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 Abstract 

Overall in any system the Proportional term, the Integral term as well as the Derivative term contribute to 

achieving a fast rise time, minimum overshoot, no oscillations and higher stability as well as no steady-

state error. To achieve stability in typical PID systems, it is important to eliminate the steady state errors 

associated with such systems. MATLAB M-file was generated to plot responses of the transfer function 

with different integrator gains for auto tuning and both Ziegler-Nichols and auto tuning methods were 

used to the removal of steady state errors in PID systems. It was observed that both methods can be 

adopted for the elimination of steady state error in PID systems, but the drawback associated with 

Ziegler-Nichols method is that, it is time consuming and may delay while entering into an unstable region 

for the system. This paper proposed a comparative study of PID controller for these methods with 
simulation and numerical study. 

Keywords: Control methods, Ziegler Nichols, Steady state error, Stability, PID controller, Simulation,         
Numerical study.

Introduction: 

Control systems has been used extensively during past decades. One of the most important and successful 
control systems is PID controller, specifically in industries where more than 90 percent of industrial 
controllers were PID family on 2002. The three term PID controller has three basic modes for controlling 

the characteristics of a second order system. The three basic modes are: the Proportional term, the Integral 

term as well as the Derivative term. The PID controller is basically used in controlling closed loop form of 

an open loop system. But it is broadly applicable since a PID controller relies only on the measured 
process variable, not on knowledge of the underlying process. The proportional term of the controller is in 

proportion to the error in the system as the name implies, the integral term is proportional to the integral 

of the past errors while the derivative term is proportional to the rate of change of the error (Hunter, 1987; 

Krishnaswamy, 2011). Where is the integral time constant and the derivative time constant. The 
proportional part acts on the present value of the error, the integral represents an average of past errors and 
the derivative can be interpreted as a prediction of future errors based on linear extrapolation.The 

controller can also be parameterized mathematically as: 

 ( ) ( ( )  ( )   
  ( )

) (1) 
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 It is worthy of note that the control signal u is formed entirely from the error e. Overall in any system the 

Proportional term, the Integral term as well as the derivative term contributes in achieving a fast rise time, 

minimum overshoot, no oscillations and higher stability as well as no steady-state error (Zilouchian and 

Jamshidi, 2001; Owunna et al., 2016). The role of each of the terms in a PID controller are tabulated in 

Table 1. 

Table 1: Roles of PID controller terms 

Term Response Rise Time Overshoot Settling Time S-S Error 

Proportional Decrease Increase Small Change Decrease 

Integral 
( ) 

Decrease Increase Increase Eliminate 

Derivative Small Change Decrease Decrease No Change 

The proportional controller often times reduces the rise time and often reduces the steady state error of the 

system but never does it eliminate the error completely. The integral control on the other hand eliminates 

completely the steady state error of a system. A derivative control however increases the stability of the 

system, reduces the overshoot as well as improves the transient response of the system. It does not in any 

way alter the steady state error of the system. In this paper we compare our methods simulation result with 
the fuzzy system controllers implemented on aerial and surface vessels (Abbasi et al., 2013; Yazdanpanah 
et al., 2013). Our model has been developed based on the results of these papers and comparison with 
their model.

Type 1 Systems 

Type 1 systems are systems that do not have any steady state error. Since these systems have no steady 

state error, the presence of integrators will be superfluous to the system. This is because the major 

function of integrator in controllers is to eliminate steady state errors which are absent in type 1 open loop 

systems (Cooper, 2007). The significant challenge connected with the derivative controller noise issues 

and sensitivities that, a large frequency within a system associated with large changes in the system error 

may cause the derivative of the signal to amplify the signal significantly. Thus little levels of noise 

present in the system may cause the output of the system to increase greatly. In other words, the 

sensitivity of derivative controllers to noise may result in significant changes in the value of the output as 

a result of small level of noise in the system. In these circumstances, it is often sensible to use a PI 

controller or set the derivative action of a PID controller to zero. To eliminate/minimize this downside, an 

electronic signal filter may be enclosed within the loop. Electronic signal filters are unit electronic circuits 

that perform signal process functions, specifically supposed to get rid of unwanted signal components 

and/or enhance needed ones. Electronic filters can be: passive or active, analogue or digital, discrete-time 

(sampled) or continuous-time, linear or non-linear, etc. The most common types of electronic filters are 

linear filters, regardless of other aspects of their design. 
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Ziegler-Nichols Closed-loop Tuning Method 

In the Ziegler-Nichols closed-loop tuning method, the ultimate gain    and the ultimate period of 

oscillations    is employed in calculating the needed    which is the value of the proportional gain 

required for effective tuning of the system. The Ziegler-Nichols closed-loop tuning method is only 

applicable in closed-loop systems and cannot be applied in open loop systems. To determine the value of 

  , the value of the proportional gain that will produce a steady oscillation in the system is first obtained. 

The gains for the integrator and the derivative controllers are initially set at zero for the procedure. When 

the systems oscillates steadily, the period of oscillation must therefore be obtained as it is required in 

calculating the integral and derivative times. The ultimate period is the time required to complete one full 

oscillation while the system is at steady state. To find the values of the PID parameters from the values of 

    and period obtained, the following procedures must be adopted. 

 

Closed Loop (Feedback Loop) 

i. The derivative controller gain and the integral gains must be set at zero. 

ii. The proportional gain should then be varied till the system oscillates at constant amplitude.  

iii. The values of    and the period of the oscillation can then be recorded  .  

To obtain the various values for the PID controllers Ziegler-Nichols equation must be used and the 

equation is presented in the Table 2. 

Table 2: Ziegler-Nichols closed-loop tuning formula 

Rule Name Tuning Parameters 

 Kp Ki Kd 

P 0.5 Ku   

PI 0.45Ku 1.2Kp/Pu  

PID 0.6 Ku 2Kp/Pu KpPu/8 

 

Closed Loop Systems-P Controller 

P controllers are often used in first order systems to stabilize unstable responses. P controller helps to 

majorly reduce the steady state error of the system. An increase in the proportional gain factor K of the P 

controller reduces the steady state error of the system (Ogata, 1997). It is however worthy of note that P 

controllers can reduce but not eliminate totally the steady state error of a system.  As the proportional gain 

of the P controller increases, smaller amplitudes as well as smaller phase margin are introduced to the 

system. The dynamic of the system also becomes faster and the sensitivity of the system to noise reduces 

as the proportional gain increases. The system is applicable only in instances where the system can 

tolerate constant steady state error (Taeib and Chaari, 2015). 

 

P-I Controller 

P-I controller are used majorly in the elimination of steady state errors arising from P controllers. The PI 

controllers have a negative effect on the stability of a system as well as the response speed of the system. 

It is therefore important to note that P-I controllers are useful in systems where the response speed is 
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insignificant. P-I controllers have no effect on the rise time and cannot eliminate oscillations in a system 

because they cannot accurately predict future errors within the system.  

  

P-I-D Controller 

With PID controllers, zero state errors are possible. The response of the system can be improved to 

achieve a fast response, oscillations in the system can be removed and the stability of the system can be 

improved. A derivative of the output response is often added to a PI controller to remove overshoot and 

oscillations in the system. PID controllers have the advantage of use in higher order systems.  

 

P-D Controller 

P-D controllers are used majorly to increase system stability as the controller is able to predict future error 

that can occur in the systems response. A derivative of the output response is often used instead of using 

the error in the signal to ensure there is no abrupt change in the value of the error of the signal (Padula 

and Visioli, 2011; Taeib and Chaari, 2015). The derivative controllers is often not used alone to prevent 

amplification of noise in the system. 

 

Research Methodology 

For optimum performance of control systems, the steady state errors must be eliminated to enable 

stability of the close loop systems which are basically controlled by PID. The closed loop transfer 

function was designed in Simulink and MATLAB M-file was generated to plot responses of the transfer 

function with different proportional gain. Ziegler-Nichols closed-loop tuning method and auto tuning 

system method to determine PID values and a MATLAB command was generated and simulated for both 

tuning methods. Result obtained from the MATLAB simulation was used to determine if the steady state 

error has been eliminated or not, and how effective each method is. 

 

Steady State Error (P controllers) 

For the given transfer function 
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For P controller with gain    the closed loop transfer function becomes; 
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For steady state error 
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For stability of the system, using Routh Hurwitz criterion,  

 

 

 

   

   1        

  5 0 

           

 

For stability,  

          

         

    
  

  
 

         

 

But 

     
      

      
 

 

For        , 

 

     
      

      
 

 

This implies that if the system will remain stable, there will remain within the system steady state error if 

a proportional controller is used. To establish the fact that there will remain within the system steady state 

error if a proportional controller is used, a MATLAB M-file was generated to plot responses of the 

transfer function with different proportional gain. The MATLAB code for the simulation is written as 

follows: 

 

% To obtain the Unit-Step Response of the System 

  

num=[0 0 10]; % num_sys is the numerator of the system transfer function  

den=[1 5 6]; % den_sys is the denominator of the system transfer function 

K=1; 

K2=2; 

K3=5; 

% specify proportional controller 

% To obtain the transfer function 

s=tf('s'); 
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Gs=tf(num,den); %Gs is the system transfer function 

%To plot the step response 

figure(1) %specifies figure number 

step(Gs, feedback (Gs*K,1),feedback (Gs*K2,1),feedback (Gs*K3,1)) 

hold on 

plot([-0.1,0,0,4],[0,0,1,1],'r'); 

axis([-0.1 4 0 1.8]); 

legend('Gs','K=1','K2=2','K3=5', 'target'); 

%specify title and grid  

grid on  

title ('Unit-Step Response of the system') 

 

The plot generated from the system shows plots of step response from the real transfer function and the 

closed loop systems with different proportional gains as well as the target response. Figure 1 shows the 

plots with different proportional gains, from the plots shown in Figure 1 it is obvious that with increasing 

value of proportional gain, the steady state gain remained.  

 

 
Figure 1: Plot of Transfer Function with Proportional Controller 

 

PI Controllers 

For PI controller with proportional gain    and integral gain 
  

 
 the closed loop transfer function 

becomes; 

  ( )  
  [  

 

  
] ( )

 
         (7) 

 

  
  [  

 

  
]

  

            

 
 



 

9 

 

 

  
    [  

 

  
]

 (            )
 

For steady state error 
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This implies that at any value of with proportional gain    and integral gain 
  

 
, there will be no steady 

state error within the system. To establish the fact that there will no remains of any steady state error 

within the system if a proportional-Integrator controller is used, a MATLAB M-file was generated to plot 

responses of the transfer function with different integrator gains. The MATLAB code for the simulation is 

written as follows: 

 

% To obtain the Unit-Step Response of the System 

  

num=[0 0 10]; % num_sys is the numerator of the system transfer function  

  

den=[1 5 6]; % den_sys is the denominator of the system transfer function 

% specify proportional and integrator controllers 
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Kp=1; 

Ki=1; 

Ki2=2; 

Ki3=5; 

%To combine the P-I controllers 

K=pid(Kp,Ki); 

K2=pid(Kp,Ki2); 

K3=pid(Kp,Ki2); 

  

% To obtain the transfer function 

  

s=tf('s'); 

Gs=tf(num,den); %Gs is the system transfer function 

  

%To plot the step response 

  

figure(1) %specifies figure number 

  

step(Gs, feedback (Gs*K,1),feedback (Gs*K2,1),feedback (Gs*K3,1))%to plot 

%all feedback functions 

hold on 

plot([-0.1,0,0,4],[0,0,1,1],'r'); 

axis([-0.1 4 0 1.8]); 

  

legend('Gs','Ki=1','Ki2=2','Ki3=5', 'target'); 

%specify title and grid  

grid on  

title ('Unit-Step Response of the system') 

 

The plot generated from the system shows plots of step response from the real transfer function and the 

closed loop systems with different proportional-Integrator gains as well as the target response. From the 

plots shown in Figure 2, it is obvious that at whatever value of the integrator gain, the steady state error is 

always eliminated (Messner and Tilbury, 2015).  
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Figure 2: Plot of Transfer Function with Proportional-Integrator Controller 

 

Ziegler-Nichols Closed-loop Tuning Method 

The derivative controller gain and the integral gains were set at zero. The proportional gain was varied, 

until a relatively stable system was obtained at Ku=8.5. The response obtained is shown in Figure 3.  

 

 
Figure 3: System response at Ku=8.5 

 

At this gain, the period of oscillation is obtained as 0.7. From Ziegler-Nichols method, the PID values are 

given as shown in Table 3. 

 

Table 3: Ziegler-Nichols tuning parameters 

Rule Name Tuning Parameters 

 Kp Ki Kd 

P 4.25   
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PI 3.825 14.6  

PID 5.1 24.28 0.74375 

 

The PID Values if used in plotting the response of the system will give a situation as shown in Figure 4. 

 

 
Figure 4: System response with Zeigler-Nichols Tuning 

Comparing the initial response and the final response, it is obvious that the steady state error is eliminated 

using the Ziegler-Nichols method of the analysis. A backdrop of this method is that, it is time consuming 

and may delay while entering into an unstable region for the system.  

 

MATLAB PID Tuning 
It is necessary to tune the system represented above using automatic Simulink tuning. The different steps 

used are as follows (Nguyen, 2015); 

i. Design the closed loop transfer function in Simulink 

The design as generated from Simulink is shown in Figure 5. 

 

 
Figure 5: Simulink design for the closed loop transfer function 

ii.  run the simulation 

iii. open the tune panel and increase the system response and increase the system robustness to 

highest 

 

The result of the tuning is shown in Figure 6. 
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Figure 6: Tuned Response with Auto-tuning 

 

iv. The values obtained for the system is Kp=11.72, Ki=14.01, Kd=2.449 

v. At this value, the settling time reduced to 0.172s while the rise time reduced to 0.0909s.The 

system is very stable. 

 

Comparing the tuned system to the initial transfer function response, Figure 7 was generated using 

MATLAB M-Codes 

 
 Figure 7: Tuned Response with Auto-tuning compared to  
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To compare the results from the Ziegler-Nichols closed-loop tuning method with the auto tuning system, 

a MATLAB m-file was written. The codes written for the comparism are given below: 

 

% To obtain the Unit-Step Response of the System 

  

num=[0 0 10]; % num_sys is the numerator of the system transfer function  

  

den=[1 5 6]; % den_sys is the denominator of the system transfer function 

% specify proportional and integrator controllers 

Kp=11.72; 

Ki=14.01; 

Kd=2.449; 

  

%To combine the P-I controllers 

K=pid(Kp,Ki,Kd); 

  

% To obtain the transfer function 

  

s=tf('s'); 

Gs=tf(num,den); %Gs is the system transfer function 

  

%To plot the step response 

figure(1) %specifies figure number 

step(Gs, feedback (Gs*K,1))%to plot 

%all feedback functions 

hold on 

plot([-0.1,0,0,4],[0,0,1,1],'r'); 

axis([-0.1 4 0 1.8]); 

  

legend('Gs','Tuned', 'target'); 

  

%specify title and grid  

grid on  

title ('Unit-Step Response of the system') 

 

The result of the simulation is given in Figure 8 
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Figure 8: Comparism of Ziegler-Nichols tuned system with Auto-tuned system 

 

The results from both tuning methods are tabulated in Table 4 

 

Table 4: Table showing the Results for both Tuning Methods  

 Ziegler-Nichols Auto tuning 

P Kp=5.1  Kp=11.72 

I Ki=24.28 Ki=14.01 

D Kd=0.74375 Kd=2.449 
 

Conclusion 
From the graph in Figure 8, it can be observed that both tuning methods removed the steady state errors 

within the system, thereby indicating stability of the close loop system. It is however easy to move the 

system in any direction with the auto tuning method than the Ziegler method, as the Ziegler method is a 

quick approximation of results. 

 

 

Limitations of PID control 

Although PID controllers can be used in many control situations with satisfactory performance, their 

performance in other applications may be relatively poor with no optimal performance. PID controllers, 

when used in cases that are non-linear may be unable to respond to the fluctuations in process behaviour 

and may ultimately lag in their response to large disturbances. To solve such discrepancies, a knowledge 

of the control system can help include a feedforward control allowing the PID controller to only deal with 

the steady state error (Foley et al., 2005). Another serious challenge with the use of PID controllers is that 

they are linear and symmetric. Their performance in non-linear systems is unpredictable. This means that 

overshoot cannot easily be corrected like in linear systems. In trying to reduce overshoot in non-linear 

systems, the performance of the system may be compromised. Another issue with PID systems is that the 

derivative term can amplify high frequencies in a system and for non-linear systems, any large 

frequencies may be amplified to cause large discrepancies in the output of the system. 
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