14)

— φi+ − φi− = 0 φi+ − φi− = 0 φi+ = 0; φi− = 0

7 — — — — d15 = S̄5/Ē1 (16)
— φi+ − φi− = 0 φi+ − φi− = 0 φi+ = 0; φi− = q εT

11 = D̄1/Ē1 (16)

Figure 4. Representative volume element (RVE) for the active layer
of the d15 MFC.

The resulting average strains, stresses, electric fields and
electric displacements in the RVE are defined as

S̄q = 1

V

∫

V
Sq dV , and T̄p = 1

V

∫

V
Tp dV ,

with p, q = 1, . . . , 6, (9)

Ēk = 1

V

∫

V
Ek dV , and D̄i = 1

V

∫

V
Di dV ,

with i, k = 1, 2, 3. (10)

These integrals are approximated in Ansys® by a sum over
averaged element values multiplied by the respective element
volume divided by the total volume of the RVE, such that

S̄q =
∑N

e=1 S(e)
q V (e)

∑N
e=1 V (e)

, and T̄p =
∑N

e=1 T (e)
p V (e)

∑N
e=1 V (e)

,

with p, q = 1, . . . , 6, (11)

Ēk =
∑N

e=1 E (e)
k V (e)

∑N
e=1 V (e)

, and D̄i =
∑N

e=1 D(e)
i V (e)

∑N
e=1 V (e)

,

with i, k = 1, 2, 3, (12)

Figure 5. Plane representation of the local problem used to evaluate
the elastic constants related to normal strains and stresses.

where V (e) is the volume of the element e. S(e)
q , T (e)

p , E (e)
k and

D(e)
i are the average strains, stresses, electric fields and electric

displacements evaluated at element e. N is the total number of
finite elements used to discretize the RVE.

For the evaluation of the elastic constants related to normal
strains and stresses cE

pq , p, q = 1, 2, 3, three local problems
are analysed for which a normal strain Sq (q = 1, 2, 3) is

applied by imposing relative normal displacements u
X+

q
q − u

X−
q

q

(figure 5). In order to obtain S̄ j = 0 if j �= q , the normal
displacements u j for each pair of nodes at opposing surfaces
X−

j and X+
j are set to be equal (symmetrically coupled degrees

of freedom). To ensure a short circuit electric boundary
condition, the voltage degrees of freedom in the electrodes
at surfaces X−

1 and X+
1 are set to zero. Table 2 indicates

symmetric boundary conditions for the electric potential along
directions x2 and x3 for the corresponding X−

2 /X+
2 and X−

3 /X+
3

RVE surfaces. Then, considering the constitutive equations
in (2), the effective elastic constants are evaluated using the
following expression:

cE
pq = T̄p/S̄q, p, q,= 1, 2, 3, (13)

where the average stresses T̄p and strains S̄q are evaluated
using (11).
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Figure 6. Plane representation of the local problem used to evaluate
the elastic constants related to shear strains and stresses.

For the evaluation of the elastic constants related to shear
strains and stresses cE

pp, p = 4, 5, 6, another three local
problems are analysed for which shear strains Sik (S23 = S4/2,
S13 = S5/2 and S12 = S6/2) are applied to approximate
a pure shear stress state in the planes x2 − x3, x1 − x3 and

x1 − x2 by imposing relative shear displacements u
X+

k
i −u

X−
k

i at

surfaces X+
k /X−

k and u
X+

i
k − u

X−
i

k at surfaces X+
i /X−

i (figure 6).
Moreover, the normal displacements at the boundary surfaces
parallel to each shear plane of interest are symmetrically
coupled to ensure zero strains perpendicular to the shear plane.
To ensure a short circuit electric boundary condition, the
voltage degrees of freedom in the electrodes at surfaces X−

1
and X+

1 are set to zero. Table 2 indicates symmetric boundary
conditions for the electric potential along directions x2 and
x3 for the corresponding X−

2 /X+
2 and X−

3 /X+
3 RVE surfaces.

Therefore, the effective elastic constants are evaluated in terms
of the average shear stresses T̄p and strains S̄p using

cE
pp = T̄p/S̄p, p = 4, 5, 6. (14)

The piezoelectric constant e15 can be also obtained from
the local problem used to evaluate cE

55, that is where a pure
shear stress state in the plane x1–x3 is approximated. From the
constitutive equations (2), e15 can be obtained by evaluating
the average electric displacement D1 such that

e15 = D̄1/S̄5, (15)

where the average shear strain S̄5 and electric displacement D̄1

are evaluated using the approximation of (11) and (12).
For the evaluation of the piezoelectric and dielectric

constants of the d-form, d15 and εT
11, another local problem

is set up for which an electric voltage φX+
1 = h P (in value)

is applied to the electrode at surface X+
1 while the voltage

at the opposite surface (X−
1 ) is set to zero so that a unitary

electric field in the x1 direction is generated (figure 7). To
approximate the condition of zero stresses in the RVE, no
restriction is made to the displacements in the RVE except for
the origin where all displacements are set to zero to prevent
rigid body displacements. Then, considering zero shear stress

Figure 7. Plane representation of the local problem used to evaluate
the piezoelectric and dielectric constants related to the shear response
mode.

Figure 8. Finite element mesh for the d15 MFC active layer RVE.

T5 in the d-form of the constitutive equations, the piezoelectric
and dielectric constants, d15 and εT

11, can be evaluated from

d15 = S̄5/Ē1, (16)

and
εT

11 = D̄1/Ē1. (17)

Table 2 summarizes the local problems used for the
characterization of the relevant material properties of the d15

MFC active layer RVE. ui−
j and ui+

j are the displacements in
direction j and φi− and φi+ are the electric potentials at the i th
node of the opposite surfaces. q is an arbitrary non-null value.

Other effective piezoelectric and dielectric material
constants, such as e31, e32, e33, e24, εT

22 and εT
33, are normally

evaluated in the literature. This could be done by changing
the position of the electrodes, leading to other simplifying

6



Figure 9. Distributions induced by a unitary normal strain S1 = (u
X+

1
1 − u

X−
1

1 )/h P = 1 (problem 1) applied to the d15 MFC active layer RVE:
(a) normal stress T1, (b) normal strain S1, (c) electric potential, (d) normal stress T2 and (e) normal stress T3.

assumptions for the electric boundary conditions (either Ek =
0 or Dk = 0 for k �= 2 or k �= 3, instead of Ek = 0 or Dk = 0
for k �= 1 as in this work). However, this was not done in
this work since it is focused on the proposed shear d15 MFC
design which is only operational with electrodes over surfaces
X−

1 and X+
1 . Therefore, it is impossible to apply or measure

electric field or electric displacement in directions 2 and 3.
Figure 8 shows the finite element mesh used in Ansys® for

the d15 MFC active layer RVE using an FVF of 0.86. The 3D
20-node coupled-field solid finite element SOLID226 was used
to mesh all volumes. This element has four degrees of freedom
per node, the three Cartesian nodal displacements and the nodal
electric potential. 2873 finite elements were used considering
13 divisions in the x1 and x2 directions and 17 divisions in the
x3 direction (11 divisions for the PZT layer and three divisions

for each epoxy layer). According to figure 4, the dimensions
considered for this RVE are h P = 1 mm, L P = 0.860 mm,
L E = 0.140 mm, w = 1 mm. The material properties
for the piezoceramic material Sonox-P502, taken from [14],
are sE

11 = sE
22 = 18.5 p m2 N−1, sE

33 = 20.7 p m2 N−1,
sE

12 = −6.29 p m2 N−1, sE
13 = −6.23 p m2 N−1, sE

44 =
sE

55 = 33.2 p m2 N−1, sE
66 = 52.3 p m2 N−1, d31 = d32 =

−185 pC N−1, d33 = 440 pC N−1, d15 = d24 = 560 pC N−1,
εT

11 = εT
22 = 1950ε0, εT

33 = 1850ε0. The material
properties for the isotropic epoxy are Y = 2.9 GPa, ν = 0.3
and ε = 4.25ε0.

The distributions of normal and shear stresses and strains
for the local problems used to evaluate the effective elastic
properties of the RVE using an FVF of 0.86 are presented
in figures 9–14. As expected, in the first two local problems

7



Figure 10. Distributions induced by a unitary normal strain S2 = (u
X+

2
2 − u

X−
2

2 )/w = 1 (problem 2) applied to the d15 MFC active layer RVE:
(a) normal stress T2, (b) normal strain S2 and (c) normal stress T3.

Figure 11. Distributions induced by a unitary normal strain S3 = (u
X+

3
3 − u

X−
3

3 )/(L P + L E ) = 1 (problem 3) applied to the d15 MFC active
layer RVE: (a) normal stress T3, (b) normal strain S3 and (c) electric potential.

8



Figure 12. Distributions induced by a unitary shear strain S4 = 1 (problem 4) applied to the d15 MFC active layer RVE: (a) shear stress T4 and
(b) shear strain S4.

Figure 13. Distributions induced by a unitary shear strain S5 = 1 (problem 5) applied to the d15 MFC active layer RVE: (a) shear stress T5,
(b) shear strain S5 and (c) electric displacement D1.

(T1, figure 9(a), and T2, figure 10(a)), the stress is concentrated
in the piezoceramic fibre. On the other hand, in the third
local problem (T3, figure 11(a)), the stress is relatively well
distributed in the RVE while the strain is much higher in
the epoxy material (i.e. almost all deformation is due to the
softer epoxy material, figure 11(b)). The deformation is also
dominated by the epoxy material in the local problems related
to shear elastic constants in planes yz, cE

44 (figure 12(b)), and
xz, cE

55 (figure 13(b)). On the other hand, in the local problem
for the evaluation of cE

66 (figure 14), the strain is homogeneous
while the stress is concentrated in the piezoceramic fibre.

From figure 9(b), one may also notice that the normal
strain S1 is not homogeneous. This may be due to the non-
homogeneous electric potential induced in the piezoceramic
by the grounded electrodes in X−

1 and X+
1 (figure 9(c)). This

can be explained by the fact that the piezoceramic fibre is
stiffened where an electric potential is induced and, thus, the
effective stiffness of the piezoceramic fibre near the electrodes
is smaller. The same effect leads to a non-homogeneous
distribution of the normal stress T3 (figure 11(a)), although the
non-homogeneity is less pronounced than for S1 strains. For
the second local problem (T2/S2, figure 10), the effect of the

9



Figure 14. Distributions induced by a unitary shear strain S6 = 1 (problem 6) applied to the d15 MFC active layer RVE: (a) shear stress T6 and
(b) shear strain S6.

Figure 15. Distributions induced by a unitary electric field E1 = (φX+
1 − φX−

1 )/h P = 1 applied to the d15 MFC active layer RVE: (a) shear
strain S5, (b) electric displacement D1 and (c) electric field E1.

non-homogeneous induced potential is negligible. For the last
three local problems (T4/S4, figure 12; T5/S5, figure 13; and
T6/S6, figure 14), the induced potential itself was found to be
negligible.

The distribution of shear strain S5 and electric displace-
ment D1 for the local problem used to evaluate the effective
piezoelectric and dielectric properties, d15 and εT

11, of the
RVE using an FVF of 0.86 are presented in figure 15. Their
distributions are as expected from the UFM. It is noticeable that
only the piezoceramic fibre is deformed, to a pure shear strain
state, by the applied difference of electric potential. Moreover,

as expected, the electric displacement is also concentrated
in the piezoceramic fibre (figure 15(b)). A unitary electric
field, however, is equally distributed over the RVE since it is
considered that the electrodes cover the entire surfaces X−

1 and
X+

1 , that is both the piezoceramic fibre and the epoxy material
(figure 15(c)).

Table 3 shows the effective properties, transformed
to Voigt notation, of the d15 MFC active layer using an
FVF of 0.86 obtained by the finite element local problems.
The table also shows the corresponding results obtained by
the analytical homogenization methods UFM (without the

10



Figure 16. Representative volume element (RVE) for a d15 MFC.

Table 3. Effective short circuit elastic and piezoelectric properties of
the d15 MFC active layer (FVF = 0.86).

Ansys® FE UFM [17] AHM (UDEF) [17]

Y1 = 50.09 GPa Y1 = 52.76 GPa Y1 = 46.90 GPa
Y2 = 50.09 GPa Y2 = 52.76 GPa Y2 = 46.90 GPa
Y3 = 20.52 GPa Y3 = 22.49 GPa Y3 = 17.98 GPa
G23 = 6.49 GPa G23 = 5.89 GPa G23 = 5.89 GPa
G13 = 6.49 GPa G13 = 5.89 GPa G13 = 5.89 GPa
G12 = 16.60 GPa G12 = 16.61 GPa G12 = 16.61 GPa
ν12 = 0.43 ν12 = 0.59 ν12 = 0.41
ν13 = 0.20 ν13 = 0.19 ν13 = 0.41
ν23 = 0.20 ν23 = 0.19 ν23 = 0.41
d15 = 481.60 pC N−1 d15 = 481.60 pC N−1 d15 = 481.60 pC N−1

e15 = 3.13 C m−2 e15 = 2.84 C m−2 e15 = 2.84 C m−2

εT
11 = 14.85 nF m−1 εT

11 = 14.85 nF m−1 εT
11 = 14.85 nF m−1

k2
15 = 10.1% k2

15 = 9.2% k2
15 = 9.2%

k15 = 32% k15 = 30% k15 = 30%

unidirectional electric field, UDEF, approximation) and AHM
(with the UDEF approximation) [17] for comparison. The
effective electromechanical coupling coefficient of the RVE
k15 is evaluated from the effective elastic, piezoelectric and
dielectric properties, cE

55, d15 and εT
11, using (3). Notice

that the numerically evaluated effective properties match quite
well with those evaluated using analytical homogenization
techniques. In particular, the Young moduli obtained
numerically stand between those evaluated with the UFM
(without UDEF) and AHM (with UDEF) methods. The shear
modulus of major interest for the d15 MFC, G13, is 10% higher
than the analytical results. For this reason, the squared effective
electromechanical coefficient obtained numerically is a little
higher than the one obtained analytically (10% compared to
9%). The same reason explains the fact that the numerical e15

value is higher than the analytical one.
A similar analysis was performed augmenting the fibre

volume fraction of the d15 MFC active layer RVE to 0.95
(as recommended in [17]). This was done by modifying
the RVE dimensions to h P = 1 mm, L P = 0.950 mm,
L E = 0.050 mm, w = 1 mm. Table 4 shows the effective
properties of the d15 MFC active layer using an FVF of 0.95
obtained numerically, using finite element homogenization,

Figure 17. Finite element mesh for the seven-layered d15 MFC RVE.

Table 4. Effective short circuit elastic and piezoelectric properties of
the d15 MFC active layer (FVF = 0.95).

Ansys® FE UFM [17] AHM (UDEF) [17]

Y1 = 54.81 GPa Y1 = 57.74 GPa Y1 = 51.50 GPa
Y2 = 54.81 GPa Y2 = 57.74 GPa Y2 = 51.50 GPa
Y3 = 37.40 GPa Y3 = 45.44 GPa Y3 = 30.16 GPa
G23 = 13.09 GPa G23 = 10.68 GPa G23 = 10.68 GPa
G13 = 13.09 GPa G13 = 10.68 GPa G13 = 10.68 GPa
G12 = 18.22 GPa G12 = 18.23 GPa G12 = 18.23 GPa
ν12 = 0.43 ν12 = 0.58 ν12 = 0.41
ν13 = 0.21 ν13 = 0.20 ν13 = 0.43
ν23 = 0.21 ν23 = 0.20 ν23 = 0.43
d15 = 532.00 pC N−1 d15 = 532.00 pC N−1 d15 = 532.00 pC N−1

e15 = 6.97 C m−2 e15 = 5.68 C m−2 e15 = 5.68 C m−2

εT
11 = 16.40 nF m−1 εT

11 = 16.40 nF m−1 εT
11 = 16.40 nF m−1

k2
15 = 22.6% k2

15 = 18.4% k2
15 = 18.4%

k15 = 48% k15 = 43% k15 = 43%

and analytically, using the UFM (without UDEF) and AHM
(with UDEF) methods [17]. As in the previous case,
the numerically evaluated effective properties match quite
well with those evaluated using analytical homogenization
techniques. These results also show that the increase in the
FVF from 0.86 to 0.95, meaning a 10% increase, leads to an
overall increase in the elastic (stiffness) constants of the RVE.
More importantly, the effective piezoelectric properties of
major interest to the d15 MFC, d15 or e15, increase substantially
by 10% and 123%, respectively. This yields an increase in the
effective squared electromechanical coupling coefficient k2

15 by
123%, from 10.1% to 22.6%.

5. d15 MFC effective material properties

In this section, the finite element homogenization method is
applied to evaluate the effective properties of a d15 MFC
including the electrode and protective layers, according to the
schematic representation of figure 3. As in section 4, this is
done here by considering an RVE of the d15 MFC, as shown
in figure 16. The protective layers, made of Kapton and
acrylic materials, and the electrode layer, made of copper and
epoxy, are considered isotropic. Therefore, the finite element
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Figure 18. Distributions induced by a unitary normal strain S1 = (u
X+

1
1 − u

X−
1

1 )/hT = 1 (problem 1) applied to the d15 MFC RVE: (a) normal
stress T1, (b) normal strain S1, (c) electric potential, (d) normal stress T2 and (e) normal stress T3.

homogenization method considered for the active layer could
be also applied to the seven-layered d15 MFC. In this case,
however, in addition to relative mechanical displacement and
electric voltage boundary conditions applied on the boundaries
of the RVE (X−

1 , X+
1 , X−

2 , X+
2 , X−

3 , X+
3 ), electric voltage

boundary conditions are also imposed at the electrodes on
surfaces Xe−

1 and Xe+
1 . In the case of the RVE considered for

the d15 MFC, shown in figure 16, these boundaries are X−
1 :

x1 = 0, X+
1 : x1 = hT = h P + 2(hE + h A + hK ), X−

2 :
x2 = 0, X+

2 : x2 = w, X−
3 : x3 = 0, X+

3 : x3 = L P + L E ,
Xe−

1 : x1 = hE + h A + hK , Xe+
1 : x1 = h P + hE + h A + hK .

Notice that the isotropy of the electrode layer depends
on its design, which remains an open issue. Electrode
designs such as those used for the d31 MFC (continuous)
seem to be more reasonable than those used for the d33 MFC

(interdigitated) since the voltage should ideally be constant
all over the electrode surface. However, since only the
piezoelectric fibres must be covered with top and bottom
electrodes, different designs can be considered to enhance
their properties and thus the d15 MFC effective properties.
Evidently, the isotropy assumed in this work is only a first
approximation since the optimal electrode design for the d15

MFC is not yet defined. Future works should account for this
aspect.

Figure 17 shows the finite element mesh used in Ansys®

for the seven-layered d15 MFC RVE using an FVF of 0.86 for
the PZT + epoxy active layer. The 3D 20-node coupled-field
solid finite element SOLID226 was used to mesh all volumes.
5525 finite elements were used considering 25 divisions in the
x1 direction (13 divisions for the PZT layer and two divisions
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Figure 19. Distributions induced by a unitary normal strain S2 = (u
X+

2
2 − u

X−
2

2 )/w = 1 (problem 2) applied to the d15 MFC RVE: (a) normal
stress T2, (b) normal strain S2 and (c) normal stress T3.

for each electrode and protective layer), 13 divisions in the
x2 direction and 17 divisions in the x3 direction (11 divisions
for the PZT layer and three divisions for each epoxy layer).
According to figure 16, the dimensions considered for this
RVE are h P = 1 mm, hK = 25.4 μm, h A = 12.7 μm,
hE = 17.8 μm, L P = 0.860 mm, L E = 0.140 mm and
w = 1 mm [4]. The material properties for the active layer
(Sonox-P502 and epoxy) are those considered in section 4. The
materials properties for the protective layers, taken from [4],
are Kapton: Y = 2.5 GPa, ν = 0.34 and ε = 3.4ε0; and
acrylic: Y = 2.7 GPa, ν = 0.35 and ε = 3.4ε0. The electrode
layer, made of copper and epoxy, is considered to be isotropic
and its properties are found by a linear mixture considering an
80% copper volume fraction, leading to Y = 90 GPa, ν = 0.3
and ε = 4.25ε0.

The distributions of normal and shear stresses and strains
for the local problems used to evaluate the effective elastic
properties of the seven-layered d15 MFC RVE using an FVF
of 0.86 for the PZT + epoxy active layer are presented in
figures 18–23. As can be noticed from figure 18(b), unlike
the previous case, the now present softer protective layers
concentrate the S1 normal strains. Hence, only for the S2

normal strains (normal to the shear plane of interest), are
the strains homogeneous (figure 19(b)). Notice also from
figure 19(a) that the two electrode layers (copper + epoxy)
are relatively stiff (compared to piezoceramic fibre and epoxy
and protective Kapton and acrylic layers) and thus present high
stress values. In problem 3, the strain is still concentrated

in the epoxy layer but is no longer layerwise homogeneous
due to the electrode and protective layers (figure 20(b)). The
electrode layers’ relatively high stiffness is also responsible
for a smoother transition between the shear strains, S4 and
S5, from the piezoceramic fibre and epoxy layer (figures 21(b)
and 22(b)). The S6 shear strain is no longer homogeneous and
is concentrated in the protective layers (figure 23(b)). It can
also be noticed that the electrode and protective layers lead
to an overall increase in the non-homogeneous distributions of
mechanical and electrical quantities.

The distributions of shear strain S5, electric displacement
D1 and electric field E1 for the local problem used to evaluate
the effective piezoelectric and dielectric properties, d15 and
εT

11, of the seven-layered d15 MFC RVE using an FVF of 0.86
for the PZT + epoxy active layer are presented in figure 24.
It can be noticed that the shear strain is concentrated in
the piezoceramic fibre while the other layers just follow the
deformation imposed by the piezoceramic fibre (figure 24(a)).
Figure 24(b) shows that the electric displacement is also
concentrated in the piezoceramic material. However, as in the
previous case (figure 15(c)), the electric field is homogeneous
in the piezoceramic fibre and epoxy layers since it is assumed
that the electrode entirely covers the active layer (figure 24(c)).

Table 5 shows the effective properties, transformed to
Voigt notation, of the seven-layered d15 MFC using FVFs of
0.86 and 0.95 for the PZT + epoxy active layer obtained by
the finite element local problems. Comparison of table 5 with
Tables 3 and 4 shows that, while the active layer is transversally
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Figure 20. Distributions induced by a unitary normal strain S3 = (u
X+

3
3 − u

X−
3

3 )/(L P + L E ) = 1 (problem 3) applied to the d15 MFC RVE:
(a) normal stress T3, (b) normal strain S3 and (c) electric potential.

Figure 21. Distributions induced by a unitary shear strain S4 = 1 (problem 4) applied to the d15 MFC RVE: (a) shear stress T4, (b) shear strain
S4 and (c) electric potential.
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Figure 22. Distributions induced by a unitary shear strain S5 = 1 (problem 5) applied to the d15 MFC RVE: (a) shear stress T5, (b) shear strain
S5 and (c) electric displacement D1.

Figure 23. Distributions induced by a unitary shear strain S6 = 1 (problem 6) applied to the d15 MFC RVE: (a) shear stress T6 and (b) shear
strain S6.

isotropic, the seven-layered composite is orthotropic. In
particular, the Young modulus Y1 is significantly diminished
due to the relatively soft protective layers. On the other hand,
the Young modulus Y3 is increased mainly due to the electrode
that is stiffer than the epoxy core and thus promotes a stiffer
connection between the X+

3 surface and the PZT core. The
shear modulus G13 is diminished by 23% due to the protective
layers which are softer than the PZT. Notice, however, that
the thickness of the protective and electrode layers should
also play a major role in this shear modulus. For instance,
thinner protective layers should increase the shear modulus
G13, but they would also perform poorly as protective layers.

The piezoelectric constant d15 is increased a little while e15 is
decreased by 30%, from 3.13 to 2.20 C m−2. The dielectric
constant εT

11 is not modified due to the protective and electrode
layers since it is assumed that the electric contact between the
electrode and the PZT occurs at the PZT–electrode interface.
This would not be the case if there was an epoxy layer between
the copper electrode and the PZT. These effective properties
yield an overall smaller electromechanical coupling coefficient
k15, such that the efficiency in energy conversion k2

15 decreases
by 20%, from 10% to 8%. Notice that this is much less than
the k2

15 of the PZT (Sonox-P502) alone of 54.8%.
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Figure 24. Distributions induced by a unitary electric field E1 = (φXe+
1 − φXe−

1 )/h P = 1 applied to the d15 MFC RVE: (a) shear strain S5,
(b) electric displacement D1 and (c) electric field E1.

Table 5. Effective short circuit elastic and piezoelectric properties of
the d15 MFC with electrode and protective layers (seven layers).

FVF = 0.86 FVF = 0.95

Y1 = 26.72 GPa Y1 = 28.84 GPa
Y2 = 48.16 GPa Y2 = 52.37 GPa
Y3 = 23.63 GPa Y3 = 37.56 GPa
G23 = 9.04 GPa G23 = 14.85 GPa
G13 = 4.99 GPa G13 = 7.37 GPa
G12 = 7.80 GPa G12 = 8.18 GPa
ν12 = 0.24 ν12 = 0.23
ν13 = 0.17 ν13 = 0.14
ν23 = 0.24 ν23 = 0.23
d15 = 484.80 pC N−1 d15 = 533.12 pC N−1

e15 = 2.20 C m−2 e15 = 3.56 C m−2

εT
11 = 14.85 nF m−1 εT

11 = 16.40 nF m−1

k2
15 = 7.9% k2

15 = 12.8%
k15 = 28% k15 = 36%

6. Concluding remarks

In the present work, a finite element homogenization method
for a shear actuated d15 macro-fibre composite (MFC) made
of seven layers (Kapton, acrylic, electrode, piezoceramic
fibre and epoxy composite, electrode, acrylic, Kapton) was
proposed and used for the characterization and identification
of its effective material properties. The methodology was
first validated for the MFC active layer only, made of
the piezoceramic fibre and epoxy, through comparison with

previously published analytical results. Then, the methodology
was applied to the full MFC with seven layers. It was shown
that the packaging reduces significantly the shear stiffness
of the piezoceramic material and, thus, leads to significantly
smaller effective electromechanical coupling coefficient k15

and piezoelectric stress constant e15 when compared to the
piezoceramic fibre properties. However, the piezoelectric
charge constant d15 was less affected by the softer layers
required by the MFC packaging. This might indicate that this
MFC design could be interesting for sensing applications but
not so much for actuation. The presented results also confirmed
that a higher fibre volume fraction (FVF) is desirable and a
95% FVF seems to be a good compromise.

Future works will be directed to parametric analyses
aiming at the optimization of elastic, piezoelectric and
dielectric properties of shear actuated d15 MFCs. Some
parameters already seem to be good candidates to affect the
electromechanical coupling performance of such transducers,
such as the relative thickness of the active layer and the
protective and electrode layers, the electrode layer stiffness
yielded by the electrode design and, of course, the fibre volume
fraction of the active layer.
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