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Abstract

We study the solutions of infinite dimensional linear inverse problems
over Banach spaces. The regularizer is defined as the total variation of a
linear mapping of the function to recover, while the data fitting term is
a near arbitrary function. The first contribution describes the solution’s
structure: we show that under mild assumptions, there always exists an
m-sparse solution, where m is the number of linear measurements of the
signal. Our second contribution is about the computation of the solu-
tion. While most existing works first discretize the problem, we show
that exact solutions of the infinite dimensional problem can be obtained
by solving one or two consecutive finite dimensional convex programs de-
pending on the measurement functions structures. These results extend
recent advances in the understanding of total-variation regularized inverse
problems.

1 Introduction
Let u ∈ B be a signal in some vector space B and assume that it is probed
indirectly, with m corrupted linear measurements:

b = P (Au),

where A : B → Rm is a measurement operator defined by (Au)i = 〈ai, u〉, each
ai being an element in B∗, the dual of B. The mapping P : Rm → Rm denotes
a perturbation of the measurements, such as quantization, additional Gaussian
or Poisson noise, or any other common degradation operator. Inverse problems
consist in estimating u from the measurements b. Assuming that dim(B) > m, it
is clearly impossible to recover u knowing b only. Hence, various regularization
techniques have been proposed to stabilize the recovery.

Probably the most well known and used example is Tikhonov regularization
[21], which consists in minimizing quadratic cost functions. The regularizers are
particularily appreciated for their ease of analysis and implementation. Over the
last 20 years, sparsity promoting regularizers have proved increasingly useful,
especially when the signals to recover have some underlying sparsity structure.
Sparse regularization can be divided into two categories: the analysis formula-
tion and the synthesis formulation.
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The analysis formulation consists in solving optimization problems of the
form

inf
u∈B

J(u) := fb (Au) + ‖Lu‖TV , (1)

where fb : Rm → R ∪ {+∞} is an application dependent data fidelity term and
L : B → E is a linear operator, mapping B to some space E such as Rn, the space
of sequences in `1 or the space of Radon measuresM. The total variation norm
‖ · ‖TV coincides with the `1-norm when E is discrete, but it is more general
since it also applies to measures.

The synthesis formulation on its side consists in minimizing

inf
µ∈E

fb (ADµ) + ‖µ‖TV , (2)

where D : E → B is the linear synthesis operator, also called dictionary. The
estimate of u in that case reads û = Dµ̂, where µ̂ is a solution of (2).

Problems (1) and (2) triggered a massive interest from both theoretical and
practical perspectives. Among the most impressive theoretical results, one can
cite the field of compressed sensing [9] or super-resolution [8, 15], which certify
that under suitable assumptions, the minimizers of (1) or (2) coincide with the
true signal u.

Most of the studies in this field are confined to the case where both B and
E are finite dimensional [9, 13, 17, 19]. In the last few years, some efforts have
been provided to get a better understanding of (1) and (2) where B and E
are sequence spaces [2, 3, 29, 28]. Finally, a different route, which will be fol-
lowed in this paper, is the case where E = M, the space of Radon measures
on a continuous domain. In that case, problems (1) and (2) are infinite di-
mensional problems over measure spaces. One instance in that class is that of
total variation minimization (in the PDE sense [4], that is the total variation
of the distributional derivative), which became extremely popular in the field
of imaging since its introduction in [24]. There has been surge of interest in
understanding the fine properties of the solutions in this setting, with many
significant results [7, 8, 26, 15, 10, 30]. The aim of this paper is to continue
these efforts by bringing new insights in a general setting.

Contributions and related works The main contributions are twofold: one
is about the structure of the solutions of (1), while the other is about how to
numerically solve this problem without discretization. The results directly apply
to problem (2) since, with regards to our concerns, the synthesis problem (2) is
a special case of the analysis problem (1). It indeed suffices to take L = Id and
B =M for (2) to be an instance of (1). Notice however that in general, the two
approaches should be studied separately [17].

On the theoretical side, we provide a theorem characterizing the structure
of the solutions of problem (1) under certain assumptions on the operator L.
Roughly speaking, this theorem states that there always exist m-sparse solu-
tions. The precise meaning of this claim will be clarified in Theorem 1. This
result is strongly related and was actually motivated by [30]. In there, the
authors restrict their study to certain stationary operators L over spaces of
functions defined on Ω = Rd. Their main result states that in that case, gener-
alized splines with m knots actually describe the whole set of solutions. Similar
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results [18] were actually obtained much earlier on bounded domains and seem
to have remained widely ignored until they were revitalised by Unser-Fageot-
Ward. The value of our result lies in the fact that it holds for more general
classes of operators L, spaces B , domains Ω and functions fb. Furthermore,
the proof technique is different from [30]: it is constructive and presumably
applicable to wider settings.

On the numerical side, let us first emphasize that in an overwhelming num-
ber of works, problem (1) is solved by first discretizing the problem to make
it finite dimensional and then approximate solutions are found with standard
procedures from convex programming. Theories such as Γ-convergence [6] then
sometimes allow showing that as the discretization parameter goes to 0, solu-
tions of the discretized problem converge (in a weak sense) to the solutions of
the continuous problem. In this paper, we show that under some assumptions
on the measurement functions (ai), the infinite dimensional problem (1) can
be attacked directly without discretization: the resolution of one or two con-
secutive finite dimensional convex programs allows recovering exact solutions
to problem (1) or (2). The structure of the convex programs depend on the
structure of measurement vectors. Once again, this result is strongly related to
recent advances. For instance, it is shown in [8, 26] that a specific instance of (2)
with L = Id can be solved exactly thanks to semi-definite relaxation or Prony
type methods when the signal domain is the torus Ω = T and the functions (ai)
are trigonometric polynomials. Similar results were obtained in [12] for more
general semi-algebraic domains using Lasserre hierarchies [22]. Once again, the
value of our paper lies in the fact that it holds for near arbitrary convex func-
tions fb and for a large class of operators L such as the derivative. To the best of
our knowledge, the only case considered until now was L = Id. In addition, our
results provide some insight on the standard minimization strategy: we show
that it corresponds to solving a different infinite dimensional problem exactly,
where the sampling functions are piecewise linear. We also show that the solu-
tion of the standard discretization can be made sparser by merging Dirac masses
located on neighboring grid points.

2 Main results

2.1 Notation
In all of the paper, Ω ⊆ Rd denotes an open subset either bounded or unbounded.
The space of distributions on Ω is denoted D∗(Ω). We letM(Ω) denote the set
of Radon measures on Ω, i.e. the dual C0(Ω)∗ of C0(Ω), the space of continuous
functions on Ω vanishing at infinity:

C0(Ω) =

{
f : Ω→ R, f continuous,

∀ε > 0,∃C ⊂ Ω compact ,∀x /∈ C, |f(x)| < ε

}
.

We will throughout the whole paper view (M(Ω), ‖ · ‖TV ) as a Banach space,
and not, as often is done, as a locally convex space equipped with the weak-∗-
topology. When we do this, C0(Ω) is a subset, and not the whole of, the dual
M∗ ofM (as it would have been if we have viewedM as a locally convex space).

Let J : B → R ∪ {+∞} denote a convex lower-semicontinuous function.
We let J∗ denote its Fenchel conjugate and ∂J(u) denote its subdifferential at
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u ∈ B. Let X ⊂ E be a subset of some vector space E . The indicator function
of X is defined for all e ∈ E by:

ιX(e) =

{
0 if e ∈ X
+∞ otherwise.

We refer the reader to [16] for more insight on convex analysis in vector spaces.

Remark 1. All the results in our paper hold when Ω is a separable, locally
compact topological space such as the torus T = R\N. The proofs require minor
technical amendments related to the way the space is discretized. We chose to
keep a simpler presentation in this paper.

2.2 Assumptions
Let us describe the setting in which we will prove the main result in some detail.
Let L : D′(Ω)→M(Ω) be a continuous linear operator defined on the space of
distributions D′(Ω). Consider the following linear subspace of D∗(Ω)

B◦ = {u ∈ D′(Ω) |Lu ∈M(Ω)} .

Now, let ‖·‖K be a semi-norm on B◦, which restricted to kerL is a norm. We
define

B = {u ∈ D′(Ω) |Lu ∈M(Ω), ‖u‖K <∞} ,

and equip it with the norm ‖u‖ = ‖Lu‖TV + ‖u‖K . We will assume that

Assumption 1 (Assumption on B). B is a Banach space.

We will make the following additional structurial assumptions on the map
L:

Assumption 2 (Assumptions on L).

• The kernel of L has a complementary subspace, i.e. a closed subspace V
such that kerL⊕ V = B.

• The range of L is closed, and has a complementary subspace W , i.e.,
ranL⊕W =M.

An important special case of operators satisfying the assumption 2 are
Fredholm operators for which the space W complementary to ranL is finite-
dimensional, and kerL is itself finite dimensional, see e.g. [25, Lemma 4.21].

The restriction L|V of L : V → ranL is a bijective operator, and therefore
has a continuous inverse (L|V )−1, by the continuous inverse theorem. With the
help of this inverse, we can define a pseudoinverse L+ :M→ B through

L+ = jV (L|V )−1ΠranL,

where jV denotes the injection V ↪→ B and ΠranL the projection from M to
ranL. Both of these as well as (L|V )−1 are continuous, so that L+ is continuous.

We will furthermore have to restrict the functionals ai used to probe the
signals slightly.
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Assumption 3 (Assumption on ai).
The functionals ai ∈ B∗(Ω) have the property that (L+)∗ai ∈ C0(Ω). That

is, there exist functions ρi ∈ C0(Ω) with

∀µ ∈M :
〈
(L+)∗ai, µ

〉
=

∫
Ω

ρi(x)dµ(x).

This assumption may seem a bit artificial, but we will see that it is crucial,
both in the more theoretical first part of the paper, as well as in the second
one dealing with the numerical resolution of the problem. Furthermore, it is
equivalent to an assumption in the main result of [30], as will be made explicit
in the sequel.

Until now, we have not touched upon the properties of the function fb. We
do this implicitly with the following condition:

Assumption 4 (Solvability Assumption). The problem (1) has at least one
solution.

This assumption is of course necessary in order to make questions about the
structure of the solutions of (1) to make sense at all. A myriad of problems
have this property, as the following simple proposition shows:

Proposition 1. Assume that fb is lower semi-continuous and coercive (i.e.
lim‖x‖2→∞ f(x) = ∞), and that fb ◦ A has a non-empty domain. Then, under
assumptions 1, 2 and 3, the problem (1) has a solution.

The proof, which relies on standard arguments, can be found in Section 4.4.
Let us here instead argue that the assumptions in 1 are quite light and cover
many common data fidelity terms as exemplified below.

Equality constraints This case corresponds to

fb(x) = ι{b}(x) =

{
0 if x = b

+∞ otherwise.
(3)

This data fidelity term is commonly used when the data is not corrupted.
A solution exists if b ∈ ran (A). The two super-resolution papers [8, 26]
use this assumption.

Quadratic The case fb(x) = λ
2 ‖C

−1(x − b)‖22, where λ > 0 is a data fit pa-
rameter, is commonly used when the data suffers from additive Gaussian
noise with a covariance matrix C.

`1-norm When data suffers from outliers, it is common to set fb(x) = λ‖x−b‖1,
with λ > 0.

Box constraints When the data is quantized, a natural data fidelity term is
a box constraint of the following type

fb(x) =

{
0 if ‖C(x− b)‖∞ ≤ 1

+∞ otherwise,

where C ∈ Rm×m is a diagonal matrix with positive entries.
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Phase Retrieval Many non-convex functions fb fulfill our assumptions. In
particular, any of the above fidelity terms can be combined with the (point-
wise) absolute value to yield a feasible function fb, i.e. for instance

fb(x) = ι{b}(|x|) =

{
0 if |x| = b

+∞ otherwise.
.

Such functions appear in the phase retrieval problem, where one tries to
reconstruct a signal u from absolute values of type |Au|.

2.3 Structure of the solutions
We are now ready to state the first important result of this paper.

Theorem 1. Under assumptions 1, 2, 3 and 4, problem (1) has a solution of
the form

û = uK +

p∑
k=1

dkL
+δxk

,

with p ≤ m = m − dim(A∗(kerL)), uK ∈ kerL, d = (dk)1≤k≤p in Rp and
X = (xk)1≤k≤p in Ωp.

The proof of this theorem consists of three main steps. We provide the first
two below, since they are elementary and provide some insight on the theorem.
The last step appears in many works. We provide an original proof in the
appendix.

Proof.
Step 1: In this step, we transform the data fitting fb into an equality constraint.
To see why this is possible, let u be a solution of the problem (1). Then any
solution of the problem

min
u∈B
‖Lu‖TV subject to Au = Au =: y

will also be a solution û of (1), since it satisfies fb(Aû) = fb(Au) and ‖Lu‖TV =
‖Lû‖TV . Those two equalities are required, otherwise, u would not be a solution
since J(û) < J(u).

Step 2: In this step, we show that it is possible to discard the operator L. To
see this, notice that since every u ∈ B can be written as L+µ+uK with µ ∈M
and uK ∈ kerL. Therefore, we have(

min
u∈B
‖Lu‖TV subject to Au = y

)
=

(
min

uK∈ker (L),µ∈M
‖µ‖TV subject to A(uK + L+µ) = y

)
Now, set X = Aker (L). Since X is a finite-dimensional subspace of Rm, we

may decompose y = yX + yX⊥ , with yX ∈ X and yX⊥ ∈ X⊥, the orthogonal
complement of X in Rm. Notice that for every µ ∈M, there exists a uK ∈ kerL
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with A(uK + L+µ) = y if and only if ΠX⊥AL
+µ = yX⊥ . Hence, the above

problems can be simplified as follows

min ‖µ‖TV subject to Hµ = yX⊥ , (4)

with H :M→ X⊥, H = ΠX⊥A
∗L+, with dimX⊥ = m.

Step 3: The last step consists in proving that the problem (4) has a solution
of the form

∑p
k=1 dkδxk

. This result is well-known when Ω is a countable set, see
e.g. [29]. It is also available in infinite dimensions on compact domains. We refer
to [18] for instance, for an early proof, based on the Krein-Milmann theorem.
We propose an alternative strategy in the appendix based on a discretization
procedure.

Remark 2. In [18, 30], the authors further show that the extremal points of the
solution set are of the form given in Theorem 1, if fb is the indicator function
of a closed convex set. Their argument is based on a proof by contradiction.
Following this approach, it is possible to prove the same result in our setting.
We choose not to carry out the details about this since we also wish to cover
nonconvex problems.

Before going further, let us show some consequences of this theorem.

2.3.1 Example 1: L = Id and the space M

Probably the easiest case consists in choosing an arbitrary open domain Ω ⊆ Rd,
to set B = M(Ω) and L = Id. In this case, all the assumptions 2 on L are
trivially met. We have ran Id =M(Ω), ker Id = {0} and Id+ = Id. Therefore,
Theorem 1 in this specific case guarantees the existence of a minimizer of (1) of
the form

µ̂ =

p∑
k=1

dkδxk
,

with p ≤ m. The assumption 3 in this case simply means that the functionals
ai can be identified with continuous operators vanishing at infinity.

Note that the synthesis formulation (2) can be seen as a subcase of this
setting. The structure of the minimizing measure in Theorem 1 implies that the
signal estimate û has the following form

û = Dµ̂ =

p∑
k=1

dkDδxk
.

The vectors (Dδx)x∈Ω can naturally be interpreted as the atoms of a dictio-
nary. Hence, Theorem 1 states that there will always exist at least one estimate
from the synthesis formulation which is sparsely representable in the dictionary
(Dδx)x∈Ω.
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2.3.2 Example 2: Spline-admissible operators and their native spaces

The authors of [30] consider a generic operator L defined on the space of tem-
pered distributions S ′(Rd) and mapping intoM(Rd), which is

• Shift-invariant,

• for which there exists a function ρL (a generalized spline) of polynomial
growth, say

esssupx∈Rd |ρL(x)| (1 + ‖x‖)−r < +∞, (5)

obeying LρL = δ0.

• The space of functions in the kernel of L obeying the growth estimate (5)
is finite dimensional.

The authors call such operators spline-admissible. A typical example is the
distributional derivative D on Ω = R. For each such operator L, they define
a space ML(Rd) as the set of functions f obeying the growth estimate (5)
while still having the property Lf ∈ M(Rd). The norm on ML is as in our
formulation, whereby ‖·‖K is defined through a dual basis of a (finite) basis of
kerL.

They go on to prove thatML(Rd) is a Banach space, which has a separable
predual CL(Rd), and (in our notation) assume that the functionals ai ∈M∗L(Rd)
can be identified with elements of CL(Rd).

It turns out that using this construction, the operator L and functionals (ai)
obey the assumptions 2 and 3, respectively.

Proposition 2.

• The operator L : ML(Rd) → M(Rd) is Fredholm. In fact, ranL is even
equal toM(Rd).

• The functionals ai ∈M∗L(Rd) obey assumption 3. In fact, we even have

(L+)∗a ∈ C0(Rd) ⇐⇒ a ∈ CL(Rd).

Hence, the assumptions in [30] are a special case of the ones used in this
paper.

2.3.3 Example 3: More general differential operators and associated
spaces

The inclusion of operators with infinite dimensional kernel allows us to treat
differential operators in a bit more streamlined way than above, in particular
removing the restricted growth conditions. Let Ω be an open subset of Rd and
P (D) a differential operator on Ω, i.e. an expression of the form

P (D) =
∑
|α|≤K

pαD
α,

where Dα = ∂α1
· ∂αj

is a partial derivative operator and pα are measurable
functions on Ω. Note that P (D) does not need to be shift invariant (if Ω 6= Rd,
shift-invariance is not even possible to define).
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In order to define the norm of functions in the kernel of L = P (D) properly,
which we will not assume to satisfy any growth conditions, we assume that there
exists a bounded subset K ⊆ Ω with the following continuation property:

Assumption 5 (Continuation property). For each distribution u ∈ D′(K)
with P (D)u = 0, there exists exactly one û ∈ D′(Ω) with P (D)û = 0 in Ω and
û = u in K.

We will see that for a large class of elliptic operators, we can choose K
to be any bounded set with non-empty interior and smooth boundary. These
conditions will furthermore in particular prove that ‖·‖M(K) is a seminorm on
a space B, which restricted to kerP (D) is a norm.

The fundamental assumption we will make is the following:

Assumption 6 (Green function hypothesis). For each x ∈ Ω, there exists a
solution ux ∈ C(Ω) of the problem

P (D)ux = δx. (6)

We also assume that the map Ω 3 x 7→ ux ∈ C(Ω) is continuous and bounded,
i.e. supx∈Ω ‖ux‖∞ <∞.

Now we define, inspired by the native spaces ML from above, a space BP ,
which P (D) naturally sends toM(Ω):

BP = {u ∈ D′(Ω) |P (D)u ∈M(Ω), u|K ∈M(K)} .

Lemma 1. Under assumptions 5 and 6, the following holds: The expression

‖u‖BP
= ‖P (D)u‖TV + ‖u|K‖TV

defines a norm on BP . BP equipped with this norm is a Banach space, i.e.,
satisfies assumption 1.

We now prove that 6 implies that P (D) obeys the assumption 2, and state
a more specific one which implies that relatively general functionals a obey
assumption 3. To simplify the formulation of it slightly, let us introduce the fol-
lowing notion: we say that a mapping T : Ω→ C(Ω) vanishes at infinity on com-
pact sets if for each compact subset C ⊆ Ω, the function x 7→ supy∈C |T (x)(y)|
vanishes at infinity.

Proposition 3. Under assumption 6, L = P (D) satisfies assumptions 2. In
particular, ranL =M, and the operator L+ is given by

(L+µ)(x) =

∫
Ω

uy(x)dµ(y) (7)

Furthermore, if a is a functional of the type

〈a, u〉 =

∫
Ω

a(x)u(x)dx, (8)

with a ∈ L1(Ω), we have

((L+)∗a)(x) =

∫
Ω

ux(y)ai(y)dy

(L+)∗a obeys the assumption 3 provided the map x 7→ ux vanishes at infinity on
compact sets.
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Remark 3. Since we have assumed no growth restriction on the elements of
kerP (D), in general, not every function a ∈ L1(Ω) will cause (8) to define a
functional on BP . However, if this is the case for a specific a, (L+)∗a will be
well-defined and have the claimed form.

An example of an additional assumption which will make (8) actually define
a functional on BP is that a is continuous and has compact support inside K,
since then

|〈a, u〉| ≤ ‖a‖∞ ‖u|K‖TV ≤ ‖a‖∞ ‖u‖BP
.

Let us now give a relatively general example of operators which satisfy the
properties presented in Proposition 3. It for instance includes poly-Laplacian
operators ∆k of sufficiently high order on for Ω ⊆ Rd, either bounded or equal
to the entire space Rn.

Let k ∈ N and P (D) be a differential operator on Ω of the form

P (D) =
∑
|α|=k

∑
|β|=k

Dβ(pα,β(x)Dα) (9)

for some bounded functions pα,β ∈ Ck(Ω). Also assume that P (D) obeys the
following ellipticity condition

inf
x∈Ω

inf
‖ξ‖2=1

∑
|α|=k

∑
|β|=k

pα,β(x)ξα+β =: C > 0. (10)

Proposition 4. Suppose that k > d
2 . For either Ω bounded with Lipschitz

domain or Ω = Rd, the following is true. Under the ellipticity assumption (10),
the problem (6) admits for each x ∈ Ω a solution ux ∈ C(Ω). The map x→ ux
is furthermore vanishing at infinity on compact sets.

Also, any set K with non-empty interior and smooth domain obeys assump-
tion 5.

Remark 4. The assumption k > d/2 is crucial, since only then, we can guar-
antee that the solutions ux of (6) are continuous. Consider for instance the
Laplacian operator ∆ on Rd for d ≥ 2. Then k = 1 ≤ d/2 and

ux(y) =

{
log(‖y − x‖2) if d = 2,

‖x− y‖2−d2 otherwise,

which are not continuous.

2.3.4 Example 4: L = D and the space BV (]0, 1[)

Another important operator which is not covered by Proposition 3 is the uni-
variate derivative D in the univariate case. In this case, the function ux in (6)
is equal to a shifted Heaviside function, which of course is not continuous. At
least this operator can however still be naturally included in our framework, as
we will show here.

We set Ω =]0, 1[. The space BV (Ω) of bounded variation functions is defined
by (see [4]):

BV (Ω) = {u ∈ L1(Ω), Du is a Radon measure, ‖Du‖TV < +∞}, (11)
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where D is the distributional derivative. Using our notations, it amounts to
taking L = D and B = BV (Ω). For this space, we have kerL = span(1),
the vector space of constant functions on Ω. (Note that in fact, the norm
‖u‖BV = ‖u‖1 + ‖Du‖TV is of the general form described in the introduction).

Lemma 2. For L = D we have ranL =M, and for all µ ∈M and all s ∈ [0, 1],

(L+µ)(s) = µ([0, s])−
∫ 1

0

µ([0, t]) dt. (12)

In addition, for a functional ξ ∈ BV (]0, 1[)∗ of the form

〈ξ, u〉 =

∫ 1

0

ξ(t)u(t) dt,

with ξ ∈ L1(Ω), we have (L+)∗ξ ∈ C0(Ω) and letting ξ̄ =
∫ 1

0
ξ(t) dt, we have

((L+)∗ξ)(s) =

∫ s

0

(ξ̄ − ξ(t)) dt. (13)

As can be seen, L+ is simply a primitive operator. The elementary functions
L+δx are Heavyside functions translated at a distance x from the origin. Hence,
Theorem 1 states that there always exist total variation minimizers in 1D that
can be written as staircase functions with at most m jumps. Note that in this
case, the Heavyside functions coincide with the general splines introduced in
[30].

2.3.5 An uncovered case: L = ∇ and the space BV (]0, 1[2)

It is very tempting to use Theorem 1 on the space B = BV (]0, 1[2). As men-
tioned in the introduction, this space is crucial in image processing since its
introduction in [24]. Unfortunately, this case is not covered by Theorem 1, since
LB is then a space of vector valued Radon measures, and our assumptions only
cover the case of scalar measures.

2.4 Numerical resolution
In this section, we show how the infinite dimensional problem (1) can be solved
using standard optimization approaches. We will make the following additional
assumption:

Assumption 7 (Additional assumption on fb). fb is convex and lower semi-
continuous.

Depending on the structure of the measurement functions (ai), we will pro-
pose to solve the primal problem (1) directly, or to solve two consecutive convex
problems: the dual and the primal. We first recollect a few properties of the
dual to shed some light on the solutions properties.
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2.4.1 The dual problem and its relationship to the primal

A natural way to turn (1) into a finite dimensional problem is to use duality as
shown in the following proposition.

Proposition 5 (Dual of problem (1)). Define h : M(Ω) → R ∪ {+∞} by
h(µ) = ‖µ‖TV + ιranL(µ). Then, the following duality relationship holds:

min
u∈B

J(u) = sup
q∈Rm,A∗q∈ranL∗

−h∗((L+)∗A∗q)− f∗b (q). (14)

In the special case ranL =M, this yields

min
u∈B

J(u) = sup
q∈Rm,A∗q∈ranL∗,‖(L+)∗A∗q‖∞≤1

−f∗b (q). (15)

In addition, let (û, q̂) denote any primal-dual pair of problem (14). The
following duality relationships hold:

A∗q̂ ∈ L∗∂(‖ · ‖TV )(Lû) and − q̂ ∈ ∂fb(Aû). (16)

For a general operator L, computing h∗ may be out of reach, since the
conjugate of a sum cannot be easily deduced from the conjugates of each function
in the sum. Hence, we now focus on problem (15) corresponding to the case
ranL =M. This covers at least the two important cases L = Id and L = D, as
shown in examples 2.3.1 and 2.3.4.

Remark 5. In general, the dual problem does not need to have a solution. A
straightforward application of [5, Th. 4.2] however shows that if either of the
two following conditions hold

1. ranA intersects the relative interior of domfb = {q ∈ Rm : fb(q) <∞},

2. fb is polyhedral (i.e. has a convex polyhedral epigraph) and ranA intersects
domfb,

the dual problem does have a solution. These conditions are mild: For all of the
convex examples discussed in Section 2.2, the existence of a u ∈ B with Au = b
is sufficient for at least one of them to hold.

Solving the dual problem (15) does not directly provide a solution for the
primal problem (1). The following proposition shows that it however yields in-
formation about the support of Lû, which is the critical information to retrieve.

Proposition 6. Assume that ranL = M and let (û, q̂) denote a primal-dual
pair of problem (15). Let I(q̂) = {x ∈ Ω, |(L+)∗(A∗q̂)|(x) = 1}. Then

supp(Lû) ⊆ I(q̂). (17)

In particular, if I(q̂) = {x1, . . . , xp}, then û can be written as:

û = uK +

p∑
k=1

dkL
+δxk

(18)

with uK ∈ kerL and (dk) ∈ Rp. If problem (1) admits a unique solution, then
p ≤ m and û is the solution in Theorem 1.
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In the case where I(q̂) is a finite set, Proposition 6 can be used to recover a
solution û from q̂, by injecting the specific structure (18) into (1). Let (λi)1≤i≤r
denote a basis of kerL and define the matrix

M =
[
(〈ai, λk〉)1≤i≤m,1≤k≤r, (〈(L+)∗ai, δxj 〉)1≤i≤m,1≤j≤p

]
(19)

Then problem (1) becomes a finite dimensional convex program which can be
solved with off-the-shelf algorithms:

min
c∈Rr,d∈Rp

fb

(
M

[
c
d

])
+ ‖d‖1. (20)

Overall, this section suggests the following strategy to recover û:

1. Find a solution q̂ of the finite dimensional dual problem (15).

2. Identify the support I(q̂) = {x ∈ Ω, |(L+)∗(A∗q̂)|(x) = 1}.

3. If I(q̂) is finitely supported, solve the finite dimensional primal problem
(20) to construct û.

Each step within this algorithmic framework however suffers from serious issues:

Problem 1 the dual problem (15) is finite dimensional but involves two infinite
dimensional convex constraints sets

Q1 = {q ∈ Rm, A∗q ∈ ranL∗} (21)

and
Q2 = {q ∈ Rm,

∥∥(L+)∗A∗q
∥∥
∞ ≤ 1}, (22)

which need to be handled with a computer.

Problem 2 finding I(q̂) again consists of a possibly nontrivial maximization
problem.

Problem 3 the set I(q̂) may not be finitely supported.

To the best of our knowledge, finding general conditions on the functions

ρi = (L+)∗ai (23)

allowing to overcome those hurdles is an open problem. It is however known that
certain family of functions including polynomials and trigonometric polynomials
[22] allow for a numerical resolution. In the following two sections, we study
two specific cases useful for applications in details: the piecewise linear functions
and trigonometric polynomials.

2.4.2 Piecewise linear functions in arbitrary dimensions

In this section, we assume that Ω is a bounded polyhedral subset of Rd and that
each ρi = (L+)∗ai is a piecewise linear function, with finitely many regions,
all being polyhedral. This class of functions is commonly used in the finite
element method. Its interest lies in the fact that any smooth function can be
approximated with an arbitrary precision by using mesh refinements.

13



Figure 1: A graphical depiction of the three types of solutions for piecewise
linear measurements.

Solving the primal For this class, notice that the function (L+)∗A∗q =∑m
i=1 qiρi is still a piecewise linear function with finitely many polyhedral pieces.

The maximum of the function has to be attained in at least one of the finitely
many vertices (vj)j∈J of the pieces. This is a key observation from a numerical
viewpoint since it simultaneously allows to resolve problems 1 and 2. First, the
constraint set Q2 can be described by a finite set of linear inequalities:

−1 ≤ (L+)∗A∗q(vj) ≤ 1, j ∈ J.

Secondly, I(q̂) can be retrieved by evaluating (L+)∗A∗q only on the vertices
(vj)j∈J .

Unfortunately, problem 3 is particularly important for this class: I(q̂) needs
not be finitely supported since the maximum could be attained on a whole face.
The following proposition however confirms that there always exists solutions
supported on the vertices.

Proposition 7. Suppose that ranL =M and that the dual problem (15) has a
solution. Then Problem (1) has at least one solution of the form

û =
∑
j∈J

djL
+δvj + uK (24)

with uK ∈ kerL, dj ∈ R and the vj are the vertices of the polyhedral pieces.

Once again, knowing the locations vj of the Dirac masses in advance permits
to solve (20) directly (without solving the dual) in order to obtain an exact
solution of (1).

Sparsifying the solution For piecewise linear measurement functions, it
turns out that the solution is not unique in general and that the form (24)
is not necessarily the sparsest one. A related observation was already formu-
lated in a different setting in [15], where the authors show that in 1D, two Dirac
masses are usually found when only one should be detected. Figure 1 illustrates
different types of possible solutions for a 2D mesh.

The proof of Proposition 7 suggests that one can sparsify a solution found by
solving the primal problem resulting from the discretization through sampling
on the grid of vertices. The basic reason is that piecewise linear measurements
specify the zero-th and first order moments of a measure restricted to one piece.
Among the infinitely many measures having these moments, one can pick the
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sparsest one, consisting of a unique Dirac mass. This principle allows to pass
from the 6-sparse measure µ̃ to the 3-sparse measure µ in Figure 1.

To be precise, a collection of peaks (diδxi
)i∈I , where

1. conv(xi)i∈I is contained in one polyhedral region of G.

2. (di)i∈I have the same sign ε ∈ {−1, 1}

can be combined into one peak dδx, with

d =
∑
i∈I

di, x =
1

d

∑
i∈I

dixi.

We will see in the numerical experiments that this seemingly novel principle
allows exact recovery of u under certain conditions on its initial structure.

Relationship to standard discretization The traditional way to discretize
total variation problems with L = Id consists in imposing the locations of the
Dirac masses on a set of predefined points (xi)1≤i≤n ∈ Ωn. Then, one can look
for a solution of the form û =

∑n
i=1 dkδxi and inject this structure in problem

1. By using this reasoning, there is no reason to find the exact solution of
the original infinite dimensional problem. Proposition (7) sheds a new light on
this strategy, by telling that this actually amounts to solving exactly an infinite
dimensional problem with piecewise linear measurement functions.

2.4.3 Trigonometric polynomials in 1D

In this section, we assume that Ω = T is the one dimensional torus (see remark
(1)). For j ∈ N, let pj(t) = exp(−2ιπjt). We also assume that the functions ρi
are real trigonometric polynomials:

ρi =

K∑
j=−K

γj,ipj ,

with γj,i = γ∗−j,i. For this problem, the strategy suggested in section 2.4.1 will
be adopted.

Solving the dual The following simple lemma states that in the case of a
finite dimensional kernel, the constraint set Q1 is just a finite dimensional linear
constraint.

Lemma 3. Let r = dim(ker (L)) < ∞ and (λi)1≤i≤r denote a basis of kerL.
The set Q1 can be rewritten as

Q1 = {q ∈ Rm,∀1 ≤ i ≤ r, 〈q, Aλi〉 = 0}.

Proof. Since ranL∗ = V (by the closed range theorem), A∗q ∈ ranL∗ if and
only if ∀1 ≤ i ≤ r, 〈A∗q, λi〉 = 0.

Hence, when kerL is finite-dimensional the set Q1 can be easily handled by
using numerical integration procedures to compute the mr scalars 〈ak, λi〉. Let
us now turn to the set Q2. The following lemma is a simple variation of [14,
Thm 4.24]. It was used already for super-resolution purposes [8].
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Lemma 4. The set Q2 can be rewritten as follows:

Q2 =

{
α ∈ Rm,∃Q ∈ C(2K+1)×(2K+1),

[
Q Γα

(Γα)∗ 1

]
� 0,

2K+2−j∑
i=1

Qi,i+j =

{
1, j = 0,

0, 1 ≤ j ≤ 2K + 1.

}
.

With Lemmas 3 and 4 at hand, the dual problem (15) becomes a semidefinite
program that can be solved with a variety of approaches, such as interior point
methods [31].

Finding the Dirac mass locations The case of trigonometric polynomials
makes Proposition 6 particularly helpful. In that case, either the trigonometric
polynomial is zero and the solution û lives in the kernel of L, or the set I is
finite with cardinality at most 2K, since |(L+)∗A∗q|2 − 1 is a negative trigono-
metric polynomial of degree 4K + 2. Retrieving its roots can be expressed as
an eigenvalue evaluation problem [11] and be solved efficiently.

3 Numerical Experiments
In this section, we perform a few numerical experiments to illustrate the theory.
In all our experiments, we use the toolbox CVX [23] for solving the resulting
convex minimization problems.

3.1 Piecewise linear functions
3.1.1 Identity in 1D

In this paragraph, we set L = Id and Ω = [0, 1]. We assume that the functions
ai are random piecewise linear functions on a regular grid. The values of the
functions on the vertices are taken as independent random Gaussian realizations
with standard deviation 1. In this experiment, we set u as a sparse measure
supported on 3 points. We probe it using 12 random measurement functions ai
and do not perturb the resulting measurement vector b, allowing to set fb = ι{b}.
The result is shown on Figure 2. As can be seen, the initially recovered measure
is 7 sparse. Using the sparsification procedure detailed in paragraph 2.4.2 allows
to exactly recover the true 4 sparse measure u. We will provide a detailed
analysis of this phenomenon in a forthcoming paper.

3.1.2 Derivative in 1D

In this section we set Ω = [0, 1] and L = D. We assume that the functions ai are
piecewise constant. In the terminology of [30], this means that we are sampling
splines with splines. By equation (13), we see that the functions ρi = (L+)∗ai
are piecewise linear and satisfy ρi(0) = ρi(1) = 0.

In this example, we set the values of ai on each piece as the realization
of independent normally distributed random variables. We divide the interval
[0, 1] in 10 intervals of identical length. An example of a sampling function is
displayed in Figure 3.
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−1
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Sparsified

Figure 2: Example of recovery with random piecewise linear measurement func-
tions in 1D. The solution recovered by a standard `1 solver is not the sparsest
one. The sparsification procedure proposed in the paper allows recovering the
sparsest solution and recovering exactly the sampled function.
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Figure 3: Sampling function a1 used to probe piecewise constant signals. The
others have a similar structure with other random values on each interval.
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The sensed signal u is defined as piecewise constant with jumps occurring
outside the grid points. Its values are comprised in [−1, 1].

The measurements are obtained according to the following model: bi =
〈ai, u〉+ εi, where εi is the realization of a Bernoulli-Gaussian variable. It takes
the value 0 with probability 0.9 and takes a random Gaussian value with variance
3 with probability 0.1. To cope with the fact that the noise is impulsive, we
propose to solve the following problem `1 fitted and total variation regularized
problem.

min
u∈BV (]0,1[)

‖Du‖TV + α‖Au− b‖1, (25)

where α = 1.
A typical result of the proposed algorithms is shown in Figure 4. Here,

we probe a piecewise constant signal with 3 jumps (there is a small one in the
central plateau) with 42 measurements. Once again, we observe perfect recovery
despite the additive noise. This favorable behavior can be explained by the fact
that the noise is impulsive and by the choice of an `1 data fitting term.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−1

−0.5

0

0.5

1
Signal u
Recovered
Sparsified

Figure 4: Example of recovery of a piecewise linear signal u with measurements
corrupted by Bernoulli-Gaussian noise. Once again, the proposed algorithm
implemented with the proposed sparsification procedure recovers the true signal
exactly, despite noise.

3.1.3 Identity in 2D

In this section, we set Ω = [0, 1]2 and L = Id. We probe a sparse measure
µ ∈ M([0, 1]2) using real trigonometric polynomials up to order 5. We then
solve the problem 1 with fb modeling box-constraints and A being the measure-
ment operator associated with the piecewise functions formed by linearizing the
trigonometric polynomials on a regular grid {0, 0.1, . . . , 1}2. Then, we collapse
the resulting solution into a sparser one. To avoid numerical problems, we dis-
carded all peaks with an amplitude less than 10−8 before the last step. The
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results, together with an illustration of the collapsing procedure, are depicted
in Figure 3.1.3.

3.2 Trigonometric polynomials.
We generate m = 35 trigonometric polynomials

ai(t) =

N∑
j=−N

γj,i exp(−2ιπjt)

of degree N = 50 as follows: for j ≥ 0, we set the coefficients γj,i of the i:th
polynomial to be

γj,i =
ξj,i

max(j, 1)
,

where ξj,i are i.i.d. normal distributed. For j < 0, we set γj,i = γ∗−j,i. This
ensures that the functions ai are real, and furthermore have a good approxima-
tion rate with respect to trigonometric polynomials. Seven such functions are
depicted in Figure6. Note that we do not need to worry about ai not vanishing
at ±1/2, since the functions live on the torus, a manifold without boundary.

We then generate b ∈ Rm by measuring a ground truth measure µ0 =∑2
i=−2 ciδxi

, where xi are chosen as

xi =
i

5
+ ni,

where ni are small random displacements, and i.i.d normally distributed ampli-
tudes (ci)

5
i=1. Next, for each K = 10, 11, . . . , 50, we solve the problem 1, with

A being the measurement operator with respect to the functions

ãKi (t) =

K∑
j=−K

γj,i exp(−2ιπjt).

In Figure 7, we plot the results of the minimization (1) with

fb(x) =
100 ‖x‖22

2
,

depending on K. We see that already for K = 30, the solution is reason-
ably close to the true solution (at N = 50) (the relative error in the input,
‖Ãµ0 − b‖2/ ‖b‖2, for this K is approximately equal to 0.06). The latter is
furthermore essentially equal to the ground truth µ0.

4 Proofs
In this section, we include all proofs left out in the main text.
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Figure 5: Top: The ground truth measure, the solution obtained by sampling
on the vertices, and the sparsified solution. Bottom: Illustration of the spar-
sification procedure. The circles represent the initial solution, while the dots
indicate the sparsified solution. A thick trait or a grey region indicates masses
that have been merged.
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Figure 6: Seven randomly generated trigonometric polynomials ai.
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Figure 7: Minimizers of (1) (∗) together with the ground truth µ0 (◦) for (from
above left to below right) K equal to 15, 20, 25, 30, 35 and 40, respectively.
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4.1 Structure of solutions
As was argued already in the main body of the text, the proof of Theorem 1
can be broken down to a treatment of the problem (4). In the following, we will
carry out the argument proving that the latter problem has a solution of the
claimed form.

We first prove the result in finite dimensions and then use a limit argument.
The statement is well known in finite dimension, see e.g. [29, Theorem 6] and
[27]. We provide a proof for completeness. It has a geometrical flavour.

Lemma 5. Let m,n ∈ N, G ∈ Rm,n, b ∈ ranG and m ≤ n. Then a problem of
the form

min
u∈Rn

‖u‖1 subject to Gu = b. (26)

has a solution û of (1) of the form

û =

p∑
k=1

ckeik ,

with (ck)mk=1 some real scalars and p ≤ m.

Proof. Let u be a solution to (26) (its existence easily follows from the coercivity
of the 1-norm and the non-emptiness and closedness of the set G−1({b})). The
image b = Gu then lies on the boundary of the polytope P = G {u | ‖u‖1 ≤ ‖u‖1}
– if it did not, b would be of the form Gũ with ‖ũ‖1 < ‖u‖1. Then ũ would be
a feasible point with smaller objective value than u, which is a contradiction to
the optimality of u.

The polytope P is at most m-dimensional, hence its boundary ∂P consists
of faces of dimension at most m − 1. Having just argued that b lies on that
boundary, it must lie on one of those faces, say F , which then has dimension at
most m − 1. Concretely, b ∈ conv(vert(F )), where vert(F ) denotes the set of
vertices of face F . The vertices of F are the images by G of a subset of the `1-
ball’s vertices, so they can be written as ‖u‖1 εkGei, for some i ∈ {1, . . . , n} and
for εk ∈ {−1, 1}. Caratheodory’s theorem applied in the (m − 1)-dimensional
space affF implies that b can be written as

b =

m∑
k=1

θk ‖û‖1 εkGeik

with
∑m
k=1 θk = 1 and ε ∈ {±1}m. The vector ‖u‖1

∑m
k=1 θkεkeik is a solution

of (26) of the stated form.

The strategy will now be to discretize the problem on finer and finer grids,
use the previous lemma and pass to the limit.

Lemma 6. Define a sequence of discretizations (Ωn)n∈N of Ω as

Ωn =

(
[−2n, 2n]d ∩ Zd

2n

)
∩ Ω. (27)
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For k ∈ Ωn, define ωkn to be the hypercube of center k and side-length 2−n

intersected with Ω. Let µ ∈M(Ω) denote a measure and define the sequence:

νn =
∑
k∈Ωn

µ(ωk)δk. (28)

Then νn
∗
⇀ µ and ‖νn‖TV ≤ ‖µ‖TV .

Proof. First, it follows directly from the definition of the total variation that

‖νn‖TV =
∑
k∈Ωn

|µ(ωk)| ≤ ‖µ‖TV . (29)

We now need to prove that for each φ ∈ M∗, 〈νn, φ〉 → 〈µ, φ〉. So fix φ and let
ε > 0. Since φ ∈M∗, there exists a compact set K with the property |φ(x)| < ε
for x /∈ K. Since φ is equicontinuous on K, there exists a δ > 0 so that if
‖x− x′‖∞ < δ, |φ(x)− φ(x′)| < ε. If we choose n so large so that 2−n < δ, we
will have

|〈µ− νn, φ〉| ≤
∫

Ω\K
|φ| d(|µ|+ |νn|) +

∣∣∣∣∫
K

φdµ−
∫
K

φdνn

∣∣∣∣
≤ ε(‖µ‖TV + ‖νn‖TV ) +

∣∣∣∣∣ ∑
k∈Ωn

∫
ωk

φdµ− φ(k)µ(ωk)

∣∣∣∣∣
≤ 2ε ‖µ‖TV +

∑
k∈Ωn

∫
ωk

|φ(`)− φ(k)| dµ(`)

≤ 2ε ‖µ‖TV + ε
∑
k∈Ωn

|µ(ωk)|

≤ 3ε ‖µ‖TV .

Since ε > 0 was arbitrary, the claim follows.

When passing to the limit in our limit argument, we we will need the fol-
lowing continuity property of the operator AL+:

Lemma 7. The operator AL+ :M→ Rm is weak-∗-weak continuous. That is,
if µn

∗
⇀ µ, AL+µn → AL+µ. The same is true for H = ΠX⊥A.

Proof. We simply need to note that µn
∗
⇀ µ̂ and assumption 3 implies that〈

ai, L
+µn

〉
=
〈
(L+)∗ai, µn

〉
= 〈µn, ρi〉 → 〈µ, ρi〉 =

〈
ai, L

+µ
〉

=
〈
(L+)∗ai, µ

〉
,

(30)
and that ΠX⊥ is continuous.

Now let us prove that the optimal value of the problem (1) can be found by
solving slightly perturbed discretized problems.

Lemma 8. Let b ∈ ranH. There exists a sequence (bn)n∈N of vectors in Rm
with the following properties

• For each n, bn is in the range of the n-th discretized H-operator, i.e.

bn ∈ Hspan (δω)ω∈Ωn
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• bn converges to b.

• For n ∈ N, define Ĵn through

Ĵn := min
c∈R|Ωn|

‖c‖1 subject to HL+

(∑
k∈Ωn

ckδk

)
= bn. (Pn)

Then lim infn→∞ Ĵn ≤ Ĵ , where Ĵ is the optimal value of problem (4).

Proof. First, we note that problem (4) has a solution µ̂. We skip the proof since
it is identical to that of Proposition 1.

Now, according to Lemma 6, there exists a sequence of measures µn of the
form

µn =
∑
k∈Ωn

ckδk

with µn
∗
⇀ µ̂ and ‖µn‖TV ≤ ‖µ̂‖TV for each n.

Lemma 7, again together with the continuity of ΠX⊥ , now implies that
Hµn → Hµ̂ = b. If we put bn = AL+µn, bn is in the range of the n-th
discretized A-operator, bn → b, and ‖µn‖TV ≥ Ĵn. This implies

lim inf
n→∞

Ĵn = lim inf
n→∞

‖µn‖TV ≤ ‖µ̂‖TV = Ĵ .

We may now prove the main result of this section.

Proof of Theorem 1. By definition b ∈ ranH. We can hence apply Lemma 8
to construct a sequence (bn)n∈N having the properties stated in the mentioned
Lemma.

Now consider the problems (Pn). If we write them down explicitely, we see
that the minimization over the vectors c(n) are exactly as in Lemma 5, with
G = H and m = m. Hence, we can construct a sequence (ĉn) of solutions,
where ĉn containing pn ≤ m nonzero components for n ≥ m. Thus, we may
write ∑

k∈Ωn

ĉn,kδk =

m∑
`=1

dn,`δxn,`
,

for some dn ∈ Rm and Xn = (xn,l)l ∈ Ωm. In case pn < m, we may repeat
positions in the vector Xn.

Now (dn)n∈N is bounded, since ‖dn‖1 ≤ Ĵn ≤ Ĵ1 for each n. This implies
that there exists a subsequence, which we do not rename, such that dn is con-
verging to d∗ ∈ Rm. By possibly considering a subsequence of this subsequence,
we may assume that Xn converges in Ω

×
, where Ω

×
denotes the one-point-

compactification Ω. This means that each of the component sequences (xn,`)n
either converges to a point x∗` in Ω, or diverges to ∞, meaning that it escapes
every compact subset of Ω.

Consequently, the subsequence µn =
∑m
`=1 dn,`δxn,`

∗
⇀
∑m
`=1 d

∗
`δx∗` =: µ∗,

where we identify δ∞ with the zero measure (note that if xn,` → ∞, then
δxn,`

∗
⇀ 0)).
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Lower semi-continuity of the TV -norm implies∥∥∥∥∥
m∑
`=1

d∗`δx∗`

∥∥∥∥∥
TV

≤ lim inf
n→∞

∥∥∥∥∥
p∑
`=1

d`δxn,`

∥∥∥∥∥
TV

= lim inf
n→∞

Ĵn ≤ Ĵ ,

where we used Lemma 6 in the final step. Also, applying Lemma 7 together
with the properties of (bn), we get

Hµ∗ = lim
n→∞

Hµn = lim
n→∞

bn = b.

Hence,
∑m
`=1 d

∗
`δx∗` is a solution of (1), which was exactly what was needed to

be proven. (Note that any x∗` = ∞ will only cause the linear combination of
δ-peaks to be shorter).

4.2 Numerical Resolution
In this section, we prove the propositions stated in Section 2.4. We begin with
the one describing the dual problem of (1).

Proof of Proposition 5. Define g : B →M with g(u) := ‖Lu‖TV . Then J(u) =
fb(Au) + g(u). Standard duality arguments [16, p.60] yield:

min
u∈B

J(u) = sup
q∈Rm

−g∗(−A∗q)− f∗b (q). (31)

Now, we have:

g∗(z) = sup
u∈B
〈z, u〉 − g(u)

= sup
u∈B
〈z, u〉 − ‖Lu‖TV

= sup
v∈V,uK∈kerL

〈z, v + uK〉 − ‖Lv‖TV

=

sup
v∈V
〈z, v〉 − ‖Lv‖TV if z ∈ (kerL)⊥,

+∞ otherwise

=

sup
v∈V
〈z, L+Lv〉 − ‖Lv‖TV if z ∈ ranL∗,

+∞ otherwise

=

 sup
w∈ranL

〈(L+)∗z, w〉 − ‖w‖TV if z ∈ ranL∗,

+∞ otherwise

=

{
h∗((L+)∗z) if z ∈ ranL∗,

+∞ otherwise

We used the closed range theorem, which in particular implies that ranL∗ =
(kerL)⊥ for an operator L with closed range.

For the special case of ranL =M, we note that

h∗(φ) = sup
µ∈M

〈φ, µ〉 − ‖µ‖TV =

{
0 if ‖φ‖∞ ≤ 1.

+∞ otherwise,
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Note that the subdifferential of g at every u ∈ B reads ∂g(u) = L∗∂(‖ · ‖TV )(Lu)
(see e.g. [16, Prop.5.7]. The duality relations also follows from standard argu-
ments, see e.g. [16, p.60].

Next, we prove the proposition describing how to construct a primal solution
from a dual one in the case that ranL =M.

Proof of Proposition 6. We have for any operator L obeying assumption 2

(L+)∗L∗ = (LL+)∗ = Π∗ranL = Id, L∗(L+)∗ = (L+L)∗ = j∗V .

By construction, A∗q̂ and L∗∂(‖ · ‖TV )(Lû) are elements of ranL∗. Due to the
closed range theorem, ranL∗ is isomorphic to the annihilator V . On that space,
j∗V is injective. Hence, the inclusion (16) is equivalent to

(L+)∗(A∗q̂) ∈ ∂(‖ · ‖TV )(Lû). (32)

Now, it is well known (see for instance [15]), that for all µ ∈M,

∂(‖ · ‖TV )(µ) =

{
η ∈M∗, ‖η‖∞ ≤ 1,

∫
Ω

η(t) dµ(t) = ‖µ‖TV
}
. (33)

Consequently, (32) tells us that the continuous function (L+)∗(A∗q̂) has modulus
1 Lû-almost everywhere on supp(Lû). This means that

(Lû)(I(q̂)\supp(Lû)) = 0.

In particular, if the set I only consists of isolated points, we get supp(Lû) ⊆ I.
Hence, there exists (dk)1≤k≤p with

Lû =

p∑
k=1

dkδxk
=⇒ û = uK +

p∑
k=1

dkL
+δxk

(34)

for some uK ∈ kerL.

Next, we prove the claim about the structure and possible numerical resolu-
tion of the optimal measure µ̂ in the case of piecewise linear ρi

Proof of Proposition 7. Let q̂ , and L+µ∗ + uK be any solution of minu∈B J(u)
with supp µ∗ ⊆ ∪n`=1F`, where F` are the faces described above (such a solution
exists due to Theorem 1). Standard duality arguments (see for instance [16,
prop. 4.1]) yield that q̂ and L+µ∗ + uK satisfies the primal-dual conditions 16,
i.e. in particular 32, since ranL =M.

It is clear that any atomic measure µ =
∑n
j=1 djδxj with 〈ρi, µ∗〉 = 〈ρi, µ〉

for each i and ‖µ‖TV = ‖µ∗‖TV , L+µ∗+uK also is a solution to min J(u). Such
a measure can be constructed as follows: Suppose that there exists a face P of
at least dimension 1 of a polytope Fj such that supp µ∗ intersects in at least one
point p of the relative interior of P (if no such P exists, µ∗ is already atomic).
Due to suppµ∗ ⊆ I(q̂), (L+)∗A∗q has absolute value 1 in p. (L+)∗A∗q being
a continuous piecewise linear function with absolute value bounded by one, it
must therefore have a constant value ε, either equal to +1 or −1, on P . Due
to the structure (33) of the subdifferential of the TV -norm, this implies that µ∗
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(the unimodular part of the polar decomposition of µ∗ to be exact) must have
the same sign as ε almost everywhere on P .

On P , each function ρi can be written as ρi(x) = 〈αij , x〉 + βij , for some
vectors αij ∈ Rd and scalars βij ∈ R. If we hence define

d = ε |µ|∗ (P ), x =
1

|µ|∗ (P )

∫
P

xd |µ|∗ ∈ P,

and µ = dx+µ∗|Ω\P , we have ‖µ‖TV = |d|+
∥∥µ∗|Ω\P∥∥ = ‖µ∗|P ‖TV +

∥∥µ|Ω\P∥∥ =
‖µ∗‖TV , and

〈ρi, µ〉 =

n∑
j=1

(〈αij , xj〉+ βij)µ
∗(Fj) =

n∑
j=1

∫
Fj

(〈αij , x〉+ βij) dµ
∗ = 〈ρi, µ∗〉 .

By iteratively removing all such non-atomic parts of µ∗, we obtain an atomic
solution µ.

We still need to prove that we can find a µ∗ = µ̃ which is atomic and
supported on the vertices of Fj . Note that each xj can be represented as a
convex combination

∑tj
k=1 θkvjk of the vertices vjk of Fj . Defining a measure

µ̃ =

n∑
j=1

tj∑
k=1

θkµ(Fj)δvjk ,

we see that ‖µ‖TV = ‖µ̃‖TV and

〈ρi, µ̃〉 =

n∑
j=1

tj∑
k=1

θk (〈αij , vjk〉+ βij)µ(Fj) =

n∑
j=1

(〈αij , xj〉+ βij)µ(Fj) = 〈ρi, µ〉 ,

so that µ̃ is also a solution.

Finally, we provide the argument that the constraint of the dual problem
can be rewritten as an inequality on the space of Hermitian matrices in the case
of the functions ρi begin trigonometric polynomials.

Proof of Lemma 4. Note that |
∑m
i=1 αiρi| ≤ 1 is equivalent to

1 ≥

∣∣∣∣∣∣
m∑
i=1

αi

K∑
j=−K

γi,jpj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑

j=−K

m∑
i=1

αiγi,jpj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
K∑

j=−K
(Γα)jpj

∣∣∣∣∣∣ =

∣∣∣∣∣∣p−K
K∑

j=−K
(Γα)jpj

∣∣∣∣∣∣ .
The function f = p−K

∑K
j=−K(Γα)jpj is a causal trigonometric polynomial.

We know from [14, Cor.4.27] that it obeys the constraint ‖f‖∞ ≤ 1 if and only
if there exists a positive semi-definite matrix Q ∈ C(2K+1)×(2K+1) such that[

Q Γα
(Γα)∗ 1

]
� 0 and

2K+2−j∑
i=1

Qi,i+j =

{
1, j = 1,

0, 2 ≤ j ≤ 2K + 1.
(35)
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4.3 Differential operators of Section 2.3.3
Here, we provide the proofs for the lemmas and propositions which include
more general differential operators into our framework. We begin by proving a
preparatory lemma about the operator L+ in (7).

Lemma 9. The operator L+ defined by (7) is a continuous operator fromM(Ω)
to C(Ω). It has the property P (D)L+ = IdM(Ω).

Proof. Let us begin by showing that L+ maps fromM(Ω) to C(Ω). First, note
that the continuity of x 7→ ux implies that L+µ is pointwise well-defined. We
still need to show that for a fixed µ, the map x 7→ (L+µ)(x) is continuous. This
follows from a standard “limits and integrals commute” argument. Let xn → x.
Then uy(xn) → uy(x) pointwise. Furthermore, |uy(xn)| ≤ supy∈Ω ‖uy‖∞ for
all y and xn. Since supy∈Ω ‖uy‖∞ is a µ-integrable function, the theorem of
Lebesgue implies that

lim
n→∞

(L+µ)(xn) lim
n→∞

∫
Ω

uy(xn)dµ(y) =

∫
Ω

uy(x)dµ(y) = (L+µ)(x).

The boundedness of the map now follows from the inequality∣∣∣∣∫
Ω

uy(x)dµ

∣∣∣∣ ≤ ∫
Ω

|uy(x)| d |µ| ≤ sup
y∈Ω
‖uy‖ ‖µ‖TV , x ∈ Ω.

Now we show that P (D)L+µ = µ. For this, let φ ∈ C∞c (Ω) be arbitrary. We
then have∫

Ω

(L+µ)(y)P (Dy)∗φ(y)dy =

∫
Ω

∫
Ω

ux(y)P (Dy)∗φ(y)dµ(x)dy,

where P (D)∗ denotes the adjoint to P (D). The function (x, y) 7→ ux(y)P (Dy)∗φ(y)
is continuous and supported on a set of the form Ω × C, where C is com-
pact. As such, it is integrable with respect to the measure µ⊗ dy, and we may
apply Fubini’s theorem. Subsequently shifting P (Dy) onto ux and utilizing
P (Dy)ux = δx, we obtain that the above is equal to∫

Ω

φ(x)dµ(x).

This exactly means that P (D)L+µ = µ.

Now we may prove Lemma 1 about the properties of BP as a normed space.

Proof of Lemma 1. The only non-trivial step in proving that ‖u‖BP
is a norm

is to prove that ‖u‖P = 0 ⇒ u = 0. This follows from the assumption on the
set K: If ‖u‖BP

= 0, then in particular P (D)u = 0 and u = 0 in K. Since
u = 0 is a function obeying P (D)u = 0 and u = 0 in K, the uniqueness of the
continuation implies that u must vanish everywhere in Ω.

To prove that BP is a Banach space, notice that we can interpret BP as a
subspace of the Banach spaceM(Ω)×M(K). This space is furthermore closed:
If (P (D)un, un) → (µ, u) in M(Ω) ×M(K), there must be P (D)u = µ on K.
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To see this, let φ ∈ C0(K)∞ be arbitrary. We then have P (D)∗φ ∈ C0(K), and
consequently∫

K

uP (D)∗φdx = lim
n→∞

∫
K

unP (D)∗φdx = lim
n→∞

∫
K

φd(P (D)un) =

∫
K

φdµ,

where we used the fact P (D)un → µ in the last step. Since P (D)L+µ = µ,
we conclude that P (D)(u−L+µ) = 0 in K. The continuation property implies
that there exists a û with P (D)û = 0 in Ω and û = u − L+µ in K. We then
have µ = P (D)(û+ L+µ) and (û+ L+µ)|K = u, so that (µ, u) ∈ BP .

Now let us prove Proposition 3

Proof of Proposition 3. In Lemma 9, we showed that P (D)L+ = IdM. This
already proves that ranP (D) =M(Ω). Also, it shows that L+ is a continuous
operator fromM(Ω) to BP (Ω): C(Ω) ↪→M(K) due to the boundedness of K,
and if µn → µ in BP , then P (D)L+µn = µn → µ = P (D)L+µ.

It follows that L+P (D) = IdranL+ . If we can prove that ranL+ is closed,
we have shown that kerP (D) has the closed complementary subspace ranL+.

To show the latter, let un = L+µn in ranL+ converge to an element u ∈ BP .
Then, by definition of BP , P (D)L+µn = µn → P (D)u. Consequently, by the
continuity of L+,

un = L+µn = L+P (D)L+µn → L+P (D)u,

so that u = L+P (D)u ∈ ranL+.
It remains to calculate the operator (L+)∗. For a ∈ L1(Ω) and µ ∈ M(Ω),

we have 〈
(L+)∗a, µ

〉
=
〈
a, L+µ

〉
=

∫
Ω

∫
Ω

a(y)ux(y)dµ(x)dy

(x, y)→ ux(y)a(y) is in L1(µ⊗ dy), so that we may apply Fubini and obtain

〈
(L+)∗a, µ

〉 ∫
Ω

(∫
Ω

a(y)ux(y)dy

)
dµ(x).

The last assertion about (L+)∗a ∈ C0(Ω) is argued as follows. Let ε > 0. First,
since a ∈ L1(Ω), there exists a compact set C such that

∥∥aΩ\C
∥∥

1
≤ ε. Further,

since the map x 7→ ux is vanishing at infinity as a map from Ω to C(Ω∩BR(0)),
there exists a compact set C̃ such that if x /∈ C̃, ‖ux‖C(C) ≤ ε. This implies for
such x ∣∣(L+)∗a(x)

∣∣ ≤ ‖ux‖∞ ∫
Ω\C
|a(y)| dy + ‖ux‖C(C)

∫
C

|a(y)| dy

≤ ‖ux‖∞ ε+ ε ‖a‖1 ,

so that the theorem is proved.

Now let us finally argue that the differential operators of the form (9) can
be included in our framework.
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Proof of Proposition 4. Consider the space Hk0(Ω), defined as the closure of
C∞0 (Ω) in the Sobolev norm ‖·‖Hk(Ω). We can formulate the problem P (D)u = f

as an operator equation on Hk0(Ω) as follows:

〈P (D)u, v〉 =

∫
Ω

∑
|α|=k

∑
|β|=k

pα,β(x)Dαu(x)Dβ(x)dx = 〈f, v〉 , v ∈ Hk0(Ω).

By the Lax-Milgram lemma together with the ellipticity condition, this prob-
lem has a unique solution as soon as f ∈ Hk0(Ω). Now, since k > d/2, we
have the continuous Sobolev embedding Hk0(Ω) ↪→ C0(Ω). (For Ω = Rd, this
can be proven with Fourier methods, for a bounded domain, this is a Sobolev
embedding theorem.) This both proves that δx ∈ Hk0(Ω)∗ and that the solution
ux ∈ C0(Ω).

To show that the map x → ux is vanishing at infinity on compact sets,
let us first assume that Ω is bounded. When x escapes to infinity, δx

∗
⇀ 0 in

M(Ω), and therefore also in Hk0(Ω). The “continuous dependence on the data”-
part of Lax-Milgram theorem therefore implies that ux⇀ 0 in Hk0(Ω). Since the
embedding Hk0(Ω) ↪→ C0(Ω) in this case even is compact (see e.g. [1, Theorem
6.2]), this implies that ux → 0 in C0(Ω), which was to be proven.

Now let Ω = Rd and R > 0 be arbitrary. The result [20, Theorem 10.2.1]
states that the solution ux is equal to Φ(· − x) for a Φ obeying

sup
ξ∈Rd

∣∣∣P̃ (ξ)Φ̂(ξ)
∣∣∣ <∞,

where P̃ is defined as

P̃ =

∑
α≥0

|DαP (ξ)|2
1/2

.

By using the ellipticity assumption, one sees that this implies that (1+|ξ|2k)|Ψ̂| ≤
C, which ensures that

∣∣∣Ψ̂∣∣∣ is integrable (k > d/2). By the Riemann-Lebesgue

theorem, Ψ ∈ C0(Rd). This already implies that ux = Ψ(· − x) vanishes to
infinity on compact sets.

To prove the final claim, let u obey P (D)u = 0 on K. Then in particular
u ∈ Hk(K). This implies that for every set K ⊆ Ω̃ ⊆ Ω with dist(K, ∂Ω) > 0,
there exist a function ũ ∈ Hk(Rd) with compact support in Ω̃ (see [1, Theorem
2.8]) such that u = ũ on K. Now consider the following problem:{

P (D)u = −P (D)ũ, x ∈ Ω\K
Dαu|∂K∪∂Ω = 0

.

This problem can be shown to have a solution û. Now consider the function

u(x) =

{
u(x), x ∈ K
−û(x) + ũ(x), x ∈ Ω /∈ K

Due to boundary term cancellation, together with the fact that the uK and
uΩ/∈K solves the problem P (D)u in their respective domains, this function obeys
P (D)u = 0 in Ω, and of course u|K = u.
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As for the uniqueness of the extension, we note that if P (D)u = 0 on Ω, the
ellipticity assumption implies that

∑
α=k |Dαu|22 = 0. This in particular implies

that ∆ku = 0, i.e., ∆k−1u is harmonic. Since ∆k−1u vanishes on K, and K
has non-empty interior, it must vanish everywhere (this is the identity theorem
of harmonic functions). By repeating this argument k times, we finally obtain
that u vanishes on Ω.

4.4 Miscellaneous
Here, the rest of the left out proofs are given. We start with the simple propo-
sition about existence of solutions to the problem (1).

Proof of Proposition 1. Let (un)n∈N be a minimizing sequence for (1). Let us
write un = L+µn + un,K with µn ∈ M(Ω) and un,K ∈ kerL for each n ∈ N.
We may thereby without loss of generality assume that un,K ∈ span(w`)

m̂
`=1,

where w` are vectors such that (Aw`)
m̂
`=1 spans A(kerL) (any alteration of uK,n

not parallel to this space will neither change the value of ‖Lu‖ or the value of
fb(Au).

Now, due to the minimization property of the sequence,

(µn)n∈N and (fb(A(L+µ∗ + un,K))n∈N

are both bounded. Due to the coercivity of fb together with the fact that
A restricted to the space (w`)

m̂
`=1 is injective, the sequence (un,K)n∈N will be

bounded in A(kerL). Due to the Banach-Alaoglu theorem and the separability
of C0(Ω) (i.e. the pre-dual ofM(Ω)), (µn)TV will contain a subsequence which
converges to, say, µ∗. Similarly, since (un,K) lives in the finite-dimensional space
span(w`)

m̂
`=1, it will also contain a subsequence convergent to, say u∗. Now,

using the same notation for the convergent subsequences as for the sequences
themselves, we have

‖µ∗‖TV + fb(A(L+µ∗ + u∗K)) ≤ lim inf ‖µn‖TV + fb(A(L+µn + un,K))

= lim inf ‖Lun‖TV + fb(Aun) = min
u∈B
‖Lu‖TV + fb(Au).

We used Lemma 7 and the lower semicontinuity of fb and of the TV -norm.
Hence, L+µ∗ + u∗K is the solution whose existence we had to prove.

Now let us include spline-admissible operators in our framework.

Proof of Lemma 2. 1. The finite-dimensionality of kerL is simply assumption 3
of Theorem 1 of [30]. Theorem 4 and 5 of [30] proves that L has a right inverse
L−1

Φ . This implies that

ranL ⊆ ranLL−1
Φ = ran Id =M.

2. The space CL as defined in Theorem 6 of [30] is defined as

CL = L∗(C0(Rd)) + span(φi)
r
i=1,

where φi is a system of functionals which restricted to kerL becomes a of the
dual of kerL. Without loss of generality, we can assume that φi|V = 0 for each
i (if not, we could instead consider the operators φ̃i = φiΠkerL).
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Then if a ∈ CL, we have

(L+)∗a = (L+)∗L∗ρ+

r∑
i=1

γi(L
+)∗φi

for some ρ ∈ C0(Rd) and γi. Now (L+)∗L∗) = (LL+)∗ = Π∗ranL = Id and
(L+)∗φi = 0, so that (L+)∗a = ρ ∈ C0(Rd).

If on the other (L+)∗a ∈ C0(Rd), we have

L∗C0(Rd) 3 L∗(L+)∗a = (L+L)∗a = Π∗V a.

Since each functional a ∈ M∗L can be written as Π∗V a + Π∗kerLa, and Π∗kerLa ∈
span(φi)

r
i=1, a ∈ CL.

Next, we discuss the case of L being the differential operator on BV ((0, 1).

Proof of Lemma 2. Note that we have kerL = span(1), the vector space of
constant functions on Ω, hence the space V can be identified with the space of
functions with zero mean:

V =

{
u ∈ BV (Ω),

∫
Ω

u(t) dt = 0

}
.

For µ ∈ M, consider the mapping I : µ 7→ u defined for s ∈ [0, 1] by
u(s) = µ([0, s]). We only need to prove that DI(µ) = µ in the distributional
sense. Let φ ∈ C∞c (Ω):

〈I(µ), φ′〉 =

∫ 1

0

µ([0, t])φ′(t) dt

=

∫ 1

0

∫ 1

0

1[0,t](s)dµ(s)φ′(t) dt

=

∫ 1

0

∫ 1

0

1[s,1](t)φ
′(t) dtdµ(s)

=

∫ 1

0

−φ(s)dµ(s) = −〈µ, φ〉.

This proves the surjectivity of L. We see that the proposed form of L+ is the
right one, since s 7→ µ([0, s])−

∫ 1

0
µ([0, s])ds is a function of zero mean.

We now calculate〈
(L+)∗ξ, µ

〉
=
〈
ξ, L+µ

〉
=

∫ 1

0

ξ(t)

(∫ 1

0

1[0,t](s)dµ(s)−
∫ 1

0

µ([0, r])dr

)
dt

=

∫ 1

0

(∫ 1

0

1[s,1](t)ξ(t)dt

)
dµ(s)−

∫ 1

0

ξ(t)dt ·
∫ 1

0

1[0,r](s)dµ(s)dr

=

∫ 1

0

(∫ 1

s

ξ(t)dt

)
dµ(s)−

∫ 1

0

ξ(t)dt ·
∫ 1

0

(1− s)dµ(s)

In particular, the action of (L+)∗ξ is given by a continuous function, which is
vanishing on the boundary of (0, 1)
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5 Conclusion & Outlook
In this paper we have studied the properties of total variation regularized prob-
lems, where total-variation should be understood as a term of form ‖Lu‖TV ,
with L a linear operator. We have shown that under a convexity assumption on
the data-fit term, some of the solutions û of total-variation regularized inverse
problems are m-sparse, where m denotes the number of measurements. This
precisely means that Lû is an atomic measure supported on at most m points.
This result extends recent advances [30], by relaxing some hypotheses on the
linear operator L and on the domain of the functions.

The second contribution of this paper is to show that solutions of this infinite
dimensional problem can be obtained by solving one or two consecutive finite
dimensional problems, given that the measurements belong to some function
spaces such as the trigonometric polynomials or the set of piecewise linear func-
tions on polyhedral domains. Once again, this result extends significantly recent
results on super-resolution [8, 26]. The analysis provided for piecewise linear
functions is novel and we believe that it might have important consequences
in the numerical analysis of infinite dimensional inverse problems: the scaling
with respect to the number of grid points is just linear, contrarily to approaches
based on semi-definite relaxations or Lasserre hierarchies.

As an outlook, we want to stress out that the hypotheses formulated on the
linear operator L rule out a number of interesting applications, such as total
variation regularization in image processing. We plan to study how the results
and the proof techniques in this paper could apply to more general cases.
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