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Polarizability expressions for predicting resonances in plasmonic and Mie scatterers
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Polarizability expressions are commonly used in optics and photonics to model light scattering by small
particles. Models based on Taylor series of the scattering coef cients of the particles fail to predict the morphologic
resonances hosted by dielectric particles. Here we propose to use the factorization of the special functions
appearing in the expression of the Mie scattering coef cients to derive pointlike models. These models can be
applied to reproduce both Mie resonances of dielectric particles and plasmonic resonances of metallic particles.
They provide simple but robust tools to predict accurately the electric and magnetic Mie resonances in dielectric
particles.

DOI: 10.1103/PhysRevA.95.063833

I. INTRODUCTION AND MOTIVATIONS of silver or made of silicon. It is clearly seen that while
this expansion does predict the localized surface plasmon
fesonance around 410 nm, it fails to predict the morphological
resonance at 450 nm. This issue motivates the development of
a generalized pointlike model working for both positive and
ﬁegative dielectrics. Throughout this article, itis demonstrated

[7.8]. However, the complexity of the multipolar formalism has that the Weierstrass factorization of Bessel functions permits
T ' piexity P to derive accurate approximations of the Mie coef cients and

motivated the derivation of pointlike models providing more consequently particle polarizabilities for both dielectric and

insight into the physical Processes involved in light Scatt(.a”ngmetallic particles. The optical response of spherical scatterers
Such models have been widely used, for example, in th

. . U Lo Ranbe accurately described with a set of electric and magnetic
case of small metallic particles behaving like electric d'pOIeSMie coef cients a, andb, [1,3,4,27] which can be expressed
and hosting localized surface plasmon resonanb&j. [In nLSE P

Light scattering by subwavelength-sized scatterers is
fundamental problem in optic4{6]. The full electromagnetic
problem can be solved with the well-known Mie theory,

of spherical objects regardless of their size and compositio

this case, the electric dipolar polarizability, relating the as 5
dipolar momentp to the ex_citatior_1 eld Egyc is given by. an( 20) = in(zo) s ﬁl)(ZO)S r(11)(23) )
P= o0b eEexee e May easily be linked to the dipolar Mie s hST)(zo) . r(1+)(20) g r(]1)(25)’

coef cient a; through the relation = i %al [10,17].

Accurate approximations of ¢ calculated in the long Where s is the relative permittivity, s = = (s and p being
wavelength limit have greatly contributed to extend thethe dielectric permittivities of the sphere and background
understanding of the resonant process responsible for thedium respectively), anuldescribes the order of the mode.
interesting features of small plasmonic scatterdra-18.  Zo = KR is the size parameter of the scattederthe wave
Simpli ed models for metallic particles including the radiative number -, R the radius of the scatterer considered, and
and nite-size corrections were proposed by Mord#lland  zs= sz foranonmagnetic material. The functidnf$’) and
by Meier and Wokaunl3]. The rstis obtained by calculating |, are, respectively, the spherical outgoing Hankel functions
the power series expansion of the Mie coef cieptothe third  and the Bessel functions. Finally, the function§’) and
order, while the latter is obtained by taking into account the (*) are reduced logarithmic derivative Ricatti-Hankel and

depolarization eld. Ricatti-Bessel functions, respectively:

High refractive index dielectric subwavelength-sized par- ) )
ticles can also resonantly interact with lighto}-24] via the ()(2) = [zh(2)] (z) = [Z_J“(Z)] _ (2)
excitation of low-order electric and magnetic Mie resonances. " h$z) " " in(@

Pointlike models should then be able to predict electric and Equation {) remains completely equivalent to the formu-
magnetic resonances. However, the classical models wide ‘yatioﬂ commonly emploved i?\ the )I/ite(rqaturﬁ] fand proves to
used in plasmonics fail to predict the dipolar electric resonan y employ P :
; . e well adapted for our study. An advantage of this expression
response of these dielectric scatterers. is that the magnetic Mie coef cients, can be obtained from
We illustrate this problem by plotting in FidlL the real 9

part of the rst electric Mie coef cient calculated with the the expression in Eq1} by replacing the permittivity contrast

complete Mie theory (full line) and with a Taylor expansion nS m’nthen pngne%ti”my contragts (equal to 1 in the case of
(dashed line) derived up to the third order [Ed.IY in  onmagnetic media).
Ref. [15]] in the case of a sphere, 120 nm in diameter, made

Il. RESONANCE CONDITIONS

IN SUBWAVELENGTH SPHERES
“remi.colom@fresnel.fr As a rst step toward more general expressions, we propose
*nicolas.bonod@fresnel.fr to determine the resonance conditions (1) graphically and
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1.0+ — |a,] silicon exact (a) 7 = To o = N
= = |a,] silicon approximation - 0,0(z,) VEs . VEs "
0.8 — |a,] silver exact 40 _ (52) | n
|a,| silver approximation ¢, @(z,) l‘ :‘\
— 0.67 20 reree £50,d(zo) \ 1N
S PN IINN L (h) N AR
0.4 0 = —— :‘
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0.0- T T T T T : -40+ |l | n"‘
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Z
FIG. 1. Mie coef cient|a;| plotted with respect to the wavelength 34 °
in the case of a sphere of radius 60 nm made of sili@s) gnd ~ |eeeeeenn (€) i eemenmeansena
silver [26]. Full lines: calculated with the exact expression derived 2 fre e s e e s NG
in Eq. @) with n = 1 with silicon (blue) and silver (black). Dashed Y
lines: approximatiora{"") in Eq. (24) taken from Ref.15] in red for 14 SR
silicon and green for silver. ¢ (Diz)
od = ¢,M(z,) approximation
. . .. . I (Pl(z)(zo)
(2) in the asymptotic limitzo O for any arbitrary made
material homogeneous particles. This methodology will allow 1
us to choose the proper approximations of the special functions ' ‘ ' ‘ ‘ '
0.0 0.2 0.4 0.6 0.8 1.0

appearing in Mie theory in order to derive pointlike models
valid for metallic and dielectric particles.

We rstintroduce theK -matrix formulation that will allow
us to establish the resonance condition with respect to thgnction of the size parametes for (8) = 16 and (b) =S 2.5:

Zp

FIG. 2. Graphic representation of the resonance condition as a

{N(zs) function. The reactandé -matrix describes the light the electric and magnetic resonances are marked by the black dots,

scattering by a particlelB]. By means of theK-matrix  predictions of those resonances provided by Egg) (full black

coef cients, one can reformulate the Mie coef cients]: vertical lines), function il)(zs) (dashed green line), functiorf?(zy)
y . &1 (full blue line), and ¢ g)(zo) (dotted red line). Dashed black line
@)>'=Si K@~ +1, (3  in(b): P(z5)= 25 Z calculated with Eq. 14) at the 1st order
. . &1 withn = 1.
(bn)*t=Si KM "+ 1, (4)
where theK -matrix coef cients of a sphere ar&(] in the complex frequency plane, for which a scattered eld may

_ G e exist in the absence of an excitation eld],27]. Expressions
KO=8§ %sﬁﬁ%@ (5)  (3) allow us to show that this de nition of resonances results
n(20) s (2005 17(2s) in the following condition on th& -matrix coef cients:

S (1)£ )“ (1)( )
K =8 e ey (6) )
- n'(Z0)S n'(Zs - a, = 1 Krge) S1 — 0’ (7)
wherey, are the spherical Neumann functions arifl(z) = v
_[z;/:g))] . As the K-matrix is Hermitian for nonabsorptive by= 1 KM S1_ o ®)

particles [L0,18], one can notice that the coef cienks® and
K (M of alossless spherical scatterer are real. The expresion (
can in fact be seen as a generalization of the energy-conservir‘f

formulation of the polarizability $'= 5! $i% [1017,

Resonances thus correspond to the poles oKthmatrix
ef cients. The resonance conditions provided by Edsafe
played graphically for a constant and positive permittivity
equal to 16 in Fig.2(a) As seen from Eqgs.5f and (),

where . =36 K {?/k3 is the nonradiative polarizability, resonances of the magnetic dipole occur at the intersections

real for lossless scatterers, while the tefink corresponds  between P(z0) (solid blue line) and (?(z) (dashed green

to the radiative corrections and is analog tottfeterm in 8).  line) denoted by (h), whereas resonances of the electric dipole

correspond to the intersections betweenﬁz)(zo) (dotted red
A. Debnitions of resonances line) and {"(z) (dashed green line) denoted by (e) in Fg.

In this study, the light-scatterer interaction will be consideredat  One can also choose to set a permittivity negative and purely

resonance when one of the Mie coef cients reaches the unitarje@l- Even if materials with such a permittivity do not exist,

limit, i.e., whena, = 1 orb, = 1 [10,28]. This corresponds it ¢an be enlightening to study what happens in this case to
to the upper limit imposed to the Mie coef cients by the provide a better understanding of the plasmonic resonances.

energy conservation for lossless scatterers. Let us remark thAf illustrated in Fig.2(b), a resonance 01(‘2§he electric dipole
resonances (thus de ned) are different from the modes of th@lso occurs at the intersection betwegn;”(zo) (dotted red
scatterer, corresponding to the poles of Mie coef cients foundine) and f)(zs) (dotted green line) denoted by (e). Ag)(zo)
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is negative for small values @, no resonance of the magnetic ~ TABLE |. Numerical values of the constants employed in the
dipole occurs. Although the plots of Fig.show only the rst  article for the rst multipole orders.
solutions of the conditions7f for n= 1, one has to keep

in mind that these conditions are transcendental equationsX n & o
and have an in nity of solutions. However, in what follows, , - o £0.065 x
we will mainly be interested in the rst resonance of each = 4.49 30.05 $0.055
multipolar order for subwavelength-sized scatterers. That ig = o 576 £0.041 $0.047

why we will rst restrict our study to the limizg 0. In this
limit, it is possible to simplify the resonance conditions by
approximating the functions ofy by the rst term of their

power-series expansionn(zo) ﬁ MW(zo) n+ 1,

the Mie coef cients based on Taylor series expansion do not
< @S @ 5 ) predict morphological resonances unless many terms are taken
Yn(20) S T3, and (P(z0) S n, where ! is dened ing account. This result can be observed in Figand2, and

in Appendix B. That leads to the following approximate it will be further illustrated in SedV.

expressions of thK -matrix coef cients: In fact, the electric morphological resonances can be better
5 e understood by studying the limjt | . One can easily
KO § ,dsS . ()Zs) (9)  deduce from Eq.1(1) that multipolar electric resonances occur
5 s at the poles of the (! functions in this limit B0]. These poles
KM & n(”z—i)saﬁ (10)  correspond to the zeros of the Bessel functi@is32], and in

what follows, the rst zero of thenth order Bessel functions
The exact expression of(z) is will be notedr,. For high index dielectric scatterers for which
| <] is large but not in nite, it can then be safely inferred that
e rst resonance of thath order electric multipole occurs
ose to the position:

2n+1
with n-— @SR
kept because the in-medium size paramefer sz is not
assumed to be necessarily small. In fact, one should keep
mind that morphological resonances, for small particles occuf
for large permittivity so thaks may not be small30,29]. It
is then straightforward from Eqs7)and Q) to determine an
approximation of the resonance conditiof} (

Zs I'n. (15)

This result can be observed in Fig. where the electric
resonance condition is seen to be close to the polé'bin the

=1 ) S ns, (11) case ofn = 1. The exact values ¥, r1, andr, are provided
b =1 W(z) § n (12) in Tablel, but it may be recalled that a good approximation of
n nA%s ’ thelth zero of thenth order Bessel function can be provided by
i |+ 5% [31,32. At this point, one should emphasize
B. Resonances of plasmonic scatterers that the conditiorzs = r,, actually corresponds to the rst TE

Only the assumptiory << 1 has been made so far, but no modes of thenth multipole of a spherical hollow resonator
assumption was made abozg Eq. (11) is valid for both  (a spherical cavity in a perfect conductoBBf35]. This pro-
metallic and dielectric particles. Let us derive the Taylorvides some insights on the origin of morphological resonances
expansion to the sixth order of thé" function [10]: as will be further discussed in Se¢.

A prediction of the magnetic resonance condition can then
+ O(29). be easily deduced from EqL2) by noticing that n(rns1) =
Sn (see AppendixA) [30]. If | s| is large, it can then be
(13) assumed that the rst resonance of tith magnetic multipole
occurs close to the position:

2 24

.
S
2n+ 3 (2n+ 5)(2n+ 3)?

(Mz)=n+ 18

Inthelimit(zs  0), itis suf cient to consider the rstterm of
this expansionr(+ 1), and it can easily be shown that Egj1) Zs  ps1 (16)
tends towards the well-known quasistatic resonance conditions
for very small plasmonic particles for electric multipol&:[  This is conrmed in Fig.2 in the case ofn= 1 where
one clearly sees that the magnetic resonance is close to this
. (14)  condition. This resonance condition differs from the rst T™M
mode of a spherical hollow resonator occurring Zgr r,,
In this same limit Eq. 12) has no solution, conrming that _peing the rst zero of the derivative of theh order Bessel
subwavelength plasmonic particles do not support magnetignctions B3,35]. This will be further discussed in Se¢.

. h+1
S
n

resonances. In order to get a good approximationlnf at the vicinity of
the magnetic resonance, one could then choose to approximate
C. Morphological resonances of Mie scatterers ((zs) by its power series expansion aroumg= rns;

Electric and magnetic morphological resonances in Smalﬁcalculatlons are made in Appendiy:

dielectric particles can occur only wheg> 1 requiring the
permittivity to be suf ciently large 29]. Thus, approximations
made with the assumptior, << 1 will fail to predict the
morphological resonances. That is why approximations of

r(1T2)(Z) S nS l'nSl(ZS Ms1) S (n+ 1)(ZS rnél)2
1 n(2n+ 1)

Ms1

S (zS rns1). (17)

wl
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\ l Eq. (19) and by conserving only its rst term. But, rather
40+ 5 than completely neglecting the in uence of higher order poles,
‘\‘ one can also approximate their contributions. As shown in
20 Appendix C, if we consider thatzg <<r,, we obtain the
kY following approximation:
. . (h) __ 2
—o0z) N WD(zo) = n+ 1+ 222—;1 +2 97, (20)
LN n
204 = = ¢,Wi(z)
______ ® (T(z.) | where we setjor compact notations thgt  zp/rn1  Zo/r
40 - . s 3 and © %S m with r,, being the rst zero ofj,.
407 e (T2)(z,) Y T L . .
Dy s 3 Regarding the approximation of the magnetic coef cients, we
' ' ' ' ' ' ' ' have seen in Sedl that their rst resonance occurs near the
0.0 0.4 0.8 1.2 conditionzs = rps1. In order to have a good prediction of the
Zp magnetic resonances, an accurate approximation{dfzs)

nearzs = rps; must be found. As seen in the previous section
and in Fig.3, a simple power series expansion §P(zs) does

not provide satisfying results. A better approximation has been
found under the following form:

FIG. 3. Comparison of the approximations of th&é)(zs) func-
tion. Exact calculation (full blue line). " (z): Taylor expansions
aroundzg = 0 (dashed black Iine)(Wl)(zs): approximation derived
in Eq. (20) (dashed red line), (sz (z5): Taylor expansion around
Zs = rps; derived in Eq. {7) (dotted green line).

272
Wo(zo)=n+ 1+ ﬁ_ +2 Iz, (21)
Figure3 shows that Eq.1(7) provides a very good approxima- n
tion of (M(zs), but only on a small interval of size parameters _ , y
close tonth(esr)esonancye. P where M has been derived to imposé¢*?(z) = S n. It can

. H h 1 2n+1
It can then be concluded from this study that the slowthen be easily shown thaf?)  <l— S 251,

convergence of the Taylor series expansions does not allow Approximations of the Bessel functions can also be derived
accurate and compact approximated expressions of fhe by following a similar approach leading to the subsequent
functions. It will be conrmed by the results obtained on expression (see Append):

Sec.lV.

n
Zy

cwWh, - %
In""(20) (2n+ 1)

1822 e, (22)
Ill. WEIERSTRASS APPROXIMATIONS OF E]l)

We propose to address this issue of the slow convergence The approximations obtained for the special functions

otl)the Taylor descriptions in the proximity of the poles of ppearing in the Mie theory can now be used to nd
t(zs) by using the Weierstrass expansion of the Besse pproximations of the Mie coef cients.

function [31,32]:
n
in(2) = ﬁ 18 £ (18) IV. APPROXIMATIONS OF a, AND b,
n+ LN M, ) .
=1 " In order to nd an accurate approximation of thg and
wherer,, is thelth zero of thenth order Bessel function. b, coef cients, in particular at the vicinity of their resonances
The expression of the{!) function can then be deduced from [38-40], we start from the exact expressioh) (and make

Egs. @) and (L8) (see AppendiB) [36,37): use of the approximation2Q) and @2) derived with the sole
, assumptionzs << r , . If the exact expressions bf*) and ()
W)= n+ 1+ v22 _ (19) are kept, it can be shown, provided several steps of calculations,
n 1 22S (ry))? that the Mie coef cients can be cast (see Appeniand
AppendixF):

Expression 19) is an exact expansion ofl!) which takes

into accountthe existence of anin nite number of poles located (n+ 1)z2n+1 gSiz+ 22

on the real axis, as observed in FRj.and corresponding to aqul) = T

the zeros of . It is then interesting to recall the asymptotic @+ Dt Qn(2)

form of these zeros for large values ofrf; | +n/ 2 y (S1)fa(,2)S2
[31,32. In the previous section, it was shown that those_ gn@fn(,2)S (n+ 1)
poles are of great importance in the emergence of the electric o ()
morphological resonances and that is why it is necessary bAD = 7t gdter e

to nd approximations of () featuring the same poles. In T @n+ DI Q2

our study, we are seeking for approximations capable to ( $1)La(,2)
predict the rst morphological resonance. Approximations X = : ® (23)
of  can be obtained by truncating the in nite sum in La(,2)S(n+ 1+ v’
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FIG. 4. Comparison between exact (full blue line) and approxi-
mations R3) (dotted green line) an@4) (dashed red and black lines)

of a; for a sphere of silverd6] 60 nm (a) and 80 nm (b) in radius.

with gn(@ = @S 2 oz and Qn(2) is a polynomial
function detailed in AppendixG and {)(z) being simply
calculated using Egs2) and G1). In the electric coef cient

- 2 . - -
expressionf n(,z) = & while in the magnetic coef -
n+1

n

cient expressioh (,z) =S Zizzé—l g2 22
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FIG. 5. Comparison between exact calculationgpffull blue
line) andb; (full green line) with approximation2@) of a; (dashed
black line) and; (dotted blue line) and power-series approximations
of by (24) (dashed red line), for a sphere of silica?d] of radius

70 nm (a) and 100 nm (b).

Comparisons between these approximations and exact o _ _
calculations are shown in the following gures. In order to @PProximations, even quite lengthy high-order Taylor expan-

further highlight the relevance of our study, we also makeS!'Ons. _ o _ o
comparisons with approximations already derived in literature Although we did not explicitly derive these approximations
[10,15] that are based on power series expansions oKtpe for describing plasmonic scatterers, one clearly sees that these

coef cients in Egs. 8) and &):
< 3(+2 9 S2)

(T1) 81 _ & .
=S . . + 1,
& ' Sp( 8y 10 30
b(Tl) S1_ . 45 = 15(2 S 5)
i = - .
5(S1) 78 S1)
. i(2+100 S 125) ,
492( S 1) ’
(T2) 81 _ | 3(+2) s %( S2)
1 223( S1)” 10z( S 1)
o«
. 9iz( °S 2{1 + 16)+ 1 (24)
700( S 1)

new approximations are more accurate than the approxima-
tions 24) as can be seen in Fid.

However, the main interest of these new approximations is
thatthey are highly accurate for high-index dielectric scatterers
as shown in Figb for a silicon scatterer.

In fact, it was already shown in Figithat no approximation
based on Taylor series expansions is able to predict the
resonance of; but the approximation derived in this study
(23) does predict these resonances accurately. Regarding the
magnetic resonances, even though the approximbﬂdﬁin
Eg. 24) which is a high-order power-series expansiorbof
shows the dipolar magnetic resonant@]our approximation
stays more accurate for a larger range of sizes and wavelengths.

We now aim at studying the validity of these expressions in
the case of larger particles made of lower refractive index. This

It is clearly observed in Fig4 that our approximations will allow us to test the accuracy of higher orders expressions,
achieve to reproduce the resonances predicted by exait particular quadrupolar orders. For that purpose, we consider
calculations in a more accurate way than state-of-the-ad sphere made of Ti) 140 nm in radius. We compare
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FIG. 6. Comparison between exact calculations and approxima-
tions23for a; (full red line and dashed black lind); (full blue line
and dotted green lineg, (full green line and dashed gray line), and
b, (full cyan line and dotted red line) for TiKJ41] 140 nm in radius.

the calculations of the dipolar and quadrupolar electric and
magnetic Mie coef cients obtained by exact calculations
[Eqg. (1)] with the expressions2@). The plot in Fig.6 shows

the very good accuracy of these expressions for dipolar and
qguadrupolar orders, even when considering larger particles
made of lower refractive indices.

V. DISCUSSION

Conditions of resonance derived in SélcC have been FIG. 7. Comparison between the exagl (black full line)
very useful to derive accurate approximations of the Mierequired to reach the resonance and the prediction provided by
coef cientsin the previous section. Here we will show thattheyeqgs. (5) and (16) respectively labeled & and &V (dotted
can also provide more insight on the origin of morphologicalgreen line). A better approximation of? is obtained by solving
resonances. Since conditiohf] is close to the TE mode ofa ~ WI(z) = § n ¢, labeled &2 (dashed blue line)
hollow resonator, one can infer that morphological resonances
occur thanks to the ability of high index dielectric scatterers to

play the role of a cavity. Since high index dielectric scattererrovided in Secll C needs then to be carried out. The exact
are not perfect cavities, the trapped electromagnetic eldvalues of the permittivity needed to reach the resonance for
leaks in the surrounding medium driving to resonances of thg given Zo = kR can be derived by numerically solving the
scattered eld. Whet |  the scatterer becomes a very equationa; = 1 for the electric dipole resonance abg= 1
good cavity for the electromagnetic eld which can be trappedfor the magnetic dipole resonance. In Fighe exact value of
inside the resonator for a long time. It is not surprising thenhe ynitary limit permittivity for the electric dipold® in Fig.7

to nd the same resonance condition as the one of a hollows compared to the prediction provided by Etg)in Sec.l C,
resonator in this case. z5 = ry, or equivalently, & = (2)?. One can clearly see that

ll\tlpntlathellessd,. f;he r?sfonan(;ﬁ cgrn'\(:itidﬁ)d(for fmagrr:e'hic this expression predicts accurately the asymptotic behavior of
mutipoles 1s dmerent from the mode of a NOIOW ihe exact fJe)L for very smallzy but is not very accurate for

resonator. This TM'm normall r r.,r in . . . .
esonato S ode normally occurszgt Ty, I, being largerzy. In Fig. 7 the same comparison is also carried out

the rst zero of the derivative Sf theth order Be_ssel functions between the exact unitary limit permittivity for the magnetic
[33] and notzs  rpsy. Forn= 1,r; andryg: = rog take the _ ") o . (1) — (foy2
following valuer, = 2.744 andro = . However, one can dipole ;; and the prediction given by EAL), *° = (3)".
) - = 0 : ' A very good agreement is observed between the exact value
infer that magnetic morphological resonances also occur dug S
" S : . nd the prediction.

to the ability of high-index dielectric scatterers to concentrate A i dicti e Iso be derived
light. Since even in the limi{ | , these high-index more accurate prediction of,; can a (sl? € derived.
dielectric scatterers are not perfect cavities, and that explaink° do so, one could solve Edl) forn=1: ;7(z5) =S .
why the magnetic resonances are different from the TM modekfowever, this equation can only be solved numerically. On the
of hollow resonators. other hand, if the approximatior{*)(zs) given by Eq. 20) is

In Sec.ll C, these resonance conditions were derived in theised, the previous equation reduces to a second order equation
limit | f . One could then question the validity of such in _and can be analytically solved leading to the prediction
conditions of resonance for large but not in nite value$ qf. l(ff) (the exact expression off) is provided in AppendiX).
A comparison between the exact valuep gffrequiredtoreach  This prediction proves to be quite accurate for a large range of
the resonance, also called unitary lindi€], and the predictions  zy as can be seen in Fig.
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Finally itis also interesting to notice that the approximation|f we use the following recurrence relation for spherical Bessel
(23) also predicts a zero of the Mie coef cients different from functions B2]:
the trivial condition ( S 1). These zeros actually correspond

. = n+ 1 .
to the anapoles in Ref4f]. They are in fact reached when in@=5 in(@ + jns1(2),
fn(,2)Sz2=10 or equivalentlyzlzfn( ,2)= 1. This latter _ z . _
condition can be found while searching for solutions to [Zn(2)] =S Nin(2) + Zns1(2),
. S 2 . H
eq= 1, the de nition of ¢q(2) = (%)2%552((22’% being pro- W) =n+ LG (A2)
vided in Ref. B7]. Expression 23) also provides a condition in(2
for whichby, is null. The nontrivial solution, differentfromthe  ; then follows that Eq.AL) is veri ed for the zeros of Bessel
trivial solution = 1, corresponds th,(,z) = O. functions of orden $ 1:z = rpsq.
VI. CONCLUSION APPENDIX B: WEIERSTRASS FACTORIZATION

OF BESSEL FUNCTIONS
To conclude, the use of thi€ -matrix has allowed us to ) . )

derive resonance conditions for both plasmonic and high-index AS demonstrated by Watson in ReR1], it is possible to
dielectric resonant particles. We have thus been able to shofkPress cylindrical Bessel functions as an in nite product of
that under the conditiops| > 1, different from the condition  factors involving their zeros:
used for Taylor seriezs << 1, the electric resonance is close 1 . 5 2
tozs rp and the magnetic resonance is closedo rns;. J@= —— = 1S , (B1)
The proximity of the electric resonance to the pole of the (+1) 2 n

n(2s) function atzs = rn_explains the _vveak convergence of where z , is the nth zero of the cylindrical Bessel func-
the Taylor series expansion forapprommatlng Mie coef cientSons of order . This expression can be generalized to
espeC|aII_y near the EIGCtr_'C resonances. We propo_sed ‘ﬂe spherical Bessel functiojg by means of the relation:
solve this problem by using a Weierstrass expansion o] — ) )
the Bessel functions. This method allows us to derive fodn(@) = z_an*‘JJZ(Z)V' lfwesetn;  zn.y2j andifwenotice
any multipolar order highly accurate electric and magnetichat (n+ 1/2)= 25" ~(2nS 1)!l, we get the following
polarizability expressions. We evidenced the high accuracy oéxpression18):
these expressions by calculating the dipolar and quadrupolar 5
polarizability expressions of spherical particles made of silver, i@ = z" S z (B2)
silicon, and titania. These expressions bring analytical tools to " @n+ )N -1 (Y '
explain the resonant light interaction with metallic or dielectric h
particles. They also permitted us to bring more physical insight he double factorial operator !! is de ned such that
on the origin of morphological resonances. In particular, m
these formulations allowed us to calculate a very accurate nt= (nS2k=nnS2)(nS4)---, (B3
prediction of the dielectric permittivity required to reach the k=0
ofteropportunities for modeling the ightsoattering m complex MNETeM = Int(n + 142 1 with 01 = 1, or n ferms of

opp n0deling tneig g PYeX ordinary factorialsvia the relations (85 1)!' = @2 and
r_ned|a or for homogenizing optical systems made of resonark )it = 27t for n = 0,1,2 2'n!
light scatterers. These expressions are designated as Weierstrass factoriza-
tions throughout the article as it can also be obtained by using
the Weierstrass factorization theorem. It can then be used to
derive an expression of(Y functions also appearing in our
Research conducted within the context of the Internationaformulation of the Mie coef cients. One should rst notice

Associated Laboratory ALPhFA: Associated Laboratory forthat (! as de ned in @) is equal toz times the logarithmic
Photonics between France and Australia. This work has beeterivative of the Ricatti-Bessel functioa,(z). From (18), it
carried out thanks to the support of the A*MIDEX project is then straightforward to show that
(no. ANR-11-IDEX-0001-02) funded by the Investissements
d’Avenir French Government program, managed by the French

N
N

n=1
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APPENDIX A: RESONANCE AND ZERO D@)=n+ 1+ % (B4)
CONDITIONS OF b, = 225 ()

It has been shown in Selt. that a good prediction of the o
rst resonance obj, in the limitzg << 1 could be provided by APPENDIX C: APPROXIMATION OF ;" FOR &,
the solution of the following equation: As suggested in Ref2[] (see notably the supplementary

5 material), the expressions derived in Appendixan be used
,(11)(2) =Sn. (A1)  to approximate functionfs, and (V) as an alternative to their
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Taylor series expansions. It was this method that was followethe power series expansion arouade rpg1:
to derive the approximation2(@), (21), and @2). Here, we

provide a demonstration of these two expressiorfd. is . d @
equal to B2y Drs)+ (S rms) d; +---, (D1)
s1
(1) d i
272 272 ds’ | _ in31(2)
D)= n+ 1+ —o—+  —a @= - 7=
= Zj ng
:mhivzzz S S i@ dz in(@)
22312 (rnl)215 7 z djng
|) + JnSl(z) (D2)
(C1) jn(2) dz
As in our studyz <<r,,, for | 2 ls;zz 1 which  which leads to
()2
, @) .
leads to d; _ _ns1 . .
= ———j a(rs1). D3
dz jn(rnél)JnSl( ns1) (D3)
2 a1
Mg 24 2 &2 1 (C2) . . .
1 22S r2 o (ry)?’ By using a recurrence relation for spherical Bessel
=2 functions B2,
H 1 1 H H « N, . ~ .
Finally, as|:lw = 2@y [31], Eq. (C2) simpli es to IS EJ W@+ .2 =812 (D4)
222 o . — < . . .
\@) N+ 1+ 42 2 (C3) we can show thgt s ,(rmg1) = S jn(rns1). This result leads to
z2S (rn) q o
n — & ~
where , rlz S 2(2n+3) az .. - S Insi. (D5)
Moreover we can apply the same idea to approximate the =
spherical Bessel functiong: Similar calculations allow us to show that,(}) (rng1) =
- 3 (1) - -
_ n R R S2(n+ 1) and%} |, =S 2020 § 2rpgy.
in(@= ——— 1S — 1s —
(2n+ 1)1 Mn,1 - Mn,
- (Ca) APPENDIX E: APPROXIMATION of a,
(AD may be reexpressed in the following way:
and [1S (%)2] can be approximated: 272
=2 ' A(zg) = n+ 1+ = gnl +2 .2 (E1)
2 2’ (n+3) : & (n+1)
1S — =exp In 18 — _(n+3)22S(nh+1 )
=2 fni =2 i - 22S1 * 202 (E2)
7z 2 (n+3)2 &
= ex In 1S — . (C5 (AD)(z) = ™™= 2
P ~ (C5) @)=+ DEmg—+ 203 (B3

which leads to

If z<<rpo, In 1S ( ) ] S (%)2, it then follows
=2 " s @) S ()

from the prevrous results that

(n+3)2 &
2 - (+1)™ 2
. Z = ——=—+ 2 nZ
1s = exp( nZ?), (C6) s (n+ 1) 2251 neo
. |
I=2 A (n+3) 2 & 1
which leads to the following approximation fpy: g (n+ D s 281 +2 2
. z" “ 2 5 (n+3) 2&q
in@d S—=7 1S — exp(nz9). (C7) _ (n+1)(sS Dy (n+1) sZn
(2n+ 1! o = FINso D) orD s> 7
' 1S 22 sZ2S1
APPENDIX D: APPROXIMATION OF ~ { FOR b, x s Mz)S PV(zs)
In order to approximate the functiorf? at the vicinity of _ M+ (S5 1) fn(520)S z; (E4)
the resonance condition bf, we can make the choice to take (1S 22)f u( s20)
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The numerator o&, can then be reexpressed in the following way:

(n+ 1)z} &5 %
(2n+ )N fn( s,20)
where the functiori , has been de ned in the article. The denominator can be also simpli ed:

jM(zo) s PP(z)S BV(z) = (sS1)fn(s200S572, (E5)

(n+3) 2 & 1

- + ~ gz + sZ3S1

M) o D@)S @) = ZeyQnz) s e S (+ DE g =520 5%

. . - gz Z .

W) s OE)s (V) = S @) 16 @) S (n+ 1)), (E6)

201 o ( s,20)
whereg, has been de ned in the article. That nally leads to the following approximation of the electric Mie coef cients:

(n+ ].)szl g5 n%Sizo (s S 1) fn( s,20) S ZE

AD = - ) (E7)
(@n+ ' Qn(zo) sfn( 20)In(z0) S (n+ 1)
APPENDIX F: APPROXIMATION OF b,
A((z0) S AY(z5) = 2zﬁ +2,28 25 Z $2,2=82,23(sS 1)+ 27 sS1 (F1)
n L N San nsfom =Nt (251) £S1
If we assume that? << 1, it then leads to
(Al & (AL & 2z;
M) S () (81 S—E 8207 (F2)
Keeping the assumptiazf << 1 in the approximation (A, it then follows that
: (AD) (A1) & (AL gt 8 20 &
in(20) sy (20)S §7(ze) me "( ¢S 1)Ln( s20), (F3)
and the denominator can be also approximated:
- - - 272 -
@) S )= D@)S 0+ 1S s g" +2 022 = sba(szo)+ () S (n+ 1), (F4)
n
which then leads to the following approximation fay:
(A1) _ z™? &5 nzSizo (sS 1)Ln(20) (F5)
" @2n+ D! Qn(zo) sLn( szo)+ (z0)S (n+ 1)
APPENDIX G:
The outgoing spherical Hankel functions can be written in the following form:
i n . i n . 1
hl(,]+)(Z) - (éi)n+1i i (n't S)! - e” (él)n+1|n+s+ (n"': S)!ZnSs'
z _,si(229°(nS 9)! zn+1 o s!(2) (n S s)!
eiz
hi @) = 5 Qn(@), (G1)
n ~ n+s+
where the polynomial functio®n(z) = _ 0(S 1)“"1'5,(2)51 o Z"Ss,
APPENDIX H:
@ S 82820 ZSn+ FPS2 ©25n%+4n+ 1)n z 242 (e)f;‘
uL > (H1)

063833-9



COLOM, DEVILEZ, ENOCH, STOUT, AND BONOD

[1] H. C.vande Hulstl.ight Scattering by Small ParticleStructure
of Matter Series (Dover, Mineola, NY, 1981).

[2] J. D. JacksonClassical ElectrodynamicS8rd ed. (John Wiley
& Sons, New York, 1999).

[3] C. F. Bohren and D. R. Huffmambsorption and Scattering of
Light by Small ParticlegWiley Science, New York, 1983).

[4] M. Mishchenko, L. Travis, and A. Laci§cattering, Absorption,
and Emission of Light by Small Particl&8ambridge University
Press, Cambridge, UK, 2006).

[5] L. Novotny and B. HechtPrinciples of Nano-Optic§Cam-
bridge University Press, Cambridge, UK, 2006).

[6] M. I. Tribelsky and B. S. Lyk'yanchukPhys. Rev. Lett97,
263902(20089.

[7] G. Mie, Ann. Phys. (Berlin, Ger.330, 377(1908.

[8] G. Gouesbet and G. GréhaBeneralized Lorenz-Mie Theories
(Springer-Verlag, Berlin Heidelberg, 2011).

[9] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. SchalzPhys.
Chem. B107, 668(2003.

[10] R. Colom, A. Devilez, N. Bonod, and B. Stofthys. Rev. B3,
045427(2016.

[11] B. Stout, A. Devilez, B. Rolly, and N. Bonod, Opt. Soc. Am.
B 28,1213(201)).

[12] A. Wokaun, J. P. Gordon, and P. F. Lid®hys. Rev. Lett48,
957(1982.

[13] M. Meier and A. WokaunQpt. Lett.8, 581(1983.

[14] H. Kuwata, H. Tamaru, K. Esumi, and K. Miyan@ppl. Phys.
Lett. 83, 4625(2003.

[15] A. Moroz,J. Opt. Soc. Am. B6, 517 (2009.

[16] G. C. des Francdnt. J. Mol. Sci.10, 3931(2009.

[17] S. Albaladejo, R. Gmez-Medina, L. Froufe-Pérez, H. Marin-

chio, R. Carminati, J. Torrado, G. Armelles, A. Garcia-Martin,
and J. J. Saéngpt. Expresd8, 3556(2010.

[18] E. C. L. Ru, W. R. C. Somerville, and B. Auguiéhys. Rev. A
87,012504(2013.

[19] A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkdvhys. Rev.
B 84, 235429(2011).

[20] A. Garcia-Etxarri, R. Gémez-Medina, L. S. Froufe-Pérez,

C. Lo6pez, L. Chantada, F. Scheffold, J. Aizpurua, M.
Nieto-Vesperinas, and J. J. Saer@pt. Expressl9, 4815
(2011).

[21] X. Zambrana-Puyalto and N. Bonodhys. Rev. B91, 195422
(2019.

PHYSICAL REVIEW A5, 063833 (2017)

[22] R. Savelev, S. Makarov, A. Krasnok, and P. Bel@pt.
Spectroscl19, 551(2015.

[23] M. Decker and |. Staudd, Opt.18, 103001(2016.

[24] A. 1. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S.
Kivshar, and B. Luk'yanchuk$Science354, aag24722016.

[25] D. E. Aspnes and A. A. StudnBhys. Rev. B7, 985(1983.

[26] P. B. Johnson and R. W. Christyhys. Rev. B3, 4370(1972.

[27] V. Grigoriev, A. Tahri, S. Varault, B. Rolly, B. Stout, J. Wenger,
and N. BonodPhys. Rev. A88,011803(2013.

[28] G. Videen, J. Li, and P. Chylek]. Opt. Soc. Am. Al2, 916
(1999.

[29] A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and
B. Luk’yanchuk,Sci. Rep2, 492(2012).

[30] R. G. Newton, Scattering Theory of Waves and Particles
International Series in Pure and Applied Physics (McGraw-Hill,
New York, 1966).

[31] G. Watson,A Treatise on the Theory of Bessel Functions
Cambridge Mathematical Library (Cambridge University Press,
Cambridge, UK, 1944).

[32] M. Abramowitz and I. A. Stegurilandbook of Mathematical
Functions: With Formulas, Graphs, and Mathematical Tables
Applied Mathematics Series (Dover Publications, New York,
1964).

[33] C. A. Balanis,Advanced Engineering Electromagnet{de®hn
Wiley & Sons, Hoboken, New Jersey, 2012).

[34] R.-L. Chern and X.-X. LiuJ. Opt. Soc. Am. B7, 488(2010.

[35] L. Landau, E. Lifshits, and L. PitaevskiElectrodynamics of
Continuous Media2nd ed., Course of Theoretical Physics,
Vol. 8 (Butterworth-Heinemann, Oxford, UK, 1995), p. 460.

[36] V. Grigoriev, N. Bonod, J. Wenger, and B. Stod€S Photonics
2,263(20195.

[37] A.Devilez, X. Zambrana-Puyalto, B. Stout, and N. Boriddys.
Rev. B92, 241412(2015.

[38] B. Garcia-Camara, F. Moreno, F. Gonzélez, J. Saiz, and G.
Videen,J. Opt. Soc. Am. A5, 327 (2008.

[39] G. Videen and W. S. BickeRhys. Rev. A5, 6008(1992).

[40] A. E. MiroshnichenkoPhys. Rev. A30, 013808(2009.

[41] Y. Yamada, H. Uyama, S. Watanabe, and H. Nozéymgl. Opt.
38, 6638(1999.

[42] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu, R. M.
Bakker, A. Chipouline, A. I. Kuznetsov, B. Luk’yanchuk, B. N.
Chichkov, and Y. S. Kivshaiat. Commun6, 8069(2015.

063833-10





