Uniform-in-Bandwidth Functional Limit Laws

Abstract : We provide uniform-in-bandwidth functional limit laws for the increments of the empirical and quantile processes. Our theorems, established in the framework of convergence in probability, imply new sharp uniform-in-bandwidth limit laws for functional estimators. In particular, they yield the explicit value of the asymptotic limiting constant for the uniform-in-bandwidth sup-norm of the random error of kernel density estimators. We allow the bandwidth to vary within the complete range for which the estimators are consistent.
Type de document :
Article dans une revue
Journal of Theoretical Probability, Springer, 2013, 26 (3), pp.697-721. 〈10.1007/s10959-011-0376-1〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01572166
Contributeur : Archive Ouverte Prodinra <>
Soumis le : vendredi 4 août 2017 - 20:39:25
Dernière modification le : jeudi 22 novembre 2018 - 14:09:12

Lien texte intégral

Identifiants

Collections

Citation

Paul Deheuvels, Sarah Ouadah. Uniform-in-Bandwidth Functional Limit Laws. Journal of Theoretical Probability, Springer, 2013, 26 (3), pp.697-721. 〈10.1007/s10959-011-0376-1〉. 〈hal-01572166〉

Partager

Métriques

Consultations de la notice

67