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ON THE SMOOTH WHITNEY FIBERING CONJECTURE

C. MUROLO, A. du PLESSIS, D.J.A. TROTMAN

We improve upon the first Thom-Mather isotopy theorem for Whitney stratified sets. In par-
ticular, for the more general Bekka stratified sets we show that there is a local foliated structure
with continuously varying tangent spaces, thus proving the smooth version of the Whitney fiber-
ing conjecture. A regular wing structure is also shown to exist locally, for both Whitney and Bekka
stratifications. The proofs involve integrating carefully chosen controlled distributions of vector fields.
As an application of our main theorem we show the density of the subset of strongly topologically
stable mappings in the space of all smooth quasi-proper mappings between smooth manifolds, an
improvement of a theorem of Mather.

1. Introduction. The most important and widely used result in stratification theory
is the first Thom-Mather isotopy theorem dating from 1969-70, which implies in particular
that every Whitney stratification is locally topologically trivial. The proof involves finding
controlled lifts of vector fields from a given stratum X onto a tubular neighbourhood
and showing they are integrable. At the time these controlled lifts were not known to be
continuous. However continuous controlled lifts were shown to exist by Shiota [Sh]2, Bekka
[Be]2, and the second author [Pl] twenty years ago. In 1993 the third author conjectured
that the local foliation obtained in the isotopy theorem (with leaves of the same dimension
as X) can be chosen to have continuously varying tangent planes, and Sullivan pointed out
to us that this implies the smooth version of the (analytic) Whitney fibering conjecture
(see below). In this paper we prove this smooth Whitney fibering conjecture with the
weaker hypothesis that the stratification be Bekka (c)-regular, a condition equivalent to the
existence of continuous controlled lifting of vector fields, and which is implied by Whitney
regularity. Moreover we show the existence of foliations by regular wings for Whitney
and Bekka stratifications. We thus strengthen significantly the first Thom-Mather isotopy
theorem.

We now give a historical presentation of the Whitney conjecture and related results.
In his famous paper of 1965 [Wh] H. Whitney proposed a local fibering property

around points of a complex analytic variety. More precisely he conjectured that every
complex analytic variety V admits a stratification such that a neighbourhood U of each
point is fibered by copies of the intersection of U with the stratum M containing the point.
He asked also that the fibers be holomorphic manifolds and that their tangent spaces vary
continuously as nearby points approach X (see section 2 for a precise formulation).

Note that if one does not require the continuity of tangent spaces to the fibers then
the first Thom-Mather isotopy theorem [Th], [Ma]1,2 suffices to prove the smooth version
of Whitney’s conjecture.

In 1989 R. Hardt and D. Sullivan gave a proof of a similar conclusion for holomorphic
varieties but again without the essential continuity of the tangent spaces to the fibers [HS].

From 1993 the first author studied the possibility of obtaining the analogous property
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in the case of smooth real stratified spaces in his thesis under the direction of the third
author, who conjectured that this property be true for Whitney (b)-regular stratifications.

The smooth version of the Whitney conjecture was necessary to be able to use the
notion of semidifferentiability introduced in [Mu]1 and [MT]4 with the aim of obtaining
the preservation of regularity of a substratified space of a stratification after a deformation
by stratified isotopy [MPT]1,2, so as to show the conjectured representation of homology
by Whitney stratified cycles [Go]1,2 (an open problem since 1981) and also to approach the
unsolved conjecture of Thom on the existence of Whitney triangulations and cellulations of
Whitney stratified sets (preliminary work on this problem dating from 1994-96 remained
in a manuscript form and will be treated in a forthcoming paper [MT]5). It improves
moreover the first Thom-Mather isotopy theorem by ensuring horizontally-C1 regularity
([MT]3,4, §5 Theorems 10 and 11).

The first and third authors began a collaboration on this research with the second
author, whose book of 1995 [PW] with C. T. C. Wall introduced the notion of E-tame re-
tractions, as retractions whose fibers are foliations having an analogous continity property.
More precisely, with the aim of proving that multi-transversality with respect to a given
partition in submanifolds of a jet space is a sufficient condition for strong C0-stability, Wall
and the second author introduced various regularity conditions for retractions r : M → N
between two smooth manifolds : the Tame, Very tame and Extremely tame retractions.
These last, the E-tame retractions, were characterized by the fact that the foliations de-
fined by their fibres are of class C0,1. This property in a stratified context for a local
“horizontal” retraction π′ : π−1

X (Ux0) → π−1
X (x0) is equivalent to a real C0,1 version of

the conclusion of the Whitney fibering conjecture (see §8 Remark 10 or [MT]4 §4.3 for
details). These tame retractions were studied by Wall and the second author [PW], and
also Feragen [Fe] who found particular cases where retractions can be glued.

In 2007, P. Berger, in his Ph.D. thesis supervised by J.-C. Yoccoz, with the aim of gen-
eralizing some fundamental results of Hirsch-Pugh-Shub to stratifications of laminations,
needed the smooth version of the Whitney fibering conjecture to study the persistence of
normally expanded Whitney stratifications [Ber]

In 2014, A. Parusinski and L. Paunescu [PP] constructed for a given germ of complex
or real analytic set a stratification satisfying a strong trivialization (called arc-wise ana-
lytic) property locally along each stratum and then proved the original Whitney fibering
conjecture in the real and complex, local analytic and global algebraic cases.

In this paper we prove a result which implies the smooth version of Whitney’s con-
jecture. This is that any Bekka (c)-regular stratification satisfies the smooth version of
the Whitney properties. Recall that (c)-regularity is strictly weaker than Whitney’s (b)-
regularity [Be]1, and that every complex analytic variety admits a (b)-regular stratification
(hence (c)-regular) [Wh]. More generally every subanalytic set admits a (b)-regular stratifi-
cation [Hi], [DW], [Ha], [LSW], as does every definable subset in an o-minimal structure
[VM], [Loi], [NTT]. Thus the smooth version of Whitney’s conjecture holds for these
classes of sets.

The contents of the paper are as follows.

In section 2, we present the Whitney fibering conjecture as stated in the original paper
of H. Whitney [Wh].

In section 3, we review some important classes of regular stratifications: the abstract
stratified sets of Thom and Mather [Th], [Ma]1,2, and the (c)-regular stratifications of
Karim Bekka [Be]1, and we recall the first isotopy theorem which holds for these classes.
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In section 4, we introduce the notion of controlled foliation on a stratification by two
strata X < Y in Rn and prove a theorem, for gluing these foliations, whose methods will
be frequently used in the proof of Theorem 3 in section 5.

In section 5, we recall in §5.1 some important properties of the stratified topological
triviality map obtained by using continuous canonical lifted frame fields [MT]2,3,4. In §5.2
we recall some useful properties of the controlled frame fields tangent to the horizontal
leaves of this trivialization map. Then in §5.3 we prove a two strata version of our main
result, Theorem 3 (and Theorem 4) stating that the smooth version of the Whitney fibering
conjecture holds for every stratum X with depthΣ(X) = 1 of a (c)-regular stratification.

In section 6 under the same hypotheses as Theorems 3 and 4 we construct a local
wing structure for Bekka (c)-regular (Theorem 5) and Whitney (b)-regular (Theorem 6)
stratifications for every stratum X with depth 1. These results will play an important role
in the proof of our main theorem in section 7.

In section 7 we prove our main theorems. First we use the notion of conical chart
(Definition 10) and the local wing structure of section 6 to prove the conclusions of the
smooth Whitney fibering conjecture for any stratum X of a (c)-regular stratification X =
(A,Σ) having arbitrary depth (Theorem 7). Then we use Theorem 7 to extend the wing
structure Theorems 5 and 6 of section 6 to a stratum of arbitrary depth (Theorem 8). Step
4 of Theorem 7 also completes some details not given in Theorems 2 and 3 of [MT]2 of
the existence of continuous controlled lifting of vector fields in the general case with more
than 3 strata.

In section 8 we apply Theorem 7 to the results of [MT]1,3,4, where we introduced the
notion of horizontally-C1 stratified controlled morphism f : X → X ′ (Definition 11) to
prove that the flows of the continuous controlled lifted vector fields to a stratum X have
a horizontally-C1 regularity, stronger than C0-regularity, but weaker than C1-regularity
(Corollaries 6 and 7) and we deduce a horizontally-C1 version of the first Thom-Mather
Isotopy Theorem for a stratified proper submersion f : X →M into a manifold (Theorems
9 and 10). Then using the finer notion of F-semidifferentiability (Definition 12), we improve
these results by stating an F-semidifferentiable version of the first Thom-Mather Isotopy
Theorem which extends the horizontally-C1 convergence of the topological trivialisation of
f to all points of strata Y ′ such that X ≤ Y ′ ≤ Y (Theorems 11 and 12).

In section 9 we use our main Theorem 7 to prove Theorem 13 which gives a sufficient
condition for a smooth map between two smooth manifolds to be strongly topologically
stable. This in turn implies a long-awaited improvement to strong topological stability of
a classical (1973) theorem of Mather [Ma]2 stating that the subset of topologically stable
mappings in the space of all smooth (quasi-)proper mappings between smooth manifolds is
dense. The proof uses the relation between the conclusion of the smooth Whitney fibering
conjecture and the existence of the tame retractions introduced and studied in [PW],
Chapter 9.

We thank Dennis Sullivan for drawing our attention to Whitney’s original fibering
conjecture and to his own work with Bob Hardt on this conjecture [HS]. We thank also
Edmond Fedida, Etienne Ghys, Pierre Molino, David Spring and the late Bill Thurston for
useful discussions.

2. The Whitney fibering conjecture.

In his famous article Local Properties of Analytic Varieties [Wh], after introducing
the well-known (a) and (b)-regularity conditions and showing that “Every (real or com-
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plex) analytic variety V admits a (b)-regular stratification”, H. Whitney gave the following
definition:

Definition 1. A stratification Σ of an analytic variety V will be considered “good”
if each point p0 ∈ V admits a neighbourhood U0 in V having a foliation Hp0 = {F (q)}q

obtained in the following way. Let M be the stratum of Σ containing p0, M0 := M∩U0 and
N0 := (Tp0M)⊥ ∩ U0 (where ⊥ means the orthogonal complement in the ambient space).

Then U0 is homeomorphic to M0 ×N0 through a map φ : M0 ×N0 → U0, φ = φ(p, q)
satisfying the following properties:

i) φ is analytic in p ∈M0 and continuous in q ∈ N0;
ii) Hp0 = {F (q)}q is exactly the foliation {Mq := φ(M0 × {q})}q∈N0 induced by φ;
iii) every restriction φ|M0×q : M0 × {q} → F (q) to a leaf of Hp0 is a biholomorphism;
iv) both restrictions φ|M0×{q0} = idM0 and φ|{p0}×N0 = idN0 are the identity.

Figure 1

Whitney’s definition of 1965 was a precursor of the idea that suitable regular stratifi-
cations have the property of local topological triviality, an idea completely clarified in the
years 1969-70 by the famous Thom-Mather first isotopy theorem [Ma]1,2 [Th].

Whitney called such a map φ a semianalytic fibration (for Σ) near p0 and remarked
that an analytic variety V does not have (in general) a stratification admitting near each
point an analytic fibration. He gave the celebrated counterexemple (the four lines family)

V := {(x, y, z) ∈ C3 | xy(y − x)
(
y − (3 + t)x

)
= 0 }

and stated the following conjecture:

Whitney fibering conjecture. “Every analytic variety V has a stratification ad-
mitting in each point p0 ∈ V a semianalytic fibration”.

Whitney comments furthermore that “. . . a stratification satisfying the conjecture
(possibly with further conditions on φ) would probably be sufficient for all needs”.

Remark 1. Whitney also states in a commentary that every stratification Σ of V
with such a semianalytic fibration near a point p0 is automatically (a)-regular at all points
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of the neighbourhood U0∩M of p0 in M , because the properties of φ imply the convergence
of the tangent planes to the leaves of the foliation Hp0 = {F (q)}q∈N0 :

(Lp) : lim
z→p

TzF (z) = TpM .

So, for Whitney, (a)-regularity is a consequence of the existence of such a semi-analytic
fibration. In fact he wrote that in a local analysis in which M0 is identified with the
(x1, . . . , xd)-plane (d = dimM), for each stratum Mj > M0, “any fiber F (q), with q ∈Mj

sufficiently near to p0 is near F (p0) = M0 . . . . and F (q) is expressed by holomorphic
functions xi = fi(x1, . . . , xd), i = 1, . . . , n − d. These functions are small throughout M0;
hence their partial derivatives are small in a smaller neighbourhood of p0.

Since F (q) ⊆Mj if q ∈Mj, this clearly implies the condition (a)”.
However, this argument is not valid in general as A. du Plessis explained in a conference

in 2005 at the CIRM.

Definition 2. Because the limit condition (Lp) : limz→p TzF (z) = TpM is very
important for us we have previously redefined it in a more general C1-real context as the
(a)-regularity of a local controlled foliation [Mu]1, [MT]4 and (by abuse of language) we
will refer to it as the smooth version of the Whitney fibering conjecture. In this paper we
do not seek any (re)-stratification but our aim is to prove the conclusions of the conjecture
of Whitney for each point x of every stratum X of a fixed arbitrary Bekka (c)-regular
stratification X with C1 strata.

Let us mention some work on the fibering conjecture.
Whitney proved ([Wh], §12) that the conjecture holds for every analytic hypersurface

V of Cn for all points in (n− 2)-strata after restratification of V .
Later, in 1983, Hardt [Ha] indicated a possible solution of the problem in the real

analytic case and in 1988, Hardt and Sullivan [HS] treated the problem for complex alge-
braic varieties. The conclusion obtained by Hardt and Sullivan [HS] is weaker than that
proposed by Whitney, in that they did not obtain the condition lim

z→p
TzF (z) = TpM , i.e.

the (a)-regularity of the foliation Hp0 .
Very recently, A. Parusinski and L. Paunescu [PP], using a slightly stronger version

of Zariski equisingularity constructed for a given germ of complex or real analytic set, a
stratification satisfying a strong (real arc-analytic with respect to all variables and analytic
with respect to the parameter space) trivialization property along each stratum (the au-
thors call such trivializations arc-wise analytic). Then using a generalization of Whitney
Interpolation they prove the original Whitney fibering conjecture in the real and complex,
local analytic and global algebraic cases. Because Zariski equisingularity implies Whitney
regularity in the complex case, their hypothesis is stronger than the (c)-regularity used in
the present paper, while their conclusion is also stronger.

We conclude this section by recalling the following globalization problem ([Wh] §9):
Problem. “May one fibre a complete neighbourhood of any stratum ?”
That is :
Can one find a global stratified foliation of a complete neighbourhood of any stratum ?

We will not deal with this problem, but we just remark that without restratifying the
smaller stratum it cannot have a solution in general. In fact, as P. Berger wrote to us
(see his Ph.D. Thesis p. 60 or [Ber] p. 38) by considering the stratification of two strata
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M = S2×{(0, 0)} < S2× (R2−{(0, 0)}) of S2×R2, a global foliation of a neighbourhood
of S2 × {(0, 0)} in S2 × (R2 − {(0, 0)}) cannot exist, because otherwise, starting from an
arbitrary non-zero vector tangent to S2 one could define by holonomy a continuous non-zero
vector field on the whole of S2 which cannot exist.

3. Bekka (c)-regular stratified spaces.

We recall that a stratification of a topological space A is a locally finite partition Σ of
A into C1 connected manifolds (called the strata of Σ) satisfying the frontier condition : if
X and Y are disjoint strata such that X intersects the closure of Y , then X is contained
in the closure of Y . We write then X < Y and ∂Y = Y − Y so that Y = Y t

(
tX<Y X

)
and ∂Y = tX<Y X (t = disjoint union).

The pair X = (A,Σ) is called a stratified space with support A and stratification Σ.
The union of the strata of dimension ≤ k is called the k-skeleton, denoted by Ak, inducing
a stratified space Xk = (Ak,Σ|Ak

).
A stratified map f : X → X ′ between stratified spaces X = (A,Σ) and X ′ = (B,Σ′) is

a continuous map f : A→ B which sends each stratum X of X into a unique stratum X ′

of X ′, such that the restriction fX : X → X ′ is smooth. We call such a map f a stratified
homeomorphism if f is a global homeomorphism and each fX is a diffeomorphism.

A stratified vector field on X is a family ζ = {ζX}X∈Σ of vector fields, such that ζX
is a smooth vector field on the stratum X.

Extra conditions may be imposed on the stratification Σ, such as to be an abstract
stratified set in the sense of Thom-Mather [GWPL], [Ma]1,2, [Ve] or, when A is a subset
of a C1 manifold, to satisfy conditions (a) or (b) of Whitney [Ma]1,2, [Wh], or (c) of K.
Bekka [Be]1.

Definition 3. (Thom and Mather) Let X = (A,Σ) be a stratified space.
A family F = {(πX , ρX , TX)}X∈Σ is called a system of control data) for X if for each

stratum X we have that:

1) TX is a neighbourhood of X in A (called a tubular neighbourhood of X);
2) πX : TX → X is a continuous retraction of TX onto X (called projection on X);
3) ρX : TX → [0,∞[ is a continuous function such that X = ρ−1

X (0) (called the
distance function from X)

and, furthermore, for every pair of adjacent strata X < Y , by considering the restriction
maps πXY = πX|TXY

and ρXY = ρX|TXY
on the subset TXY = TX ∩ Y , we have that :

5) the map (πXY , ρXY ) : TXY → X × [0,∞[ is a smooth submersion (it follows
in particular that dimX < dimY );

6) for every stratum Z of X such that Z > Y > X and for every z ∈ TY Z ∩ TXZ

the following control conditions are satisfied :
i) πXY πY Z(z) = πXZ(z) (called the π-control condition),
ii) ρXY πY Z(z) = ρXZ(z) (called the ρ-control condition).

In what follows we will pose TX(ε) = ρ−1
X ([0, ε)) ,∀ ε ≥ 0, and without loss of generality

will assume TX = TX(1) [Ma]1,2, [GWPL].

If A is Hausdorff, locally compact and admits a countable basis for its topology, the
pair (X ,F) is called an abstract stratified set. Since one usually works with a unique system
of control data of X , in what follows we will omit F .
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If X is an abstract stratified set, then A is metrizable and the tubular neighbourhoods
{TX}X∈Σ may (and will always) be chosen such that: “TXY 6= ∅ if and only if X < Y, or
X > Y or X = Y ” (see [Ma]1, page 41 and following).

Let f : X → X ′ be a stratified map between two abstract stratified sets and fix
two systems of control data F = {(TX , πX , ρX)}X∈Σ and F ′ = {(TX′ , πX′ , ρX′)}X′∈Σ′

respectively of X and X ′. The map f is called controlled (with respect to F and F ′) if
when X < Y there exists ε > 0 such that for all y ∈ TXY (ε) = TX(ε)∩Y the following two
control conditions hold :πX′Y ′fY (y) = fXπXY (y) (the π-control condition for f)

ρX′Y ′fY (y) = ρXY (y) (the ρ-control condition for f).

Similarly, a stratified vector field ζ = {ζX}X∈Σ is controlled (with respect to F) if the
following two control conditions hold:πXY ∗(ζY (y)) = ζX(πXY (y)) (the π-control condition for ζ)

ρXY ∗(ζY (y)) = 0 (the ρ-control condition for ζ).

The notion of system of control data of X , introduced by Mather in [Ma]1,2, is the
fundamental tool allowing one to obtain good extensions of vector fields.

In fact, we have [Ma]1,2, [GWPL] :
Proposition 1. If X is an abstract stratified set with C2 strata, every vector field ζX

defined on a stratum X of X admits a stratified (π, ρ)-controlled lifting ζTX
= {ζY }Y≥X

defined on a tubular neighbourhood TX of X.
Moreover, if ζX admits a global flow {φt : X → X}t∈R, then such a lifting ζTX

admits
again a global flow {φTX t : TX → TX}t∈R, and every φTX t : TX → TX is a stratified,
continuous and (π, ρ)-controlled homeomorphism. 2

Definition 4. (K. Bekka 1991). A stratified space (A,Σ) in Rn is called (c)-regular
if, for every stratum X ∈ Σ, there exists an open neighbourhood UX of X in Rn and a C1

function ρX : UX → [0,∞[, such that ρ−1
X (0) = X, and such that its stratified restriction

to the star of X :

ρX : Star(X) ∩ UX → [0,∞[ is a Thom map,

where Star(X) = ∪Y≥X and the stratification on Star(X) ∩ UX is induced by Σ.

The (c)-regularity of Bekka states exactly that for every pair of adjacent strata X < Y :

lim
y→x

Tyρ
−1
XY (ε) = lim

y→x
ker ρXY ∗y ⊇ TxX for every x ∈ X (ε = ρX(y)) .

Remark 2. A Bekka (c)-regular stratified space X = (A,Σ) admits a system of
control data {(πX , ρX , TX)}X∈Σ in which for each stratum X ∈ Σ, TX = UX ∩A, and πX ,
ρX are restrictions of C1 maps defined on UX [Be]1. Thus (c)-regular stratifications admit
a structure of abstract stratified set and so Proposition 1 holds for them.

We underline moreover that in this case, for each vector field ζX on a stratum X of A,
the stratified (π, ρ)-controlled lifting ζTX

= {ζY }Y≥X defined on a tubular neighbourhood
TX of X may be chosen to be continuous [Be]1, [Pl], [MT]2,3, [Sh]1,2. Finer results may
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be obtained by using the notion of canonical distribution introduced in [MT]1,3,4, which
allow us to obtain a stronger regularity for the lifted flow {φTX ,t : TX → TX}t∈R (see §8).

A canonical distribution DX := {DXY : TX(1) = tY≥XTXY (1) → Gl(TM) }Y≥X

associated to a l-stratum X of A ⊆M is a stratified l-subbundle of tY≥X ker ρXY ∗y ⊆ TM ,
such that each restriction πXY ∗y| : DXY (y) → TxX is an isomorphism (x = πXY (y)) and
which is continuous : limz→y DX(z) = DXY (y), for every Y ≥ X and every y ∈ Y .

In the context of (c)-regular stratifications, the canonical distributions are character-
ized by the property that for each vector field ξX defined on X there exists a canonical
stratified continuous (π, ρ)-controlled extension ξ = {ξXY }Y≥X to DX of ξX and given by:

ξXY (y) := π−1
XY ∗y|DXY (y)(ξX(x)) = DXY (y) ∩ π−1

XY ∗y(ξX(x)) for every Y ≥ X.

The first and the third author proved the existence of canonical distributions for (c)-
regular stratifications in [MT]2 (Theorem 4). In this paper we only consider canonical
distributions defined in the stratification induced by X = (A,Σ) on a neighbourhood W of
x ∈ X in A. Moreover W will be always taken (“πX-fibre”) of the type W = π−1

X (U) with
U a domain of a chart of X near x.

We recall now the most important properties of lifting of vector fields on such regular
stratifications and the most useful relations between them :

i) the condition “to be a Thom-Mather abstract stratified set” implies the existence
of controlled lifting of vector fields [Ma]1,2;

ii) Bekka’s (c)-regularity is characterized by the existence of (π, ρ)-controlled and con-
tinuous lifting of vector fields [Be]1, [Pl], [MT]2,3, [Sh]1,2, and implies the property “to
be a Thom-Mather abstract stratified set” [Ma]1,2. Moreover (c)-regular stratifications ad-
mit systems of control data whose maps {(πX , ρX) : TX → X × [0,∞[ }X are C1 [Be]1.
Bekka’s (c)-regular stratifications have been used notably in [Si] to prove a Poincaré-Hopf
index theorem for radial stratified vector fields, in [Nad] to study Morse theory and tilting
sheaves on Schubert stratifications, and in [RD] to provide a sufficient condition for the
existence of a real Milnor fibration.

Finally we recall the following important facts :
a) Whitney (b)-regularity implies (c)-regularity [Be]1, [Tr]1 ;
b) every abstract stratified set admits a (b)-regular embedding [Na], [Te], and even

[No] a subanalytic (w)-regular and hence (b)-regular [Kuo], [Ve] embedding in some RN ;
c) abstract stratified sets admit triangulations, smooth in the sense of Goresky [Go]3;
d) the first isotopy theorem of Thom-Mather holds for all the kinds of stratification

considered above, using the (claimed) properties of stratified lifting of vector fields.

The first isotopy theorem of Thom-Mather applied to a projection map πX : TX → X
on the stratum X can be stated as follows :

Theorem 1. Let X = (A,Σ) be an abstract stratified closed subset in Rn with C2-
strata, X a stratum of X and x0 ∈ X and Ux0 a domain of a chart near x0 of X.

For every frame field (v1(x), . . . , vl(x)) of Ux0 (l = dimX) having a global flow, the
(π, ρ)-controlled liftings (v1(z), . . . , vl(z)) on π−1

X (Ux0) have global flows (φ1, . . . , φl) and
the map

H = Hx0 : Ux0 × π−1
X (x0) −→ π−1

X (Ux0)

(t1, . . . , tl, z0) 7−→ φl(tl, . . . , φ1(t1, z0) . . .)

is a stratified homeomorphism, a diffeomorphism on each stratum of Ux0 × π−1
X (x0). 2
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4. Gluing controlled foliations by generating frame fields.

The proof of a smooth version of the Whitney fibering conjecture for (c)-regular strat-
ifications having two strata X < Y that we will give in section 5 (Theorem 3) requires a
careful analysis of the properties of the local foliations Hx induced by a topological trivi-
alization H obtained using continuous (π, ρ)-controlled lifting of vector fields [MT]4 from
X to Y . It is moreover strongly based on a careful gluing of foliations locally defined on
neighbourhoods of each y ∈ Y in which the tangent planes to the foliations are very close
to the canonical distribution DX .

So, with the aim of reproducing the essential properties and situations of the local
foliations Hx, in this section we introduce the notion of controlled l-dimensional foliation
and we prove Theorem 2 allowing us to glue together controlled foliations using adapted
partitions of unity.

Although the statements of this section are not directly used in the proof of Theorem
4, the methods of the proof used in the gluing in Theorem 3, Corollary 1 and Remark 3
contain all the basic ingredients that allow us to prove the smooth two strata version of
the Whitney fibering conjecture for (c)-regular stratifications. Thus we include this short
section.

Definition 5. Let X be a (c)-regular stratification in Rn, X a stratum of X , x0 ∈ X,
U an open set of X, W = π−1

X (U), W ε = W ∩ TX(ε) stratified by tY≥XW ∩ TXY (ε).
Let F = {Mz}z∈W ε , with Mz the unique leaf of F containing z, be an l-dimensional

foliation of W ε. We say that F = {Mz}z∈W ε is a controlled l-foliation of W ε if it is stratified
(i.e. each leaf is contained in a unique stratum ofW ε) and there exists a stratified controlled
frame field (w1, . . . , wl) of W ε generating F . That is :

i) (w1, . . . , wl) is tangent to F , hence ∀ y ∈Mz, TyMz = TyF = [(w1(y), . . . , wl(y)] ;
ii) (w1, . . . , wl) is a (π, ρ)-controlled lifting of a frame field (u1, . . . , ul) of U ;
iii) all Lie brackets [wi, wj ] = 0, for every i 6= j = 1, . . . , l .
In this case for every stratum Y ≥ X and every y ∈ Y with x = πX(y) we have:
a) If (w1, . . . , wl) generates a controlled foliation F , it defines an integrable l-distribution

D(y) = [w1(y), . . . , wl(y)] = TyF of W ε tangent to F and whose integral l-manifolds are
exactly the leaves of F .

b) By the ρ-control condition, each leaf My ∈ F is contained in the level hypersurface
ρ−1

XY (η). with η = ρXY (y) ;
c) By the π-control condition, πXY ∗y(wi(y)) = ui(x), each restriction πXY ∗y : TyY →

TxX with x = πX(y) is an isomorphism of vector spaces and wi(y) = TyMy∩π−1
XY ∗y(ui(x)).

Moreover each leaf My of F , is transverse to the fiber π−1
X (x0), ∀x0 ∈ U and meets

it in a unique point y0 := My ∩ π−1
X (x0) so the foliation F can be reparametrised by

F := {My0}y0∈π−1(x0).

It follows that if U is a domain of a chart ϕ : U → Rl of X and ui := ϕ−1
∗ (Ei), the

liftings (w1, . . . , wl) tangent to F of (u1, . . . , ul) are controlled and generate F . Moreover
if each ui has a complete flow φi its controlled lifting wi has a complete flow too [Ma]1,2.

Then by denoting ψ1, . . . , ψl respectively the flows of w1, . . . , wl, the map

H = Hx0 : U×π−1
X (x0) ≡ Rl×π−1

X (x0) →W ε , H(t1, . . . , tl, z0) = ψl(tl, . . . , ψ1(t1, z0)..) ,

defines, for every x0 ∈ U , a local topological trivialization of πX : TX → X whose images
{Mz = H(Rl×{z})}z∈W ε are the leaves of F . Thus F =

{
H(Rl×{z0})

}
z0∈π−1

X
(x0)

[Ma]1,2

and moreover wi(y) = H∗y(Ei) for every i = 1, . . . , l (see §5.2, Proposition 3).

9
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Conversely if H = Hx0 is the map in the statement of Theorem 1, it is obvious that
F =

{
H(Rl × {z0})

}
z0∈π−1

X
(x0)

is a controlled foliation generated by H.

Thus controlled foliations (near x0 ∈ X) and controlled topological trivializations of
πX : TX → X (near x0) correspond bijectively and they generate in this way the same
mathematical concept.

Definition 6. Let F = {Mz}z∈p−1(x) be a controlled l-foliation of W ε.
We will say that F is (a)-regular over U (or over W ε) if it satisfies the consequences

of the Whitney fibering conjecture :

lim
z→a

TzMz = TaMa for every a ∈ U (resp. a ∈W ε) .

In general, if D is a distribution of l-planes tangent to Y and transverse to ker πXY ∗
(so each πXY ∗y : D(y) → X is an isomorphism) for every δ > 0 we say that F is δ-close to
D if

|| wi(y)− vi(y) || ≤ δ ∀ y ∈ TXY (ε) and ∀ i = 1, . . . , l

where (v1, . . . , vl) denote the canonical liftings of the (E1, . . . , El) on D.
We will apply this notion to the canonical distribution DX which is continuous on X.

Theorem 2. Let X a (c)-regular stratification in Rn having X = Rl× 0m as stratum.
Let F1 and F2 be two controlled l-foliations of TX(ε) generated respectively by frame

fields (w1
1, . . . , w

1
l ) and (w2

1, . . . , w
2
l ) such that w1

l = w2
l and let a < b ∈ R.

Then F1 and F2 can be glued in a controlled l-foliation F := F1 ∨ F2 of TX(ε) such
that :

F1 ∨ F2 =

 F1 on U1 := TX(ε) ∩ (]−∞, a [×Rn−1)

F2 on U2 := TX(ε) ∩ (] b, +∞[×Rn−1) .

Moreover, if F1 and F2 are both δ-close to a distribution D then F is δ-close to D too.

Proof. We will define F through a generating frame field (w1, . . . , wl) which we will
construct by decreasing induction. We start by defining the vector field wl := w1

l = w2
l .

For i = l − 1 take a partition of unity {α, β : R → [0, 1]} subordinate to the open
covering

{
] − ∞, b [, ] a,+∞[

}
of R and extend it to a “partition of unity” of TX(ε) ,

Pl−1 = {αl−1(y), βl−1(y)} subordinate to the open covering {U1, U2} of TXY (ε) which is
constant along the fiber π−1

X (0) (hence along each fiber π−1
X (x)) and along the trajectories

of wl = w1
l = w2

l (we call it adapted to {U1, U2}).
Then we define the stratified vector field :

wl−1(y) := αl−1(y)w1
l−1(y) + βl−1(y)w2

l−1(y)

for every stratum Y > X? One finds that the Lie bracket [wl−1, wl] satisfies :

[wl−1(y), wl(y)] = [αl−1w
1
l−1(y), wl(y)] + [βl−1w

2
l−1(y), wl(y)]

=
(
αl−1 ∗y(wl(y)) · w1

l−1(y) + αl−1(y)[w1
l−1(y), wl(y)]

)
+

+
(
βl−1 ∗y(wl(y)) ·w2

l−1(y) + βl−1(y)[w2
l−1(y), wl(y)]

)
= 0

10
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where αl−1 ∗y(wl(y)) = βl−1 ∗y(wl(y)) = 0 because αl−1 and βl−1 are constant along the
trajectories of wl and [w1

l−1(y), wl(y)] = [w2
l−1(y), wl(y)] = 0 because (w1

1, . . . , w
1
l ) and

(w2
1, . . . , w

2
l ) are generating frame fields respectively of F1 and F2 with w1

l = w2
l = wl.

It is convenient to explain explicitly the next inductive step.
For i = l−2 we consider a partition of unity Pl−2 = {αl−2(y), βl−2(y)} subordinate to

{U1, U2} which is constant this time along each fiber π−1
X (x) and along the whole of each

integral surface generated by the 2-frame (wl−1, wl). Then define

wl−2(y) = αl−2(y)w1
l−2(y) + βl−2(y)w2

l−2(y ).

As above we find that

[wl−2(y), wl(y)] = [wl−2(y), wl−1(y)] = 0 .

For an arbitrary i = 2, . . . , l − 1, after having constructed the vector fields wl, . . . , wi

whose Lie brackets are zero, then the inductive (i − 1)-step to construct wi−1 can be
obtained by considering a partition of unity Pi−1 = {αi−1(y), βi−1(y)} of Rn subordinate
to {U1, U2} which is constant along each fiber π−1

X (x) and along the trajectories of all vector
fields wl, . . . , wi, so constant along each integral manifold generated by (wi, . . . , wl−1, wl),
and defining

wi−1 = αi−1w
1
i−1 + βi−1w

2
i−1 .

In this way the frame field (w1, . . . , wl) obtained at the end of the induction will satisfy

[wi, wj ] = 0 , ∀ i, j = 1, . . . , l .

Moreover for every stratum Y ≥ X and y ∈ Y by the (πX , ρX)-control conditions :πXY ∗y(wi(y)) = αi(y)πXY ∗y(w1
i (y)) + βi(y)πXY ∗y(w2

i (y)) = αi(y) · Ei + βi(y) · Ei = Ei

ρXY ∗y(wi(y)) = αi(y)ρXY ∗y(w1
i (y)) + βi(y)ρXY ∗y(w2

i (y)) = αl−1(y) · 0 + βl−1(y) · 0 = 0

and similarly for every X < Y < Z, z ∈ Z, y = πY Z(z), x = πX(z), using the (πY Z , ρY Z)-
control conditions and that αi, βi are constant along the fiber π−1

X (x) one finds :πY Z∗z(wi(z)) = αi(z)πY Z∗z(w1
i (z)) + βi(z)πY Z∗z(w2

i (z)) = αi(y)w1
i (y) + βi(y)w2

i (y) = wi(y)

ρY Z∗z(wi(y)) = αi(z)ρY Z∗z(w1
i (z)) + βi(z)ρY Z∗z(w2

i (z)) = αl−1(y) · 0 + βl−1(y) · 0 = 0 .

Thus (w1, . . . , wl) is a controlled frame field with generates a controlled foliation F .

If moreover F1 and F2 are both δ-close to an l-distribution D of Y then, with the
canonical liftings (v1, . . . , vl) of (E1, . . . , El) on D (see Definition 6), one has :

||w1
i (y)− vi(y)|| ≤ δ and ||w2

i (y)− vi(y)|| ≤ δ , ∀ i = 1, . . . , l

hence for every i = 1, . . . , l one also finds :

||wi(y)−vi(y)|| = αi(y)||w1
i (y)−vi(y)|| + βi(y)||w2

i−1−vi(y)|| ≤
(
αi(y)+βi(y)

)
·δ = 1·δ = δ

so that the foliation F := F1 ∨ F2 generated by (w1, . . . , wl) is δ-close to D too. 2

11
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Geometric meaning. The fact that the (π, ρ)-control conditions are satisfied by
(w1, . . . , wl) after the “convex-gluing” of the (π, ρ)-controlled frame fields (w1

1, . . . , w
1
l ) and

(w2
1, . . . , w

2
l ) means that (w1, . . . , wl) modifies with respect to (w1

1, . . . , w
2
l ) and (w2

1, . . . , w
2
l )

only the components along each link Lk(x, η) = π−1
X (x) ∩ ρ−1

X (η), ∀x ∈ Rl and ∀ η ∈]0, ε[.

With essentially the same proof as in Theorem 2 one has :

Corollary 1. Let hi : Rn → Rn be the linear diffeomorphism which permutes x1 with
xi and fixes all other coordinates and consider the open covering of TXY (ε) defined by :

U i
1 := TXY (ε) ∩ hi(]−∞, a[×Rn−1) and U i

2 := TXY (ε) ∩ hi(]b,+∞[×Rn−1) .

If i ∈ {2, . . . , l − 1} and F i
1 and F i

2 are controlled foliations of TXY (ε) then Theorem
2 holds again replacing U1 and U2 by U i

1 and U i
2 so as to glue together F i

1 and F i
2 . 2

Remark 3 On the contrary, for i = l, Theorem 2 cannot be used directly to glue
together two controlled foliations F l

1 and F l
2 of U l

1 and U l
2, because if w1

l = w2
l , then a

partition of unity subordinate to {U l
1, U

l
2} cannot be taken constant along the trajectories

of w1
l = w2

l .
Remark also that for a stratification of two strata X < Y , one needs to prove only

the (πXY , ρXY )-control condition so it is not necessary to use a partition of unity constant
along each fiber of πX as we did in Theorem 2.

The techniques of Theorem 2 and Corollary 1 will be used in various steps of our proof
of the smooth version of the Whitney fibering conjecture (Theorem 3) while the difficulty
explained in Remark 3 above will appear in step 3 of the proof.

5. The smooth Whitney fibering conjecture: the depth 1 case.

In this section we prove a result (Theorem 3), which gives a positive answer to the
smooth version of the Whitney fibering conjecture for a stratification X = (A,Σ) and a
stratum X for which depthΣ(X) = 1 such that Σ is Bekka (c)-regular [Be]1 over X.

Theorem 3. Let X = (A,Σ) a smooth stratified subset of Rn, (c)-regular over X.
Then for every stratum X of depthΣ(X) = 1 and for every x0 ∈ X and every stratum

Y > X there exists a neighbourhood W of x0 in X∪Y and a controlled foliation H = {M ′
y}y

of W whose leaves M ′
y are smooth manifolds of dimension l = dimX diffeomorphic to

X ∩W , with M ′
x = X ∩W, ∀x ∈ X, and such that :

lim
y→x

TyM
′
y = TxM

′
x = TxX , for every x ∈ X ∩W .

Remark 4. In Theorem 3 we study a (c)-regular stratification with smooth (C∞)
strata and obtain a foliation which is C∞ off X. If the stratification has C1 strata then
there is a C1 diffeomorphism making all strata C∞ [Tr]2 so we can apply the C∞ result
and then by pullback obtain a foliation with C1 leaves with the required properties.

Before proving Theorem 3 in §5.1 we describe local regularity of the stratified topo-
logical triviality map Hx0 and some of its important properties when Hx0 is obtained by
integrating continuous canonical lifted frame fields [MT]2,3,4. This brings us in §5.2 to a
finer analysis of some new properties of the frame fields tangent to the horizontal leaves
Hx0 defined by this topological trivialization.

We will use below statements and notations introduced in section 3.

12
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5.1. Local topological triviality obtained from continuous controlled lifted frame fields.

Let X be a stratification in a Euclidian space Rk, (c)-regular over a stratum X of X
of dimension l, x0 ∈ X and Ux0

∼= Rl a neighbourhood of x0 in X as in Theorem 1.
In a local analysis we can suppose x0 = 0n ∈ Rn, Ux0 = Rl×0m and πX : TX → Rl×0m

the canonical projection such that the topological trivialization “with origin x0 = 0” of the
projection πX can be written as

H = Hx0 : Rl × π−1
X (x0) −→ π−1

X (Ux0) ⊆ Rn

(t1, . . . , tl, z0) 7−→ φl(tl, . . . , φ1(t1, z0) . . .)

where ∀i ≤ l, φi is the flow of the lifted vector field vi(y), and thanks to (c)-regularity
([Be]1 [Pl]), we can choose each vi(y) to be the continuous lifting of the standard vector
fields Ei of X = Rl × {0m}, in a canonical distribution DX = {DX(y)}y∈π−1

X
(Ux0 ) induced

from X on the strata Y > X [MT]2,3,4. We also will identify π−1
XY (Ux0) with Y .

Remark 5. Although the canonical distribution DX , its spanning canonical lifted
vector fields v1, . . . , vl and their flows φ1, . . . , φl do not depend on the “starting point” x0,
in contrast the trivialization Hx0 , defined by a fixed and a priori non-commuting order of
composition of the flows φ1, . . . , φl, depends strongly on the induced controlled foliations
with a “starting point” x0. In fact the non-commutativity of the flows φ1, . . . , φl is the
crucial point of our problem : if DX is involutive, then the (a)-regularity of a local controlled
foliation Hx0 holds ([MT]4 and [Mu]1 Chap. II §5) so Hx0 satisfies the conclusions of the
smooth version of the Whitney fibering conjecture (see section 2).

In particular if x = (τ1, . . . , τl) and z ∈ π−1
X (x) is the image z = Hx0(τ1, . . . , τl, z0)

with z0 ∈ π−1
XY (x0) then :

y = Hx(t1, . . . , tl, z) = φl(tl, . . . , φ1(t1, z)..) = φl(tl, . . . , φ1(t1, (φl(τl, . . . , φ1(τ1, z0)..)..)

is a priori different from the image (obtained by commuting the flows φi) :

φl(tl + τl, . . . , φ1(t1 + τ1, z0)) = Hx0(t1 + τ1, . . . , tl + τl, z0) .

Let Y > X.
The stratified homeomorphism H (a C∞-diffeomorphism on each stratum) induces a

controlled foliation of dimension l

Hx0 :=
{
Mz0 = H(Rl × z0)

}
z0∈π−1

XY
(x0)

of the submanifold π−1
XY (Ux0) of Y .

For every y ∈ Y let us denote by My the leaf of Hx0 containing y, so that My = My0

when y = H(t1, . . . , tl, y0) and y0 ∈ π−1
XY (x0).

We will see in Proposition 3, that writing ∀ i = 1, . . . , l, wi(y) := H∗(t1,...,tl,y0)(Ei),
the frame field (w1, . . . , wl) is the unique (π, ρ)-controlled lifting on the foliation Hx0 (not
necessarily continuous) of the frame field (E1, . . . , El) of X generating Hx0 (see [MT]4,
[Mu]1 Chap. II, §5).

Now H being smooth on Y , the w1, . . . , wl are smooth too on Y , but these vector fields
are not necessarily continuous on X, i.e. we do not know whether limy→x wi(y) = Ei for
x ∈ X !

13
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This means that by using the canonical continuous liftings v1, . . . , vl on DXY , the
foliation Hx0 induced by the topological trivialization of Thom-Mather, does not in general
give a positive answer to the smooth version of the Whitney fibering conjecture (the second
and third authors gave an explicit counterexample in 1994).

5.2. Some useful properties of the wi and of their flows.

We explain below a property of the vector fields vi (and wi) and of their flows φi (and
ψi), important in the proof of the smooth Whitney fibering conjecture.

The vector fields w1, . . . , wl satisfy obviously :

wi(z0) = H∗(0,...,0,z0)(Ei) = vi(z0), ∀ z0 ∈ π−1
XY (x0) and ∀ i = 1, . . . , l.

That is for every i ≤ l, wi coincides on the fiber π−1
XY (x0) with the continuous lifting

vi [MT]4 which satisfies limy→x∈X vi(y) = Ei, for every i = 1, . . . , l (but again this does
not imply that limy→x wi(y) = Ei for x ∈ X !).

Now if y = H(t1, . . . , tl, y0), then My = H(Rl×{y0}) is a leaf of the foliation Hx0 and

TyMy = H∗(t1,...,tl,y0)(R
l × {0}) = [w1(y), . . . , wl(y)] .

On the other hand H|Y being C∞, for each z0 ∈ π−1
XY (x0) we have that :

(Lz0) : lim
y→z0

TyMy = Tz0Mz0 = [w1(z0), . . . , wl(z0)] = [v1(z0), . . . , vl(z0)] .

Lemma 1. For every y0 ∈ π−1
XY (x0), denoting Q0l(δ) =]− δ, δ[l, the family{

H(Q0l(δ)× Jy0)
∣∣ δ ∈]0, 1[ , Jy0 a neighbourhood of y0 in π−1

XY (x0)
}

is a fundamental system of neighbourhoods of y0 in Y .

Proof. Exercise. 2

From (Lz0) for every ε > 0, there is a relatively compact open neighbourhood Vz0 of
z0 in π−1

XY (Ux0) such that

(1) : ||wi(y)− vi(y)|| < ε ∀ i = 1, . . . , l and ∀ y ∈ Vz0 .

By Lemma 1, we can take Vz0 = Hx0(Q0l(δz0)× Jz0) so that

Ix0 := prRl×0l(Vz0) = x0 + Q0l(δz0) = ]− δz0 , + δz0 [
l

is a relatively compact open neighbourhood of x0 = 0 in Ũ := [−1, 1]l × {0}m which is a
cube of Rl × {0l} centered in x0.

Definition 7. We will refer to the property (1) by saying that :

The foliation Hx0 = {Hx0(Q0l(δz0) × {z′})}z′∈Jz0
on Vz0 is ε-close to the canonical

distribution DX = {DXY (y)}y∈Y .
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Figure 2

To analyse the difference between vi(y) and wi(y) = H∗(t1,...,tl,y0)(Ei) we introduce
the following notation.

Notation. With every y = H(t1, . . . , tl, y0) ∈ Y we associate the chain y0 · · · yi · · · yl =
y defined starting from y0 on the leaf My = H(y0 × Rl) of the foliation Hx0 as follows :

y0 = H(0l, y0)
y1 = H(t1, 0l−1, y0) = φ1(t1, y0)
y2 = H(t1, t2, 0l−2, y0) = φ2(t2, φ1(t1, y0))
. . . . . . . . . . . . . . . . . .
yi = H(t1, . . . , ti, 0l−i, y0) = φi(ti, . . . , φ1(t1, y0) . . .)
. . . . . . . . . . . . . . . . . .
yl = H(t1, . . . , tl, y0) = φl(tl, . . . , φi(ti, . . . , φ1(t1, y0) . . .) ;

so that :

y1 = φ1(t1, y0), y2 = φ2(t2, y1), . . . yi = φi(ti, yi−1), . . . yl = φl(tl, yl−1) = y .

In the proposition below, ∀τ ∈ R, we let φτ
i : Y → Y be the diffeomorphism of Y

defined by φτ
i (y) = φi(τ, y).

Proposition 2. For every y = H(t1, . . . , tl, y0) ∈ Y ,

wi(y) = φtl

l ∗yl−1
◦ · · · ◦ φti+1

i+1 ∗yi

(
vi(yi)

)
, ∀ i = 1, . . . , l − 1 .

Proof. As y = H(t1, . . . , tl, y0) it follows that :

wi(y) := H∗(t1,...,tl,y0)(Ei) =
∂

∂τi
H(τ1, . . . , τl, y0)

∣∣∣∣
(τ1,...,τl)=(t1,...,tl)

=
∂

∂τi

∣∣∣∣
(τ1,...,τl)=(t1,...,tl)

φl(τl, . . . , φi(τi, . . . , φ1(τ1, y0) . . .)
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=
∂

∂τi

∣∣∣∣
τi=ti

φtl

l ◦ · · · ◦ φti+1
i+1 ◦ φ

τi
i (yi−1)

= φtl

l ∗yl−1
◦ · · · ◦ φti+1

i+1 ∗yi

(
∂

∂τi

∣∣∣∣
τi=ti

φi(τi, yi−1)
)

= φtl

l ∗yl−1
◦ · · · ◦ φti+1

i+1 ∗yi

(
vi

(
φi(ti, yi−1)

))
= φtl

l ∗yl−1
◦ · · · ◦ φti+1

i+1 ∗yi

(
vi(yi)

)
. 2

For every y ∈ Y and leaf My, denote πXY
−1(x0) = S0 ⊆ S1 ⊆ · · · ⊆ Sl = My the

chain of “coordinate subspaces” Si of Y containing all points of the type y = yi :

Si := H
(
Ri × 0l−i × πXY

−1(x0)
)

=

=
{
y = H(t1, . . . , ti, 0l−i, y0)

∣∣ y0 ∈ πXY
−1(x0) , t1, . . . , ti ∈ R

}
.

Then every Si is a submanifold of dimension i + (k − l) of Y , where k = dimY
(k − l = dimπXY

−1(x0)), and one has :

Corollary 2. For every i = 1, . . . , l, the vector field wi(y) coincides with the lifting
vi(y) in the canonical distribution DXY (y) on all points of the submanifold Si :

wi(y) = vi(y) , ∀ y ∈ Si .

In particular ∀ i = 1, . . . , l, the flow ψi of wi coincides with the flow φi of vi on Si×R.

Proof. If a point y = H(t1, . . . , tl, y0) coincides with the corresponding yi then neces-
sarily ti+1 = · · · = tl = 0 and also y = yl = yl−1 = · · · = yi.

For every j = i + 1, . . . , l , since tj = 0 the flows satisfy φ
tj

j = φ0
j = 1Y and

φ
tj

j∗yj
= 1Y ∗yj = 1Tyj

Y and so by the previous proposition one finds :

wi(y) = φtl

l ∗yl−1
◦ · · · ◦ φ

ti+1
i+1 ∗yi

(
vi(yi)

)
= vi(yi) = vi(y) . 2

Corollary 2 allows us to better estimate the difference ui(y) := vi(y) − wi(y) : it
increases for i decreasing, being zero for i = l and maximal when i = 1. This is a
consequence of the nature of the definition of the trivialization H,

H(t1, . . . , tl, y0) = φl(tl, . . . , φi(ti, . . . , φ1(t1, y0) . . .)

because of which any vector wi(y) whose index i is more to the left of the formula relating
wi(yi) to vi(yi) occurs in the ” perturbation ” of the extra differential φti+1

i+1 ∗yi
compared

with the previous pair wi+1(yi+1), vi+1(yi+1).
Thus since Sl = Y and S0 = π−1

XY (x0), the vector fields w1(y), . . . , wl(y) satisfy :
wl(y) = vl(y) on Sl = Y
. . . = . . .
wi(y) = vi(y) on Si = H

(
Ri × 0l−i × πXY

−1(x0)
)

. . . = . . .
w1(y) = v1(y) on S1 = H

(
R1 × 0l−1 × π−1

XY (x0)
)
.

16
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This explains why the order of the index i = 1, . . . , l that we have chosen to define the
topological trivialization H is significant!

Figure 3

The vector fields {wi(y)}i=1,...,l are characterised by the following property :

Proposition 3. Every vector field wi(y) is the unique (π, ρ)-controlled lifting of the
standard vector field Ei of X tangent to the leaves of the foliation Hx0 .

Proof. See [MT]4, §5.1 Lemma 3. 2

5.3. Proof of the smooth version of the Whitney fibering conjecture for (c)-regular
stratifications of depth 1.

Let X = (A,Σ) be a (c)-regular stratification, X an l-stratum of X and x0 ∈ X.
Since by hypothesis depthΣ(X) = 1, a sufficiently small neighbourhood of x0 in A

meets only finitely many strata {Y ki
i > X}r

i=1 [Ma]1,2 which are of dimension dimY ki
i =

ki ≥ l+1 > dimX, and the closures of these strata intersect (near X) only in X. Therefore
it will be sufficient to prove Theorem 3 for only one stratum Y . So we prove:

Theorem 4. Suppose that X∪Y is a smooth stratified Bekka (c)-regular closed subset
of Rn having only two smooth strata X < Y . Then X ∪ Y satisfies the smooth version of
the Whitney fibering conjecture.

I.e. for every x0 ∈ X there exists a neighbourhood W = π−1
X (U) of x0 in X ∪Y where

U is a domain of a local chart near x0 in X and a controlled foliation H = {M ′
y}y∈W of W

whose leaves M ′
y are smooth manifolds diffeomorphic to X∩W , with M ′

x = X∩W, ∀x ∈ X
and such that :

lim
y→x

TyM
′
y = TxM

′
x = TxX , for every x ∈ X ∩W .

Proof. Let l = dimX, k = dimY and let x0 be a point of X and U an open
neighbourhood of x0 in X diffeomorphic to Rl.

17
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When l = 1, (c)-regularity, which implies the existence of controlled continuous lifting
of vector fields on X, is enough to ensure the existence of the foliation [Be]1.

So we assume l ≥ 2.
When k = l + 1, the level hypersurfaces of ρXY = ρX|Y intersect Y in leaves of a

foliation satisfying the conclusion of the theorem again by (c)-regularity [MT]4. Thus we
will assume k ≥ l + 2 ≥ 4.

The problem being local, we can write x0 = 0n, X ≡ U ≡ Rl × 0m (m = n − l), and
Y ≡ TXY ≡ π−1

XY (U) where the projection πXY : TXY = TX ∩ Y → X is the restriction
pr1|Y : TXY → X of the first projection onto X ; in particular π−1

XY (x0) ⊆ 0l × Rm ⊆ Rn.

Consider the standard basis {Ei}l
i=1 of Rl × 0m and the topological trivialization “of

origin x0” of the projection πXY :

H = Hx0 : Rl × π−1
XY (x0) −→ Y = TXY ⊆ Rn

(t1, . . . , tl, z0) 7−→ φl(tl, . . . , φ1(t1, z0) . . .)

where ∀i ≤ l, φi is the flow of the vector field vi which is the continuous lifting of Ei

in a canonical distribution DX = {DXY (y)}y∈Y induced from X on Y [MT]2,3, using
(c)-regularity.

As X ∪ Y is (c)-regular, there exists ε > 0 such that the map (πXY , ρXY ) : TXY (ε) →
Rl × [0,∞[ is a proper submersion and, possibly making a change of scale, we suppose
ε = 1. Then if we consider the compact neighbourhood Ũ = [−1, 1]l × 0m of x0 = 0k in
X, its preimage W := π−1

X (Ũ) via the projection πX : TX(1) → X is a compact subset of
TX(1) ≡ X ∪ Y .

We apply the arguments of sections 5.1 and 5.2 for x0 and for y0 ∈ π−1
XY (x0) to

each point x ∈ Ũ and each z ∈ π−1
XY (x). Every x ∈ Ũ will be thus “the origin” of a

new topological trivialization Hx obtained using the same continuous lifted vector fields
v1, . . . , vl by composing their flows in the same order, but taking x as origin. This will
define for every x ∈ Ũ a foliation

Hx =
{
Mx

z = Hx(Rl × z)
}

z∈π−1
XY

(x)

and a (π, ρ)-controlled frame field (wx
1 , . . . , w

x
l ) generating the foliation Hx, such that

∀x ∈ Ũ and ∀ z ∈ π−1
XY (x) :

(Lz) : lim
y→z

TyM
x
y = lim

y→z
TyM

x
z = [wx

1 (z), . . . , wx
l (z)] = [v1(z), . . . , vl(z)] = DXY (z) ,

where DXY (y) tends to [E1, . . . , El] = Rl × 0m = TxX, as y → x, by (c)-regularity.

Suppose now that dimX = l = 2. Later in the proof we will treat the general case.
With this hypothesis X = R2 × 0m and by the results of section 5.1 and 5.2 we have

the (π, ρ)-controlled continuous lifted frame field (v1, v2) on DXY , a frame field (wx0
1 , wx0

2 )
tangent to the foliation Hx0 and for each x ∈ Ũ a frame field (wx

1 , w
x
2 ) tangent to the

foliation Hx such that :
1) for every x ∈ X : wx0

2 = v2 = wx
2 ;

2) for every y = Hx0(t1, t2, y0), with y0 ∈ π−1
XY (x0), by y1 = φ1(t1, y0) we have:

wx0
1 (y) = φt2

2∗y1
(v1(y1)) ,

18
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and similarly for every z = Hx(t1, t2, z0), with z0 ∈ π−1
XY (x), by setting z1 = φ1(t1, z0) we

have :
wx

1 (z) = φt2
2∗z1

(v1(z1)) ;

3) by (Lz) applied to each z ∈ π−1
XY (x), for every z ∈ W and for every ε > 0, there is

a relatively compact open neighbourhood Vz of z in W such that

(3)z : ||wx
1 (y)− v1(y)|| < ε for all y ∈ Vz .

By Lemma 1, we can choose every Vz to be of the type

Vz = Hx(Q02(δz)× Jz) where x = πXY (z) = (τ1, τ2) ,

(see Lemma 1 in §5.2 for the definitions of Q02(δz) and Jz) and :

Ix := prR2×0m(Vz) = x + Q02(δz) = (τ1, τ2) + ]− δz, + δz[2

is a relatively compact open neighbourhood of x in Ũ = [−1, 1]2 × 0m and a square of
R2×0m centered in x with edges of size 2δz depending on z, and Jz is a relatively compact
open neighbourhood of z in π−1

XY (x).

In this way, the foliation (called again) Hx =
{
Hx(Q02(δz) × z′)

}
z′∈Jz

on Vz will be
ε-close to the canonical distribution DX = {DXY (y)}y∈Y .

Figure 4

For every n ∈ N∗ let

Fn(x0) := (πXY , ρXY )−1({x0} × [ 1
n+2 , 1

n ]) = π−1
XY (x0) ∩ ρ−1

XY ([ 1
n+2 , 1

n ])

and An be the compact cylindrical set of π−1
XY ([−1, 1]2) :

An = (πXY , ρXY )−1([−1, 1]2 × [ 1
n+2 , 1

n ]) = π−1
XY ([−1, 1]2) ∩ ρ−1

XY ([ 1
n+2 , 1

n ]) .
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Figure 5

Then An = Hx0([−1, 1]2 × Fn(x0)) and Fn(x0) = π−1
XY (x0) ∩An .

We now make more precise the geometric properties that we require of the neighbour-
hoods Ix of x in U and the neighbourhoods Jz of z in π−1

XY (x).

Consider for every n ∈ N∗ and every z ∈ An ⊆ Y , the topological trivialization
Hx : R2 × π−1

XY (x) → Y , where x = πXY (z).

Fix ε = 1
n and for every z ∈ An neighbourhoods Vz = Hx(Q02(δz)× Jz) such that the

previous property (3)z, ||wx
1 (y)− v1(y)|| < 1

n holds ∀ y ∈ Vz.

Since the set Sn :=
{
Vz

∣∣ z ∈ An

}
is an open covering of An, and An is compact,

there exists a finite subset Pn := {z1, . . . , zqn
} of points of An such that the open finite

subcovering

Cn :=
{
Vzj = Hxj (Q02(δzj )× Jzj )

∣∣ zj ∈ Pn

}
, where xj = πXY (zj) ,

covers An.

Recall that since every local trivialization Hxj
is π-controlled, πXY ∗y(wxj

i (y)) = Ei,
for Vzj , zj ∈ An. Moreover, since Hxj is ρ-controlled, ρXY ∗y(wxj

i (y)) = 0, so that the
vector fields wxj

i (y) have only components (apart from the Ei) along the tangent space to
a link of the fiber π−1

XY (πXY (y)) :

L(y) := (πXY , ρXY )−1((πXY (y), ρXY (y))) = π−1
XY (πXY (y)) ∩ ρ−1

XY (ρXY (y))

which is a compact (k − 3)-submanifold of π−1
XY (πXY (y)).

We will prove that this finite open covering Cn of An by open sets {Vzj
}j≤qn

, which
are nicely foliated and 1

n -close to DX , open sets {Vzj}j≤qn , can be used to define a foliation
defined on the whole annulus An, and this foliation is again 1

n -close to DXY .

Let η0
n be the Lebesgue number of the open covering Cn so that every subset of An of

diameter < η0
n is contained in at least one of the sets Vzj , for some j.
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For every xj = (tj1, t
j
2) ∈ [−1, 1]2, the map Hj := H(xj , ·) : π−1

XY (x0) → π−1
XY (xj) is

a homeomorphism, so every open set Jzj
of the fiber π−1

XY (xj) determines by preimage an
open set J0

zj
= φ1(−tj1, φ2(−tj2, Jzj )) of the fiber π−1

XY (x0), such that H(xj × J0
zj

) = Jzj .
In this way we obtain an open covering { J0

zj
}j≤qn

of Fn(x0) = π−1
XY (x0) ∩ An whose

Lebesgue number will be denoted by η1
n.

Figure 6

We let
ηn = min

{
η0

n , η
1
n ,

1
2
}
.

Now because each trivialization Hx is defined ([Ma]1,2, [MT]4) by the formula

Hx(t1, t2, y0) = φ2(t2, φ1(t1, y))) , y ∈ π−1
X (x)

where the maps {φi}i≤2 are the smooth flows of the smooth vector fields {vi}i≤2 on Y , it
follows that each Hx is smooth on Y and in particular locally Lipschitz on Y . Hence for
every j ≤ qn, the trivializations Hx0|An

and Hxj |An
restricted to the compact set An are

globally Lipschitz (at least with respect to the geodesic arc-length metric).

For sn ∈ N∗ such that δ := 1
sn

< ηn define Σ = {−sn, . . . ,−1, 0, 1, . . . , sn − 1} and
consider the closed coverings

{
Qi(δ) := Qi = [iδ, (i+ 1)δ]

}
i∈Σ

of [−1, 1]. Then

[−1, 1] =
⋃
i∈Σ

Qi(δ) =

= [−snδ,−(sn − 1)δ] ∪ . . . ∪ [−δ, 0] ∪ [0, δ] ∪ . . . ∪ [(sn − 1)δ, snδ] .

Figure 7
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This covering induces the (paving) covering by closed cubes of [−1, 1]2 :{
Q(i1,i2)(δ) = Qi1(δ)×Qi2(δ)

}
(i1,i2)∈Σ2 so that : [−1, 1]2 =

⋃
(i1,i2)∈Σ2

Q(i1,i2)(δ)

that we order following the lexicographic order of Σ2.

Figure 8

By (c)-regularity (πXY , ρXY ) : TXY (1) → X×]0, 1[ is a proper submersion, hence :

Fn(x0) = π−1
XY (x0) ∩An is a compact (k − 2)-submanifold with boundary

and we can choose a triangulation Tn(x0) of Fn(x0) which induces a covering by open cells
of Fn(x0) :

{
N(σ)

∣∣ σ ∈ Tn(x0)
}

where N(σ) denotes the simplicial neighbourhood of
each simplex σ ∈ Tn(x0) [ST].

Let us denote by T r
n(x0) the r-th barycentric subdivision of the triangulation Tn(x0)

of Fn(x0) = π−1
XY (x0) ∩ An and consider for each closed simplex σ ∈ T r

n(x0) its simplicial
neighbourhood N(σ) in T r

n(x0).
Because for i := (i1, i2) ∈ Σ2 and σ ∈ T r

n(x0),

lim
δ→0

max
i∈Σ2

diamQi(δ) = 0 , lim
r→∞

max
σ∈T r

n(x0)
diam N(σ) = 0

and H = Hx0 is a Lipschitz map on the compact set An, we have :

lim
(δ,r)→(0,+∞)

max
σ∈T r

n(x0)
diam Hx0

(
Qi(δ) × N(σ)

)
= 0 .

There exists then δ > 0 small enough and r ∈ N big enough such that for each
σ ∈ T r

n(x0) the diameter of H
(
Qi(δ) × N(σ)

)
is smaller than η0

n, so that it is contained
in an open set Vzj

= Hxj
(Q02(δzj

)× Jzj
), j = j(i, σ) of the covering Cn.

In particular via the projection πX we also have :

Qi(δ) = πX

(
H

(
Qi(δ) × N(σ)

))
⊆ πX(Vzj ) = xj + Q02(δzj ) = Ixj .
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Fix such a pair (δ, r) and ∀ (i, σ) ∈ Σ2 × T r
n(x0) fix (only) one such index j = j(i, σ).

Then the open sets Vzj
= Hxj

(Q02(δzj
) × Jzj

) foliated by the local foliations Hxj
={

M
xj
z := Hxj

(
Q02(δzj

)×{z}
)}

z∈Jzj

, which are 1
n -close to the canonical distribution DXY ,

cover the “box-images” H
(
Qi(δ)×N(σ)

)
which cover An :

An = H
(
[−1, 1]2 × Fn(x0)

)
= H

( ⋃
i∈Σ2

Qi(δ) ×
⋃

σ∈T r
n(x0)

N(σ)
)

=
⋃

i∈Σ2

⋃
σ∈T r

n(x0)

H
(
Qi(δ) × N(σ)

)
.

The remainder of the proof will take five steps.

In Steps 1, 2, 3, we will show how the local foliations {Hxj}j≤qn can be glued together
on open sets containing these box-images, hence covering An and defining a foliation of An

which is again 1
n -close to the distribution DXY .

Then in Step 4) we will glue together foliations of the {An}n to obtain a foliation of
an open set covering π−1

X ([−1, 1]2) and finally in Step 5 we complete the proof of Theorem
4 by proving the general case in which dimX is arbitrary.

Step 1 : For every i = (i1, i2) ∈ Σ2, there exists a (π, ρ)-controlled frame field gener-
ating a controlled foliation Hi, 1

n -close to DXY , of an open neighbourhood of :

π−1
XY

(
Qi

)
∩An = H

(
Qi ×

⋃
σ∈T r

n(x0)

N(σ)
)
, where : Qi := Qi(δ) .

Fix i ∈ Σ2 and let us write Pn(i) := {zj ∈ Pn | ∃σ such that j = j(i, σ)} and remark
that :

π−1
XY

(
Qi

)
∩An = H

(
Qi × Fn(x0)

)
⊆

⋃
σ∈T r

n(x0)

H
(
Qi × N(σ)

)
⊆

⋃
zj∈Pn(i)

Vzj .

Now p = δ · i ∈ Qi is the first vertex.
For every j ∈ Pn(i) the partial map Hxj | := Hxj

(p− xj , ·) : π−1
XY (xj) −→ π−1

XY (p) is
a homeomorphism on each image so that

Jp
zj

:= Vzj
∩ π−1

XY (p) = Hxj
(p− xj , Jzj

) , (note that Jzj
= Vzj

∩ π−1
XY (xj) )

defines an open set of π−1
XY (p) and it is easy to see that the family {Jp

zj
}zj∈Pn(i) is an open

covering of Fn(p) := π−1
XY (p) ∩An.

Let P =
{
αj : Jp

zj
→ [0, 1]

∣∣ zj ∈ Pn(i)
}

be a smooth partition of unity subordinate
to the covering {Jp

zj
}zj∈Pn(i) of Fn(p).

Because each leaf Mxj
z (with z ∈ Jzj

) of the controlled foliation Hxj
= {Mxj

z }z∈Jzj

meets the fiber Fn(p) in a unique point :

zp
j := Mxj

z ∩ π−1
XY (p) = Hxj (p− xj , z) ,
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it follows that to every point y = Hxj
(t1, t2, z) ∈ Vzj

= Hxj
(Q02(δzj

) × Jzj
) corresponds

a unique point zp
j which is the “horizontal projection” of z = Hxj

(−t1,−t2, y) and y on
π−1

XY (p).

Figure 9

Figure 10 : Zoom of the red and blue boxes of Figure 9

24



ON THE SMOOTH WHITNEY FIBERING CONJECTURE

This allows us to define an “adapted” partition of unity, P̃ subordinate to the covering
{Vzj

}zj∈Pn(i) by extending it constant along each leaf of Hxj
.

That is we define : P̃ = {α̃j : Vzj −→ [0, 1] }zj∈Pn(i) as follows :

α̃j : Vzj
−→ [0, 1] by α̃j(y) = αj(z

p
j ) where y ∈Mxj

z ∩ Fn(p) .

Now we use this partition of unity to glue together the (π, ρ)-controlled frame fields
{(wxj

1 , w
xj

2 )}j of the foliations Hxj
to define on the open set⋃

zj∈Pn(i)

Vzj
⊇

⋃
σ∈T r

n(x0)

H
(
Qi × N(σ)

)
⊇ π−1

XY

(
Qi

)
∩An

the new frame field :

W
i
1(y) =

∑
zj∈Pn(i)

α̃j(y) · w
xj

1 (y) and W
i
2 = v2 .

Then the Lie bracket :[
W

i
1 , W

i
2

]
(y) =

[ ∑
j∈Pn(i)

α̃jw
xj

1 , v2

]
(y)

=
∑

zj∈Pn(i)

(
α̃j∗y(v2(y)) · w

xj

1 (y) + α̃j(y) · [w
xj

1 , w
xj

2 ](y)
)

=
∑

zj∈Pn(i)

(0 + 0) = 0

where each α̃j∗y(v2(y)) = 0 because the α̃j are constant along the trajectories of v2 and
each [wxj

1 , v2](y) = [wxj

1 , w
xj

2 ](y) = 0 because (wxj

1 , w
xj

2 ) is a generating frame field of the
foliation Hxj .

On the other hand, each (wxj

1 , w
xj

2 ) being πXY -controlled, we have :

πX∗y
(
W

i
1(y)

)
= πX∗y

( ∑
j

α̃j(y)w
xj

1 (y)
)

=
∑

j

α̃j(y) · πX∗y
(
w

xj

1 (y)
)

= 1 · (E1) = E1

and similarly each (wxj

1 , w
xj

2 ) being ρX -controlled, we have :

ρX∗y
(
W

i
1(y)

)
= ρX∗y

( ∑
j

α̃j(y)w
xj

1 (y)
)

=
∑

j

α̃j(y) · ρX∗y
(
w

xj

1 (y)
)

=
∑

j

α̃j(y) · 0 = 0 .

Thus the frame field (W i
1,W

i
2) = (W i

1, v2) is (π, ρ)-controlled too.

This means, in particular, that the partition of unity modifies only the components of
W

i
1(y) along the tangent space to the link L(y) of the πXY -fibre containing y.

Finally, each Hxj
being 1

n -close to DXY one finds :

||W i
1(y)− v1(y)|| =

∣∣∣∣ ∑
j

α̃j(y)
(
w

xj

1 (y)− v1(y)
) ∣∣∣∣

≤
∑

j

α̃j(y) · ||w
xj

1 (y)− v1(y) || ≤
∑

j

α̃j(y) ·
( 1
n

)
= 1 ·

( 1
n

)
=

1
n
.
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Hence the (π, ρ)-controlled frame field (W i
1,W

i
2) = (W i

1, v2) generates a new folia-
tion Hi on an open set containing π−1

XY

(
Qi

)
∩ An on which it is 1

n -close to the canonical
distribution DXY .

We will denote by Hi : R2 × π−1
XY (p) → Y the induced topological trivialization

obtained by composing the flows of such frame fields. Then Hi also generates Hi because
Hi is involutive as proved above.

Step 2 : For each fixed i2, there exists a controlled foliation Hi2 ,
1
n -close to DXY on

an open neighbourhood of :⋃
i1∈Σ

π−1
XY

(
Qi

)
∩An = π−1

XY

(
[−1, 1]×Qi2

)
∩An .

Figure 11

Fix an i2 ∈ Σ and, for every i1 ∈ Σ, consider the controlled foliation Hi obtained in
step 1 with generating frame field (W i

1,W
i
2) = (W i

1, v2) .
We will show how the controlled foliations H(0,i2) and H(1,i2) glue together to give a

new foliation H((0,1),i2) := H(0,i2) ∨H(1,i2) of an open neighbourhood of(
π−1

XY

(
Q(0,i2)

)
∪ π−1

XY

(
Q(1,i2)

))
∩An = π−1

XY

(
[0, 2δ]×Qi2

)
∩An .

Let α be a smooth decreasing function :

α : [0, 2δ] → [0, 1] such that α(t) =

 1 if t ∈ [0, 1
2δ]

0 if t ∈ [ 32δ, 2δ] .

Then α can be extended to a map defined on a neighbourhood of π−1
XY

(
[0, 2δ]×Qi2

)
∩An

which is constant on the trajectories of v2. That is for every y = H(0,i2)(t1, t2, y0) we define:

α̃ : π−1
XY

(
[0, 2δ]×Qi2

)
∩An −→ [0, 1] , α̃(y) = α̃

(
H(0,i2)(t1, t2, y0)

)
= α(t1) .

Now consider the vector field

W
((0,1),i2)
1 (y) = α̃(y) ·W (0,i2)

1 (y) +
(
1− α̃(y)

)
·W (1,i2)

1 (y) ,

where the verifications that the Lie bracket [W ((0,1) , i2)
1 , v2 ](y) = 0 and that W ((0,1),i2)

1

is a (π, ρ)-controlled vector field 1
n -close to DX are similar to and simpler than those seen

in step 1.
Continuing in this way, after a finite number of steps we obtain a vector field W i2

1 (y)
defined on a neighbourhood of π−1

XY

(
[−1, 1]×Qi2

)
∩An.
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Remark 6. In the construction of the final vector field W i2
1 (y) of step 2, for example

when we glue W ((0,1),i2)
1 (y) to W (2,i2)

1 (y), the new partition of unity will act only for values
of t1 ∈ [ 32δ,

5
2δ] so as to give a vector field W ((0,1,2),i2)

1 (y) defined on π−1
XY

(
[0, 3δ]×Qi2

)
∩An

and satisfying :

W
((0,1,2),i2)
1 (y) =

 W
((0,1),i2)
1 (y) for t1 ∈ [0, 3

2δ]

W
(2,i2)
1 (y) for t1 ∈ [ 52δ, 3δ] .

Hence this second gluing is in a set disjoint from the set in which we did the first
gluing and this ensures that ||W ((0,1,2),i2)

1 (y)− v1(y)|| ≤ 1
n .

This argument holding for all successive gluing one obtains a final vector field :

W i2
1 (y) := W

((−sn,...,sn−1),i2)
1 (y) satisfying ||W i2

1 (y)− v1(y)|| ≤
1
n
. 2

Note that the final commuting frame field (W i2
1 , v2) generates the controlled foliation

claimed in step 2 :

Hi2 := H(−sn,i2) ∨ . . . ∨ H(0,i2) ∨ . . . ∨H(sn−1,i2)

which is 1
n -close to DX on an open neighbourhood of π−1

XY

(
[−1, 1]×Qi2

)
∩An.

We will denote by Hi2 the induced topological trivialization which is obtained by
composing the flows of this frame field (W i2

1 , v2) and which generates Hi2 .

Step 3 : There exists a controlled foliation Fn and its (π, ρ)-controlled frame field
(W1, v2) which is 1

n -close to DXY on an open neighbourhood of :

π−1
XY

(
[−1, 1]2

)
∩An =

⋃
i2∈Σ

π−1
XY

(
[−1, 1]×Qi2

)
∩An .

Let us fix i2 ∈ {0, 1}. We will show below how the foliations H0 and H1 and their
generating frame fields (W 0

1 , v2) and (W 1
1 , v2) glue together to obtain a convenient foliation

H0 ∨H1 of an open neighbourhood of

π−1
XY

(
[−1, 1]×Q0

)
∪ π−1

XY

(
[−1, 1]×Q1

)
∩An = π−1

XY

(
[−1, 1]× [0, 2δ]

)
∩An .

Let α be the smooth decreasing function of step 2. This time we cannot extend α to
be constant along the t2-trajectories (see §4, Remark 3) so we extend it to be constant on
the t1-trajectories.

Define a map on a neighbourhood of π−1
XY

(
[−1, 1] × [0, 2δ]

)
∩ An by setting for every

y = H1(t1, t2, y0) :

β : π−1
XY

(
[−1, 1]× [0, 2δ]

)
∩An −→ [0, 1] , β(y) = β(H1(t1, t2, y0)) = α(t2) .

Define a vector field W1 by :

W1(y) := β(y) ·W 0
1 (y) +

(
1− β(y)

)
·W 1

1 (y)

for which the verification that it is (π, ρ)-controlled is similar and simpler than in step 1.
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It is easy to see that W1 is again 1
n -close to v1 :

||W1(y)− v1(y)|| ≤ β(y) · ||W 0
1 (y)− v1(y)|| +

(
1− β(y)

)
· ||W 1

1 (y)− v1(y) ||

≤ β(y) · 1
n

+
(
1− β(y)

)
· 1
n

=
1
n
.

However unfortunately this time the Lie bracket[
W1 , v2

]
(y) =

[
β ·W 0

1 +
(
1− β

)
·W 1

1 , v2
]
(y)

=
(
β∗y(v2(y)) ·W 0

1 (y) + β(y) · [W 1
1 , v2](y)

)
−

(
β∗y(v2(y)) ·W 0

1 (y) + β(y) · [W 1
1 , v2](y)

)
= β∗y(v2(y)) ·W 0

1 (y) + 0 − β∗y(v2(y)) ·W 1
1 (y) + 0

= β∗y(v2(y)) ·
(
W 0

1 (y)−W 1
1 (y)

)
is not zero in general.

But W1 is (π, ρ)-controlled, and 1
n -close to the lifting v1 on DXY so that we can use

the flow ψ1 of W1 and the flow φ2 of v2 to define the desired new foliation H0 ∨ H1 on a
neighbourhood of π−1

XY

(
[−1, 1]× [0, 2δ]

)
∩An as follows.

Define :

K :
(
[−1, 1]× [0, 2δ]

)
∩ Fn(x0) −→ π−1

XY

(
[−1, 1]× [0, 2δ]

)
(t1, t2, y0) −→ φ2(t2, ψ1(t1, y0)) .

where φ2 is the flow of v2. It is easy to verify that the foliation

H0 ∨H1 :=
{
K

(
[−1, 1]× [0, 2δ]× {y0}

) }
y0∈Fn(x0)

has a generating frame field (W̃1, v2) where

W̃1(y) :=: W̃ (0,1)
1 (y) := K∗(t1,t2,y0)(E1) = φt2

2∗y1
(W1(y1)) .

Recall that W1(y) := β(y) ·W 0
1 (y) +

(
1− β(y)

)
·W 1

1 (y), W̃1 satisfies :

(∗) : ||W̃1(y)− v1(y)|| =
∣∣∣∣φt2

2∗y1
(W1(y1))− v1(y)

∣∣∣∣
=

∣∣∣∣∣∣φt2
2∗y1

(
β(y) ·W 0

1 (y1) +
(
1− β(y)

)
·W 1

1 (y1)
)
− v1(y)

∣∣∣∣∣∣
≤ β(y)·

∣∣∣∣φt2
2∗y1

(
W 0

1 (y1)
)
−v1(y)

∣∣∣∣ +
(
1−β(y)

)
·
∣∣∣∣φt2

2∗y1

(
W 1

1 (y1)
)
−v1(y)

∣∣∣∣
≤ β(y) ·

∣∣∣∣W 0
1 (y)− v1(y)

∣∣∣∣ +
(
1− β(y)

)
·
∣∣∣∣W 1

1 (y)− v1(y)
∣∣∣∣ .

By (∗) and the inequalities obtained at the end of Remark 6 in step 2 for W i2
1 (y) for

every i2 = −sn, . . . , sn−1 applied to W 0
1 (y) and W 1

1 (y) we deduce that

||W̃1(y)− v1(y)|| ≤ β(y) · 1
n

+
(
1− β(y)

)
· 1
n

=
1
n
.
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This proves that the vector field W̃1(y) = W̃
(0,1)
1 is again 1

n -close to DX .

At the second gluing, we define a vector field :

W̃
(0,1,2)
1 (y) := K

(0,1,2)
∗(t1,t2,y0)

(E1) = φt2
2∗y1

(W 2
1 (y1))

which satisfies :

||W̃ (0,1,2)
1 (y)− v1(y)|| ≤

1
n

exactly as in (*) of Step 3,

with a formal repetition of the inequalities (∗) in which we replace W̃ (0,1)
1 (y) = W̃1(y) by

W̃
(0,1,2)
1 (y) etc . , and at the end this time using that :

||W̃ (0,1)
1 (y)− v1(y)|| ≤

1
n

and ||W 2
1 (y)− v1(y)|| ≤

1
n
.

Continuing in this way, after 2sn − 1 steps we define a vector field

un
1 (y) := W̃

(−sn,...,sn−1)
1 on a neighbourhood of π−1

XY

(
[−1, 1]× [−1, 1]

)
∩An

such that the frame field (un
1 , v2) is (π, ρ)-controlled and generates the desired controlled

foliation
Fn : H−sn ∨ . . . ∨H0 ∨H1 ∨ . . . ∨Hsn−1

which, with the same arguments as in Remark 6, where this time we glue the foliations Hj

along the i2-direction instead of the i1-direction, one checks to be 1
n -close to the canonical

distribution DXY .

Step 4 : There exists a controlled foliation on a neighbourhood π−1
XY

(
[−1, 1]2

)
of x0 in

X t Y and this proves Theorem 4 for l = 2.
In the previous step for every n ∈ N∗, we constructed a controlled foliation Fn and

its generating (π, ρ)-controlled frame field (un
1 , v2) which is 1

n -close to DX on an open
neighbourhood of the solid annulus π−1

XY

(
[−1, 1]2

)
∩An.

We prove now that all foliations of the sequence {Fn }n∈N∗ glue together to give a
final controlled foliation H defined on the whole of π−1

XY

(
[−1, 1]2

)
≡W = Y satisfying the

smooth version of the Whitney fibering conjecture.

Fix n ≥ 1 and consider the two controlled foliations :
Fn with generating frame (un

1 , v2) ,
1
n -close to DX , on An ⊆ ρ−1

XY

(
[ 1
n+2 ,

1
n ]

)
and
Fn+1 with generating frame (un+1

1 , v2) , 1
n+1 -close to DX , on An+1 ⊆ ρ−1

XY

(
[ 1
n+3 ,

1
n+1 ]

)
.

Let α1 be a smooth increasing function,

α1 : [ 1
n+3 ,

1
n ] → [0, 1] such that α1(t) =


0 if t ∈ [ 1

n+3 ,
1

n+2 ]

1 if t ∈ [ 1
n+1 ,

1
n ] .

By using the function α1 we will glue together the foliations Fn and Fn+1 along their
intersection An ∩ An+1 ⊆ ρ−1

XY

(
[ 1
n+2 ,

1
n+1 ]

)
without changing them in ρ−1

XY

(
[ 1
n+3 ,

1
n+2

]
∪

[ 1
n+1 ,

1
n ]

)
.
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Consider the vector field wn+1
1 : An ∪An+1 → Rk defined by :

wn+1
1 (y) = γ(y) · un

1 (y) + (1− γ(y)) · un+1
1 (y) , where γ(y) = α1 ◦ ρXY (y) ,

which coincides with un
1 (y) for y ∈ ρ−1

XY ([ 1
n+1 ,

1
n ]).

We have :

[wn+1
1 , v2](y) =

(
γ∗y(v2(y)) · un

1 (y) + γ(y) · [un
1 , v2](y)

)
−

(
γ∗y(v2(y)) · un+1

1 (y) + γ(y) · [un+1
1 , v2](y)

)
= 0− 0 = 0

where γ∗y(v2(y)) = 0 because γ(t) is constant along all the trajectories of v2 and each
[un

1 , v2](y) = [un+1
1 , v2](y) = 0 because (un

1 , v2) and (un+1
1 , v2) are two generating frame

fields respectively of the foliations Fn and Fn+1.

Hence, the frame field (wn+1
1 , v2) defines a new controlled foliation Fn ∨ Fn+1 on

An ∪ An+1 for which it is easy to verify that (wn+1
1 , v2) is (π, ρ)-controlled and coincides

with Fn on the upper part An ∩ ρ−1
XY ([ 1

n+1 ,
1
n ]) of An .

Moreover Fn ∨ Fn+1 is 1
n -close to DXY in An ∪An+1 :

||wn+1
1 (y)− v1(y)|| ≤ γ(y) · ||un

1 (y)− v1(y)|| + (1− γ(y)) · ||un+1
1 (y)− v1(y) ||

≤ γ(y) · 1
n

+ (1− γ(y)) · 1
n+ 1

≤ 1
n
.

Using this way of gluing inductively the foliations of the sequence {Fn}n≥1 starting
from H1 := F1 ∨ F2 we define an “increasing” sequence of controlled foliations {Hn}n≥1 :

Hn :=
((

(F1∨F2

)
∨. . .∨Fn

)
∨Fn+1 of the annular region A1 ∪ . . .∪An+1 ⊆ ρ−1

XY ([ 1
n+3 , 1])

where Hn coincides with Hn−1 on ρ−1
XY ([ 1

n , 1]) 1
n−1 -close to DX on An.

In this way the restrictions H′
n := Hn|ρ−1

XY
([ 1

n , 1]) define an increasing sequence of
controlled foliations with each H′

n which is 1
n−1 -close to DX on An.

Taking on the whole of W = π−1
XY ([−1, 1]2 ∩ ρ−1

XY (]0, 1]) the foliation union H′ =
∪∞n=1H′

n and using that limy→x∈X DXY (y) = TxX for every x ∈ X, by (c)-regularity
[MT]2, we conclude that

lim
y→x∈X

TyH = lim
y→x∈X

DXY (y) = TxX .

Step 5 : The general case of dimX = l ≥ 2.

The proof of Theorem 4 when dimX = l > 2 can be obtained directly by a formal
repetition of the steps 1 to 4 of the proof of the case dimX = 2 where the paving by
squares

{
Qi(δ) := Qi1 ×Qi2

}
i∈Σ2 of [−1, 1]2 is replaced by a paving by l-cubes {Qi(δ) :=

Qi1 × . . . × Qil
}i∈Σl of [−1, 1]l using a multi-index i = (i1, . . . , il) and all essential ideas

and techniques are adapted to a bigger dimension.
However this would be long and formally heavy so we give a shorter inductive proof.

Theorem 4 was proved in Step 4 for dimX = 2.
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Let dimX = l > 2 and suppose Theorem 3 is true for all X ′ such that dimX ′ = l− 1.
Let Y > X. In a local analysis we suppose as usual X = Rl × 0n−l and x0 = 0n ∈ X.
For every t ∈ [−1, 1], let Xt = Rl−1×{t}× 0n−l and Yt = π−1

XY (Xt), then Xt < Yt is a
(c)-regular stratification with control data (πXt , ρXt) : Xt ∪ Yt → Xt × [0, 1] which are the
restriction of the control data (πX , ρX) : X ∪ Y → X × [0, 1] of X ∪ Y .

The stratificationXt∪Yt satisfies the inductive hypothesis so we assume for it all results
obtained in the previous steps 1, . . . , 4, starting from a topological trivialisation H0t

of
origin 0t := (0l−1, t) and a canonical distribution DXtYt(y) = [v1(y), . . . , vl−1(y)] generated
by the first l − 1 coordinates of the frame field which is a continuous controlled canonical
lifting (v1(y), . . . , vl(y)) of the standard frame field (E1, . . . , El), and which generates the
canonical distribution DXY (y) = [v1(y), . . . , vl(y)] of X.

By the inductive hypothesis every pair of strata Xt < Yt admits an (a)-regular (l−1)-
foliation Ht = {My0t

:= Ht(Rl−1 × {y0t
})}y0t∈π−1

X
(0t)

of Yt obtained from a trivialisation

Ht : Rl−1 × π−1
Xt
{0t} → Yt where y0t ∈ π−1

Xt
(0t) .

Following our proof in step 4, by induction every foliation Ht is 1
n -close to DXtYt

in
the annulus An+1,t := An+1 ∩ Yt .

Let yl−1,t denote an arbitrary point of Yt.
For every t ∈ [−1, 1] the frame field (ut

1(y), . . . , u
t
l−1(y)) defined by

ut
i(yl−1,t) := Ht∗(t1,...,tl−1,y0t )(Ei) for every i = 1, . . . , l − 1

is, by Proposition 3, §5.2, the unique commuting (πXt , ρXt)-controlled frame field tangent
to Ht, generating Tyl−1,t

Ht and is 1
n -close to DXtYt (and DXY ) in the annulus An+1,t and

continuous on Xt (step 4).
Moreover one can write ([Mu]1, Chap 2, §5.2 Prop. 1) :

Ht : Rl−1 × π−1
Xt
{0t} −→ π−1

Xt
(Xt) ≡ Yt

(t1, . . . , tl−1, y0t) 7−→ yl−1,t = ψt
l−1(tl−1, . . . , ψ

t
1(t1, y0t) . . .)

where (ψt
1, . . . , ψ

t
l−1) are the commuting flows of the frame field (ut

1, . . . , u
t
l−1) .

Each map Ht extends in a natural way along the direction of the vector field vl using
its flow φl by setting

Ht : Rl × π−1
Xt
{0t} −→ π−1

X (X) ≡ Y

(t1, . . . , tl−1, tl, y0t
) 7−→ y = yl,t := φl(tl, ψt

l−1(tl−1, . . . , ψ
t
1(t1, y0t

)) . . .)

and for every point y0t ∈ π−1
Xt

(0t) one has

Ht
∗(t1,...,tl−1,0,y0t )(Ei) = Ht∗(t1,...,tl−1,y0t )(Ei) = ut

i(yl−1,t) , ∀ i = 1, . . . , l − 1 .

Let Ht = {My0t
:= Ht(Rl × {y0t

})}y0t∈π−1
X

(0t)
be the foliation defined by Ht. Then

the frame field (wt
1, . . . , w

t
l ) defined by

wt
i(y) = Ht

∗(t1,...,tl,y0t )(Ei) , ∀ i = 1, . . . , l − 1 .
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is the unique commuting (πX , ρX)-controlled frame field tangent to Ht, generating TyHt

(Proposition 3, §5.2) and lifting (E1, . . . , El) on the leaves of Ht and it coincides with the
frame field (ut

1, . . . , u
t
l−1, vl) on every point yl−1,t = Ht(t1, . . . , tl−1, y0t

) ∈ Yt

For every i, j = 1, . . . , l− 1, since [ut
i, u

t
j ] = 0, the flows ψt

i a, ψt
j b of ut

i, u
t
jcommute for

all times a, b ∈ R, and so using the relation ψt
i aψ

t
j b = ψt

j bψ
t
i a before differentiating (see

[Mu]1) for every t ∈ [−1, 1] and y = Ht(t1, . . . , tl, y0t) ∈ Y we obtain the equalities :
wt

l (y) = vl(y)

wt
i(y) := Ht

∗(t1,...,tl,y0t )(Ei) = φl tl∗yl−1(u
t
i−1(yl−1)) with the notation in §5.2 for yl−1.

By continuity of each Ht
∗(t1,...,tl−1,0,y0t ) on Xt × π−1

XtYt
(0t), and since

Ht
∗(t1,...,tl−1,0,y0t)

(Ei) = wt
i(y) = ut

i(y)

for every ε > 0 there exists an open neighbourhood Wt of Yt = π−1
XtYt

(Xt) such that∣∣∣∣wt
i(y)− ut

i(y)
∣∣∣∣ < ε , i.e. TyHt is ε-close to DX for every y ∈Wt ,

and moreover⋃
t∈[−1,1]

Wt ⊇
⋃

t∈[−1,1]

π−1
XtYt

(Xt) = π−1
XtYt

( ⋃
t∈[−1,1]

Xt

)
⊇ π−1

XtYt
([−1, 1]l) ≡ Y .

Then the family Sn+1 := {Vt := Wt∩An+1}t∈[−1,1] is an open covering of the compact
subset An+1 = ∪t∈[−1,1]An+1,t of Y and there exists a finite subfamily {Vtj

}j covering
An+1.

In a similar way as in the first part of the proof (before step 1), for ε = 1
n+1 there

exists δ > 0 and sn ∈ N∗ with δ := 1
sn

such that we can obtain every Vtj
of the form :

Vtj
⊇ H

(
[−1, 1]l−1 ×Qj × π−1

Xtj
(0tj

)
)
∩An+1

where Qj := [jδ, (j+1)δ] for every j ∈ Jn := {−sn . . . , 0, . . . , sn−1} and ∪J∈Jn
Qj = [−1, 1].

Following the same construction as in step 3, the foliations Hj := Htj

|Vtj
with j ∈ Jn,

induced by each Htj on Vtj
, glue together in a unique controlled foliation

Fn+1 := H−sn ∨ . . . ∨H−1 ∨ H0 ∨H1 ∨ . . . ∨ Hsn−1

of an open set⋃
J∈Jn

Vtj
⊇

⋃
J∈Jn

H
(
[−1, 1]l−1 ×

( ⋃
J∈Jn

Qj

)
× π−1

Xtj
(0tj

)
)
∩An+1 =

= H
(
[−1, 1]l × π−1

X (0tj
)
)
∩An+1 = π−1

X

(
[−1, 1]l

)
∩An+1 .

Moreover as in Remark 6, since each Hj = Htj

|Vtj
is 1

n -close to DXY on Vtj
, the global

foliation Fn+1 of An+1 is 1
n -close to DXY too on the open set ∪j∈JnVtj .
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We obtain thus for every n ∈ N∗ a controlled foliation Fn+1 which is 1
n -close to DXY .

At this point with formally the same proof as in step 4 one obtains an “increasing”
sequence {Kn}n≥1 of foliations

Kn :=
((

(F1 ∨ F2
)
∨ . . . ∨ Fn

)
∨ Fn+1 of the set A1 ∪ . . . ∪ An+2 ⊆ ρ−1

XY ([ 1
n+3 , 1])

with Kn coinciding with Kn−1 on ρ−1
XY ([ 1

n , 1]) and 1
n−1 -close to DX on An.

In this way the restrictions K′n := Kn|ρ−1
XY

([ 1
n , 1]) define an increasing sequence of

controlled foliations with each K′n 1
n−1 -close to DX on An.

Finally, take on the whole of W = π−1
XY ([−1, 1]l ∩ ρ−1

XY (]0, 1]) the foliation union K′ =
∪∞n=1K′n. By (c)-regularity [MT]2, the canonical distribution is continuous on X and we
conclude that :

lim
y→x∈X

y∈Y

TyK′ = lim
y→x∈X

y∈Y

DXY (y) = TxX . 2

Corollary 3. With the hypotheses of Theorem 4, the open l-foliated neighbourhood
W of π−1

X (Ux0) ∩ TX(1) may be chosen of type π−1
X (U ′) ∩ TX(1), where U ′ is the maximal

domain of a chart near x0 of X as a submanifold of Rn.

Proof. Let U ′ be a maximal domain of a chart φ : U ′ ≡−→ Rl × {0m} near x0 ∈ X.
By the first Thom-Mather Isotopy Theorem there exists a topological trivialisation of

X near x0 :

H = Hx0 : π−1
XY ({x0})× U ′ ≡ π−1

XY ({x0})× Rl −→ π−1
XY (U ′)

having its values on the whole of π−1
XY (U ′).

Let us consider Theorem 4 proved for such a maximally defined map H = Hx0 .
In Theorem 4 we proved that starting from the compact set [−1, 1]l×{0m} ⊆ Rl×{0m},

there exists a bounded neighbourhood W of 0n in Rn containing the relatively compact set
Ũ = π−1

XY ([−1, 1]l × {0m}) ∩ TX(1), and there exists a controlled foliation U of Ũ which is
(a)-regular on all points of [−1, 1]l × {0m}, i.e. satisfying :

lim
y→x

TyU = TxX for every x ∈ [−1, 1]l × {0m} .

Following the proof of Theorem 4 it is clear that the compact cube [−1, 1]l×{0k} can
be replaced by the bigger cube Un := [−n, n]l × {0m}. The same proof holds allowing us
to find an l-foliation Un of an open bounded neighbourhood W ′

n of the relatively compact
set Ũn := π−1

XY ([−n, n]l × {0m}) ∩ TX(1) which is (a)-regular on all points of Un.

At this point the proof follows using Zorn’s Lemma to give the existence of a maximal
element of the set of all (a)-regular l-foliations each of whose domains contains a set of
the sequance π−1

XY ([−n, n]l × {0m}) ∩ TX(1) with respect to an appropriate partial order
relation.

However, we give a constructive proof as follows.
We prove by induction that the sequence of these (a)-regular controlled foliations

{Un}n may be modified to a new sequence of (a)-regular controlled foliations {U ′n}n in
which each foliation U ′n+1 defined on Ũn+1 is an extension of U

n|Ũn−1
.
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Let U ′n be a foliation on Ũn = π−1
X ([−n, n]l × {0m}) ∩ TX(1) extending the restriction

of U ′n−1 to Ũn−2 and (a)-regular on all points of Un.

Via a sequence of two gluings, using the same techniques as in the proofs of Step 2
and Step 3 in Theorem 4, we glue Un and the restriction Un+1|Un+1−Un−1 and define a new
l-foliation :

U ′n+1 which :


coincides with U ′(n) on Ũ ′n−1 ;

coincides with Un+1 on Ũn+1 − Ũn ;

is (a)-regular on Un+1.

We have then an increasing sequence of (a)-regular controlled foliations : U ′n∣∣Ũn−1

whose union is defined on the set⋃
n

Ũn−1 = π−1
XY

( ⋃
n

[−n, n]l × {0m}
)
∩ TXY (1) = π−1

XY

(
Rl × {0m}

)
∩ TXY (1)

and which is (a)-regular on all points of :

+∞⋃
n=1

Un−1 =
⋃
n

[−n, n]l × {0m} = Rl × {0m} ≡ U ′ . 2

6. Local regular wing structures.

In this section, we prove Theorems 5 and 6 in which we construct a local wing structure
for Bekka (c)-regular and Whitney (b)-regular stratifications near every stratum X with
depthΣ(X) = 1.

These partial results (since depthΣ(X) = 1) will play an important role in the proof
of our main Theorem 7 of section 7 and will be extended to the general case of arbitrary
depth as corollaries of Theorem 7.

Definition 8. Let X = (A,Σ) be a smooth (a)- or (c)- or (b)-regular stratification in
Rn, X ∈ Σ and x0 ∈ X.

One says that X admits a local wing structure at (or near) x0 if there exists a system
of control data F = {(πX , ρX , TX)}X∈Σ, a neighbourhood Ux0 of x0 in X and ε > 0 such
that the stratified space

(
π−1

X (Ux0)− Ux0

)
∩ TX(ε) has a stratified foliation

Wx0 =
{
Wy0 | y0 ∈ (π−1

X (x0)− {x0}) ∩ SX(ε)
}

such that for every stratum Y > X and y0 ∈ Y ,

i) Wy0 is a C∞-submanifold of TXY (ε) containing y0 ;
ii) Ux0 ⊆Wy0 (frontier condition) ;
iii) the restriction (πXY , ρXY )|Wy0

: Wy0 −→ Ux0 × ]0, ε[ is a C∞-diffeomorphism.

If these conditions hold, each stratified set Wy0 tUx0 is called a local wing at x0 in Y .

The local wing structure Wx0 is called (a)- or (c)- or (b)-regular respectively if moreover :

iv) every pair of strata Ux0 < Wy0 is (a)- or (c)- or (b)-regular.
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If such conditions are satisfied we also say that W is a local (a)- or (c)- or (b)-regular
wing structure over U (omitting x0).

In 1976 [Go]1 Goresky introduced the following very useful notion :
Definition 9. Let X = (A,Σ) be an abstract stratified set, a family of maps{

rε
X : TX(1)−X → SX(ε)

}
X∈Σ , ε∈]0,1[

,

is said to be a family of lines for X (with respect to a given system of control data){
(TX , πX , ρX)

}
if for every pair of strata X < Y , the following properties hold :

1) every restriction rε
XY := rε

X|Y : TXY −→ SXY (ε) of rε
X is a C1-map ;

2) πX ◦ rε
X = πX ;

3) rε′

X ◦ rε
X = rε′

X ;
4) πX ◦ rε

Y = πX ;
5) ρY ◦ rε

X = ρY ;
6) ρX ◦ rε

Y = ρX ;
7) rε′

Y ◦ rε
X = rε

X ◦ rε′

Y .
In order to obtain his important theorem of triangulation of abstract stratified sets,

Goresky [Go]3 proved that every abstract stratified set X admits a family of lines. Since (c)-
regular [Be]1 and a fortiori (b)-regular [Ma]1,2 stratifications admit structures of abstract
stratified sets , a family of lines exists for them.

We can now prove :
Theorem 5. Let X = (A,Σ) be a closed smooth Bekka (c)-regular stratified subset

of Rn. Then for every stratum X of depth 1, each pair of strata X < Y admits a local
(c)-regular wing structure near every x0 ∈ X.

Proof. Since the pair of strata X < Y is (c)-regular, by Theorem 3 there exists a
neighbourhood Ux0 in X (which in a local analysis we identify with Rl × 0 ⊆ Rn), and
a local (a)-regular foliation Hx0 =

{
My0 := H(Rl × y0)

}
y0∈π−1

XY
(x0)

corresponding to a
stratified local topological trivialization :

H : Rl × π−1
X (x0) −→ π−1

X (Rl × 0m) ⊆ Rn

(t1, . . . , tl, y0) 7−→ y := φl(tl, . . . , φ1(t1, y0) . . .)

where (πXY , ρXY ) : TXY → X×]0, 1 is the C∞-submersion of a system of control data.
As X tY is (c)-regular it is an abstract stratified set [Be]1 and hence admits a family

of lines
{
rε
X : TX(1)−X → SX(ε)

}
ε∈]0,1[

[Go]3.

For every y0 in the link L(x0, ε) := SX(ε) ∩ π−1
XY (x0) we consider the C∞-arc

γy0 : ]0, ε[ −→ π−1
XY (x0) , γy0(s) = rs

X(y0)

which is a C∞-diffeomorphism on its image and define the foliation

Lx0 :=
{
Ly0 := γy0(]0, ε[)

}
y0∈L(x0,ε)

by 1-dimensional arcs of the fiber π−1
XY (x0) ∩ TXY (ε) parametrized in the link L(x0, ε).
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Since γy0(s) ⊆ SX(s) = ρ−1
X (s) and ρ−1

X (0) = X, one has lims→0 γy0(s) = x0.
Hence each line Ly0 satisfies : {x0} ⊆ Ly0 .

For every y0 ∈ L(x0, ε), setting Wy0 := H(Rl × Ly0) the family

Wx0 :=
{
Wy0

}
y0∈L(x0,ε)

defines a foliation satisfying the local wing structure properties near x0.
In fact, since H is a homeomorphism it is easy to see that Ux0 ⊆Wy0 for every y0.
Since H is a diffeomorphism on strata, every leaf Wy0 is a C∞-submanifold of TXY (ε)

of dimension (l + 1).
Because (πXY , ρXY ) : TXY → X ×]0, 1[ is a C∞-submersion, its restriction to each

leaf (πXY , ρXY )|Wy0
: Wy0 → X × ]0, ε[ is a C∞-diffeomorphism.

Finally, for every x = (t1, . . . , tl) ∈ Ux0 ≡ Rl we have that, for every y ∈ Wy0 , there
exists s ∈]0, ε[ such that y = H

(
(t1, . . . , tl, γy0(s))

)
and so that

Wy0 = H(Rl × Ly0) ⊇ H
(
Rl × γy0(s)

)
= Mγy0 (s)

and hence by (a)-regularity of the controlled foliation Hx0 one finds :

lim
y→x

TyWy0 ⊇ lim
y→x

TyMγy0 (s) ⊇ TxX

which proves (a)-regularity of the pair of strata Ux0 < Wy0 at every x ∈ Ux0 .
Finally by considering the distance function ρUx0Wy0

, the restriction of ρXY , each level
hypersurface satisfies :

ρ−1
Ux0Wy0

(ε) = ρ−1
XY (ε) ∩Wy0 = My0

and hence (c)-regularity of Ux0 < Wy0 follows by (a)-regularity of the foliation Hx0 =
{My}y :

lim
y→x

ρ−1
Ux0Wy0

(ε) ⊇ lim
y→x

TyMy = TxX. 2

For a (b)-regular stratification, with the aim of constructing a corresponding (b)-regular
wing structure near x0 ∈ X, we cannot use an arbitrary Goresky family of lines because
these lines are not necessarily (b)-regular over x0. Fortunately this result holds if the lines
are the integral curves of the gradient of the distance function ρX .

Theorem 6. Let X = (A,Σ) be a closed smooth Whitney (b)-regular stratified subset
of Rn. For every stratum X of depth 1, each pair of strata X < Y admits a local (b)-regular
wing structure near every x0 ∈ X.

Proof. The pair of strata X < Y being (b)-regular, it is (c)-regular too [Be]1, [Tr]1,
hence by Theorem 3 there exists a neighbourhood Ux0 in X, which in a local analysis we
identify with Rl × 0m ⊆ Rn, and there exists a local (a)-regular controlled foliation Hx0 ={
My0 := H(Rl×y0)

}
y0∈π−1

XY
(x0)

obtained from the stratified local topological trivialization
:

H : Rl × π−1
X (x0) −→ π−1

X (Rl × 0m) ⊆ Rn

(t1, . . . , tl, y0) 7−→ y := φl(tl, . . . , φ1(t1, y0) . . .)

where {(πXY , ρXY ) : TXY → X×]0, 1[} is the C∞-submersion of a system of control data.
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Let us consider the distance function ρXY : TXY (1) → X and on TXY (1), the vector
field v(y) := ∇ρXY (y) and the integral flow φ : R× TXY (1) → TXY (1) of v.

Since ρXY : TXY (1) → X is a submersion, ∇ρXY (y) 6= 0 ∀ y ∈ TXY (1).
For every y in the link π−1

XY (x) ∩ TXY (1) we consider the C∞-arc

γy : ]−∞, 0[ −→ π−1
XY (x) , γy(s) = φ(s, y)

which is a C∞-diffeomorphism on its image.
For every x ∈ X we define the foliation

Lx :=
{
Ly0 := γy0(]−∞, 0[)

}
y0∈L(x,1)

of the fiber π−1
XY (x)∩TXY (1) by arcs parametrized in the link L(x, 1) := π−1

XY (x0)∩SXY (1).
We write Ly := Ly0 if y =γy0(s) is in the same trajectory γy0(]−∞, 0[) as y0.
Moreover, for every s ∈]−∞, 0[, by γy(s) ⊆ SX(s) = ρ−1

X (s) and ρ−1
X (0) = X, one has

lims→−∞ γy(s) = x and hence each line Ly satisfies : x ∈ Ly, with x = πXY (y).

For every y ∈ TXY (1), setting Wy := H(Rl × Ly) the family

Wx0 :=
{
Wy := H(Rl × Ly)

}
y∈TXY (1)

defines a foliation for which as in the (c)-regular case one proves it satisfies the local (a)-
regular wing structure properties near x0.

Recall now the following two useful properties of (b)-regularity at x ∈ X < Y for two
strata X < Y of a stratification in Rn :

i) X < Y is (b)-regular at x ∈ X if and only it is (a)- and (bπ)-regular (defined below)
with respect to each C∞-projection πX : TX → X.

ii) X < Y (b)-regular at x ∈ X implies [Ma]1,2 that in local coordinates there exist
control data (πX , ρX) where π is the canonical projection π(t1, . . . , tn) = (t1, . . . , tl, 0m)
and ρ the standard distance from Rl × 0m, i.e. ρ(t1, . . . , tn) =

∑n
i=l+1 t

2
i .

By i) it remains to prove that Ux0 < Wy0 is (bπ)-regular at each point x ∈ Ux0 .
Let us fix x ∈ X. To simply notations we identify TXY (1) and Y .
By definition of (bπ)-regularity at x ∈ X, we must prove that for every sequence

{yn}n ⊆ Wy0 such that limn yn = x and both limits below exist in the appropriate Grass-
mann manifolds,

lim
n
Tyn

Wy0 = σ ∈ Gl+1
n and lim

n
ynπX(yn) = L ∈ G1

n , then σ ⊇ L .

The Grassmann manifold Gdim Y
n being compact, taking a subsequence if necessary we

can suppose that limn Tyn
Y = τ ∈ Gl+1

n .
By hypothesis X < Y is (b)-regular and hence (bπ)-regular at x ∈ X so that τ ⊇ L.
Moreover by ii) we can assume that πX = π : Rn → Rl × 0m and ρX is the standard

distance ρ(t1, . . . , tn) =
∑n

i=l+1 t
2
i , so that ∇ρX(y) = 2(y−πX(y)) and the vectors generate

the same vector space [∇ρX(y)] = [y − πX(y)].
For every n ∈ N, let un be the unit vector un := yn−xn

||yn−xn|| where xn = πX(yn).
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For every vector subspace V ⊆ Rn, let pV : Rn → V be the orthogonal projection on
V and let us consider the “distance” function defined by ([Ve], [Mu]2 §4.2) :

δ(u, V ) = infv∈V ||u− v || = || u− pV (u)|| for every u ∈ Rn

and
δ(U, V ) = supu∈U,||u ||=1 ||u− pV (u) || for every subspace U ⊆ Rn .

Then by (bπ)-regularity of X < Y it follows that :

τ ⊇ L =⇒ lim
n

[un] ⊆ lim
n

Tyn
Y =⇒ lim

n
δ([un], Tyn

Y ) = 0 .

Since ρXY is the restriction ρX|Y of ρX to Y , every vector ∇ρXY (yn) is the orthogonal
projection pTyn Y (∇ρX(yn)) on Tyn

Y of the vector ∇ρX(yn) and we have :

Tyn
Lyn

= [∇ρXY (yn)] = pTyn Y (∇ρX(yn)) = pTyn Y ([yn − xn]) = pTyn Y ([un])

by which, un being a unit vector of [un], one deduces that :

δ([un], Tyn
Lyn

) = δ([un], pTyn Y ([un])) = || un − pTynY (un) || = δ([un], Tyn
Y ) .

On the other hand Lyn
⊆Wy0 ⊆ Y , so Tyn

Lyn
⊆ Tyn

Wy0 ⊆ Tyn
Y , and hence :

0 ≤ lim
yn→x

δ([un], Tyn
Wy0) ≤ lim

yn→x
δ([un], Tyn

Lyn
) = lim

yn→x
δ([un], Tyn

Y ) = 0 .

We deduce that limyn→x δ([un], Tyn
Wy0) = 0 and this implies :

L = lim
yn→x

ynπX(yn) = lim
yn→x

[un] ⊆ lim
yn→x

Tyn
Wy0 = σ

which proves that Ux0 ≡ Rl × 0m < Wy0 is (bπ)-regular at x, for every x ∈ Ux0 . 2

7. Proof of the smooth Whitney fibering conjecture in the general case.

In this section we prove our main results. First we use the local wing structure of
section 6 to prove the conclusion of the smooth Whitney fibering conjecture for a stratum
X of a (c)-regular stratification X = (A,Σ) having arbitrary depth (Theorem 7) and then
we use Theorem 7 to extend the wing structure Theorems 5 and 6 of section 6 to a stratum
of arbitrary depth (Theorem 8).

The definition below will be useful in the proof of Theorem 7. A similar notion (Σ-
chart) was introduced in [Fer].

Definition 10. Let X = (A,Σ) be an abstract stratified set with a fixed system of
control data T = {(TX , πX , ρX)}X∈Σ and X l < Y k adjacent strata of X ,

Let U be the domain of a chart ϕ : U ⊆ X → Rl, (u1, . . . , ul) the frame field defined
by ui := ϕ−1

∗ (Ei) and Rk
+ := Rk−1×]0,+∞[ (so R+ :=]0,+∞[).

We call conical chart of Y over U a chart ϕ̃ : π−1
XY (U)∩TXY (ε) → Rk

+ of Y such that:

1) ϕ ◦ πXY = p ◦ ϕ̃ where p : Rk → Rl is the canonical projection ;

2) ∀ε′ ∈]0, ε[ the restriction ϕ̃ε′ : π−1
XY (U)∩SXY (ε′) → Rk−1×{ε′} is a chart of SXY (ε′);
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3) ϕ̃ extends ϕ to the stratified homeomorphism

ϕ t ϕ̃ : U t
(
π−1

XY (U) ∩ TXY (ε)
)
−→ Rl × 0k−l t Rk

+ .

Example 1. LetH be the topological trivialization of the projection πXY : TXY → X:

H = Hx0 : U × π−1
XY (x0) ∼= Rl × π−1

XY (x0) −→ π−1
XY (U) ⊆ Rn

(t1, . . . , tl, y0) 7−→ φl(tl, . . . , φ1(t1, y0)..)

where ∀i ≤ l, φi is the flow of the vector field vi which is the (π, ρ)-controlled lifting of ui.
If

h : V ⊆ SXY (ε) −→ Rk−l−1 is a chart of the link LXY (x0, ε) := π−1
XY (x0) ∩ SXY (ε)

and we consider the families of smooth open Lx0 arcs as in §6 (recall that γy0(1) = y0 and
limt→0 γy0(t) = x0) :

Lx0 =
{
γy0 :]0, 1[→ π−1

XY (x0)
}

y0∈V
whose images are the lines

{
Ly0 := γy0(]0, 1])

}
y0∈V

then the union V ′ = ty0∈V Ly0 fills π−1
XY (x0) ∩ TXY (ε) and the disjoint union of wings

{Wy0 = H(U × V ′)}y0∈V :

U ′ = H(U × V ′) := ty0∈V H(U × Ly0)

is the domain of a conical chart ϕ̃ of Y over U defined by :

ϕ̃ : U ′ := H(U × V ′) −→ U × Rk−l−1× ]0, ε[

y = H(t1, . . . , tl, y0,t) 7−→ ϕ̃(y) :=
(
πXY (y), h(y0), ρXY (y)

)
(where y0,t := γy0(t)) which satisfies :

ϕ̃∗y(vi(y)) =
(
πXY ∗y(vi(y)), h∗y0(vi(y0)), ρXY ∗y(vi(y))

)
=

(
ui(x), 0k−l−1, 0

)
.

Remark 7. With the same notation as in Example 1 one has :
i) If (q1, . . . , qk) denotes the coordinate frame field induced by ϕ̃ : U ′ → U×Rk−l−1×]0, ε[

then for every y = H(t1, . . . , tl, y0,t) ∈ U ′ we have :

qi(y) =


ϕ̃−1
∗y (ui(x), 0k−l) = vi(y) for i = 1, . . . , l

ϕ̃−1
∗y (Ei) = γt∗y(h−1

∗y0
(Ei)) for i = l + 1, . . . , k − 1

ϕ̃−1
∗y (Ek) = (γy0)

′(t) for i = k ;

ii) If A := {hi : Vi → Rk−l−1}i∈I is an atlas of LXY (x0, ε), then

∪iVi = LXY (x0, ε) ⇒ ∪iV
′
i = π−1

XY (x0) ⇒ ∪iU
′
i = π−1

XY (U) ∩ TXY (ε) ,
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and hence

Ã := { ϕ̃i : U ′i → Ui× ]0, ε[×Rk−l−1 }i∈I is an atlas of π−1
XY (U) ∩ TXY (ε).

Theorem 7 below implies that any Bekka (c)-regular stratification satisfies the conclu-
sion of the smooth version of the Whitney fibering conjecture (see Corollary 4 below).

Theorem 7. Let X = (A,Σ) be a smooth stratified Bekka (c)-regular subset of Rn, X
a stratum of X , x0 ∈ X and U a domain of a chart of X near x0.

Then there exists a controlled foliation Fx0 = {Fz0}z0∈π−1
X

(x0)
of the neighbourhood

W =π−1
X (U) in A of x0 whose leaves Fz0 are smooth l-manifolds diffeomorphic to X ∩W ,

with Fx = W ∩X = U , ∀x ∈ U , such that for every stratum Xj ≥ X, Xj ∩W is a union
of leaves and Fx0 satisfies:

(1) : lim
z→a

TzFz = TaFa ⊆ TaXj , for every a ∈ Xj ∩W ,

and in particular for Xj = X :

(2) : lim
z→a

TzFz = TaFa = TaX , for every a ∈ X ∩W = U .

Proof. We prove the theorem by induction on s = depthΣX.
In Theorems 3 and 4 we proved the statement when s = 1 ; this provides the start of

the induction.
Let X be a stratum of X having s ≥ 2.
A tubular neighbourhood TX of X is naturally stratified by strata Xi

j ≥ X (with
dimXi

j = i and j ∈ Ji) and if TX is sufficiently small every two strata of the same
dimension have disjoint tubular neighbourhoods [Ma]1,2. By interpreting all strata of the
same dimension i as a unique (non connected) i-stratum of TX we can suppose that TX

admits at most one stratum Xi > X of each dimension i > l = dimX.
Hence it is sufficient to prove the theorem when TX has a unique maximal chain of

strata adjacent to X :

X = X0 < X1 < · · · < Xs−1 < Xs with s ≥ 2 .

Let ϕ : U → Rl be a chart of X near x0 ∈ X and set Y := Xs−1, Z := Xs.
The stratification X ′ = (A′,Σ′) obtained by removing from Σ all strata of dimension

strictly bigger than dimXs−1 is obviously again (c)-regular with system of control data the
family of restrictions {(πXA′ , ρXA′)}X∈Σ′ to A′ of the control data {(πX , ρX)}X∈Σ , has Y
as maximal stratum and depthΣ′X = s−1 so by the inductive hypothesis the theorem holds
for X ′ and there exists a controlled foliation F ′

x0
:= {F ′y}y∈π−1

XA′
(x0)

of the neighbourhood

W ′ := π−1
XA′(U) = W ∩ A′ of x in A′ satisfying the limit properties (1) and (2) for every

j = 0, . . . , s− 1.

Denote TX ∩A′, by TXA′ and SX(ε) ∩A′ by SXA′(ε) the ε-sphere of X in A′ induced
by the control data {(πXA′ , ρXA′)}X∈Σ′ of X ′.

Let (u1, . . . , ul) be the frame field ui := ϕ−1
∗ (Ei) induced by the chart ϕ and H the

topological trivialization of the projection πX : TX(1) → X,

H = HX : U × π−1
X (x0) ≡ Rl × π−1

X (x0) −→ π−1
X (U) ⊆ Rn

(t1, . . . , tl, z0) 7−→ φl(tl, . . . , φ1(t1, z0)..)
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where (as in §5.1) ∀i = 1, . . . , l, φi is the stratified flow of the stratified vector field vi which
is the continuous controlled lifting in the stratified space π−1

X (U) = ts
j=0 π

−1
XXj

(U) of the
coordinate vector field ui defined on U ⊆ X.

In the following we identify π−1
X (U) with A , and π−1

XXj
(U) with TXXj

(1) .

According to [MT]2 (where the proof is given for the three strata case) for each vector
field u on X a stratified continuous controlled vector field is obtained inductively by the
following steps 1), . . . 4) :

1) one lifts u to a continuous (πXZ , ρXZ)-controlled vector field uXZ on TXZ(1) in A
(using (c)-regularity) ;

2) by induction on depth there exists a continuous (π, ρ)-controlled stratified vector
field, extension of u, uA′ := {uXj}s−1

j=0 on the stratified space TXA′(1) = ts−1
j=0TXXj

(1)
having Y as maximum stratum (again using (c)-regularity) ;

3) denoting d the usual distance of Rn and setting y := πY Z(z) for z ∈ TY Z ∩ TXZ ,
one lifts uY to a continuous (πY Z , ρY Z)-controlled vector field uY Z on TY Z(ε)∩ TXZ(1) in
A where TY Z(ε) is an open subset of TY Z(1) such that :

||uY Z(z)− uY (y)|| < min
j≤s−2

d(y,Xj) (using (c)-regularity) .

This restriction is important to obtain the continuity on each Xj < Y (see [MT]2) :

(∗) : ∀ a ∈
s−1⊔
j=0

TXXj
, lim

z→a
uY Z(z) = uXj (a), i.e. lim

z→a
uY Z(z) = uA′(a)

and making a change of scale we can (as usual) suppose ε = 1 and TY Z(ε) = TY Z(1).

4) one glues uXZ and uY Z by a partition of unity subordinate to the open covering
O :=

{
O1 , O2

}
of TXZ(1) where :

O1 := TXZ(1)− TY Z(1/2) and O2 := TXZ(1) ∩ TY Z(1) .

Figure 12

This gives a vector field uZ = uXs on TXZ(1), such that the final stratified vector field
uA := {uXj}s

j=0 is a lifting of u, controlled with respect to all strata of TX(1), and it is
continuous:

lim
z→a

uA(z) = uXj (a) = uXA′(a) , for every a ∈
s−1⊔
j=0

π−1
XXj

(U) ≡
s−1⊔
j=0

TXXj
(1) .
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This construction was already used to lift the continuous controlled frame field (v1, . . . , vl)
defining the previous trivialization mapH. We will re-apply and optimize the steps 1), . . . 4)
to lift the integrable frame field (u1, . . . , ul) to an integrable continuous (π, ρ)-controlled
frame field (w1, . . . , wl) of

π−1
X (U) = π−1

XZ(U) t π−1
XA′(U) = π−1

XZ(U) t ts−1
j=1 π

−1
XXj

(U) t U

in which π−1
XZ(U) is the maximal stratum. Moreover we will do it in the general case of

many strata, so the present proof also completes details omitted in [MT]2.
Remark that, in the present case, each time that we lift an l-frame field tangent to an

l-foliation, the lifted frame field will be integrable too.

To start the induction, we first lift (u1, . . . , ul) tangent to a canonical distribution DX ,
to obtain continuous controlled vector fields (v1, . . . , vl) defining the trivialization H above
and thus give the induced controlled l-foliation (not necessarily (a)-regular) :

H =
{
Mx0

y

}
y∈π−1

X
(x0)

=
{
Mx0

z

}
z∈π−1

XZ
(x0)

⊔ {
Mx0

y

}
y∈π−1

XA′
(x0)

.

Then we apply Theorem 3 and (resp.) the inductive hypothesis to the latter two sub-
foliations of H to obtain two (a)-regular controlled l-foliations, whose leaves (with a slight
abuse of notation) we denote again by Mx0

z and Mx0
y :

HXZ = {Mx0
z }z∈π−1

XZ
(x0)

of π−1
XZ(U)

HA′ = {Mx0
y }y∈π−1

XA′
(x0)

of π−1
XA′(U)

and we denote their generating frame fields by

(wXZ
1 , . . . , wXZ

l ) and (wA′

1 , . . . , wA′

l ) .

Step 1 : Construction of a controlled l-foliation HXZ , (a)-regular over U .
Let (wXZ

1 , . . . , wXZ
l ) be the unique continuous (πX , ρX)-controlled l-frame field which

is the lifting of (u1, . . . , ul) on the distribution THXZ .
Since THXZ is integrable, (wXZ

1 , . . . , wXZ
l ) is integrable too.

Using (wXZ
1 , . . . , wXZ

l ) we can write the topological trivialization of origin x0 of the
projection πXZ : TXZ(1) → X by :

HXZ : U × π−1
XZ(x0) ≡ Rl × π−1

XZ(x0) −→ π−1
XZ(U) ⊆ Rn

(t1, . . . , tl, z0) 7−→ ψl(tl, . . . , ψ1(t1, z0) . . .)

where ∀i ≤ l, ψi is the flow of the vector field wXZ
i , and the controlled foliation generated is

again the HXZ which satisfies the Whitney fibering conjecture for X < Z on U (Theorem
4).

Remark that the lth vector field wXZ
l , lift on π−1

XZ(U) of the lth coordinate vector field
ul of U , remains un-modified during the construction in Theorem 4 because of its special
position in the composition of the flows defining HXZ . Hence :

(∗)XZ
l : wXZ

l (z) = vXZ
l (z) = vl(z) for every z ∈ TXZ(1) .
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Step 2 : Finding a controlled l-foliation HXA′ , (a)-regular over A′ with wing structure.
By induction, we consider the unique stratified continuous (π, ρ)-controlled l-frame

field (wA′

1 , . . . , wA′

l ) on the stratified distribution THA′ which is the lifting of (u1, . . . , ul).
Then (wA′

1 , . . . , wA′

l ) is integrable on each stratum of A′ since the distribution THA′ is
integrable on each stratum of A′ and it generates the controlled foliation HA′ .

By considering the trivialization map HA′ of the projection πXA′ : TXA′(1) → X we
can write the leaves of the (a)-regular controlled foliation HA′ contained in SXA′(1) =
SX(1) ∩A′ as:

HSXA′ (1)
:=

{
Mx0

y0
:= HA′(U × {y0})

}
y0∈LXA′ (x0,1)

,

parametrized in the link LXA′(x0, 1) := π−1
XA′(x0) ∩ SXA′(1) of x0 in A′.

By Theorem 5 and induction, for the stratification X ′ in which depthΣ′X = s − 1,
there exists a (c)-regular wing structure of U < π−1

XY (U) ∩A′ over U for every Y > X and
the union defines a wing structure :

Wx0 :=
{
Wy0 := HA′(U × Ly0)

}
y0∈LXA′ (x0,1)

where each Ly0 := γy0(]0, 1]) is a C∞-arc contained in the fiber π−1
XA′(x0) so that Wy0 is

parametrized by the link LXA′(x0, 1) of x0 in π−1
XA′(x0) (as in Theorems 5 and 6).

In order to prove that the foliations HXZ and HA′ can be glued together into a
controlled foliation satisfying the statement of Theorem 7, consider the natural restrictions
of HA′ and HA′ to TXY (1) ≡ π−1

XY (U), which is the maximal stratum of A′ ≡ π−1
XA′(U) :

HY := HA′|TXY (1) and HY := HA′|TXY (1)
.

Using the restrictions wY
i := wA′

i |TXY (1) for every i = 1, . . . , l, the topological trivial-
ization (of origin x0) of the projection πXY : TXY (1) → X can be written as

HXY : U × π−1
XY (x0) ≡ Rl × π−1

XY (x0) −→ π−1
XY (U) ⊆ Rn

(t1, . . . , tl, z0) 7−→ ψl(tl, . . . , ψ1(t1, z0) . . .)

where ∀i ≤ l, ψi is the flow of the vector field wY
i and whose foliation generated by HXY

is again the HY which satisfies, by induction the properties (1) and (2) in the statement
of the Theorem for every two strata π−1

XXj
(U) < π−1

XY (U).

Step 3 : Lifting HXA′ to a controlled l-foliation HXY Z of A′ t TY Z , (a)-regular over
A′ through conical trivializations and having l-foliated wings.

To glue together the controlled foliations HXZ and HA′ we first need to lift the inte-
grable frame field (wY

1 , . . . , w
Y
l ) generating the foliation HY of π−1

XY (U) into a continuous
(π, ρ)- controlled integrable frame field (wY Z

1 , . . . , wY Z
l ) on π−1

Y Z(π−1
XY (U) ).

Now we have diffeomorphisms

π−1
XY (U) ∼= U × π−1

XY (x0) ∼= U × ]0, 1[×LXY (x0, 1) ,

so in general π−1
XY (U) is not a domain of a chart of Y . Thus we cannot use a trivial-

ization map HY Z (of origin y0 ∈ π−1
XY (x0)) to define such a lifting (wY Z

1 , . . . , wY Z
l ) on

π−1
Y Z(π−1

XY (U) ).
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On the other hand by writing LXY (x0, 1) = ∪iVi where each Vi
∼= Rk−l−1 (k = dimY )

is a domain of a chart of LXY (x0, 1) we can write π−1
XY (U) via diffeomorphisms (∼=) as a

union of domains of charts of π−1
XY (U) :

π−1
XY (U) ∼= U × ]0, 1[×LXY (x0, 1) ∼= ∪i U × ]0, 1[×Vi

∼= ti U × ]0, 1[×Rk−l−1
i

and then we can use these domains to lift (wY
1 , . . . , w

Y
l ) and define (wY Z

1 , . . . , wY Z
l ).

More precisely we write :

π−1
XY (x0) =

⋃
y0∈LXY (x0,1)

Ly0 =
⋃

y0∈∪iVi

Ly0 =
⋃
i

⊔
y0∈Vi

Ly0 ,

so that

π−1
XY (U) = HXY

(
U ×π−1

XY (x0)
)

=
⋃
i

HXY

(
U ×

⊔
y0∈Vi

Ly0

)
=

⋃
i

HXY

(
U ×V ′i

)
=

⋃
i

U ′i

where by definition, as in Example 1, for every i : V ′i := ty0∈ViLy0 is the domain of a conical chart of π−1
XY (x0) over x0 ;

U ′i := HXY (U × V ′i ) ∼= Rk is a domain of a conical chart ϕ̃ of π−1
XY (U) over U .

This allows us to rewrite the foliation HY as a union of sub-foliations :

HY =
⋃
i

HU ′
i

with each

HU ′
i

:=
{
Mx0

y0,t
= HXY (U × {y0,t})

}
y0∈Vi , t∈]0,1]

and y0,t = γy0(t)

satisfying the properties of Remark 7. Hence the k-frame field induced by ϕ̃ on U ′i (see
Remark 7) has for the first l coordinates exactly the frame field

(
wY

1 , . . . , w
Y
l

)
, lifted to the

(a)-regular foliation HY , and we can denote it by
(
wY

1 , . . . , w
Y
k

)
where k = dimY .

We now complete Step 3 by lifting the foliation HU ′
i

of each U ′i and its generating
integrable frame field

(
wY

1 , . . . , w
Y
l

)
to π−1

Y Z(U ′i) via a trivialisation map HU ′
i
Z .

In this way we obtain the desired controlled foliation and its integrable frame field
foliation on

∪i π
−1
Y Z(U ′i) = π−1

Y Z(∪i U
′
i ) = π−1

Y Z

(
π−1

XY (U)
)
.

For each yi
0 ∈ Vi fix the point pi

0 = yi
0, 1

2
= γyi

0
( 1
2 ) ∈ π−1

XY (x0) ⊆ V ′i . Then pi
0 ∈ U ′i .

By Theorem 4 and (c)-regularity of the pair of strata Y < Z, using the coordinate
frame field (wY

1 , . . . , w
Y
k ), induced by ϕ̃ on U ′i , we have a topological trivialization of the

projection πY Z : TY Z(1) → Y with pi
0 as origin :

KU ′
i
Z : U ′i × π−1

Y Z(pi
0) ≡ Rk × π−1

Y Z(pi
0) −→ π−1

Y Z(U ′i)

and a k-foliation of the image π−1
Y Z(U ′i) induced by KU ′

i
Z defined by :

KU ′
i
Z :=

{
N

pi
0

z0 := KU ′
i
Z(U ′i × {z0})

}
z0∈π−1

Y Z
(pi

0)
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such that :

lim
z→y

(
wY Z

1 (z), . . . , wY Z
k (z)

)
=

(
wY

1 (y), . . . , wY
k (y)

)
for every y ∈ U ′i

which is hence (a)-regular over U ′i < Z :

lim
z→y

TzN
pi
0

z = TyN
pi
0

y = TyY , for every y ∈ U ′i .

The first l coordinates (wY Z
1 , . . . , wY Z

l ) provide the continuous (πY Z , ρY Z)-controlled
lifting on the foliation HU ′

i
Z (of π−1

Y Z(U ′i)) of the frame field (wXY
1 , . . . wXY

l ) (of π−1
XY (U)),

lifting of the frame field (u1, . . . ul) (of U).
In particular, in the same way as for the previous property (∗)XZ

l , we have :

(∗)Y Z
l : wY Z

l (z) = vl(z) = wXZ
l (z) , for every z ∈ TY Z(1).

Moreover since

U ′i = HXY (U × V ′i ) =
⊔

yi
0,t∈V ′

i

HXY (U × {yi
0,t}) =

⊔
yi
0,t∈V ′

i

Mx0
yi
0,t

,

it follows that each k-leaf of HU ′
i
Z generated by the frame field (wY Z

1 , . . . , wY Z
k ) :

N
pi
0

z0 := KU ′
i
Z(U ′i × {z0}) =

⊔
yi
0,t∈V ′

i

KU ′
i
Z

(
Mx0

yi
0,t

× {z0}
)
, with z0 ∈ π−1

Y Z(pi
0),

is foliated by the family of l-leaves generated by the frame field (wY Z
1 , . . . , wY Z

l ) :

HU ′
i
Z :=

{
F

yi
0,t

z0 := KU ′
i
Z

(
Mx0

yi
0,t

× {z0}
)}

yi
0,t∈V ′

i
, z0∈π−1

Y Z
(pi

0)
.

Hence, by the property (*) : limz→a w
Y Z
i (z) = wA′

i (a) for every i ≤ l, we find that for
every a ∈ π−1

XA′(U), with a ∈ π−1
XXj

(U) :

lim
z→a

z∈TY Z (1)

TzHU ′
i
Z = lim

z→a
z∈TY Z (1)

[
wY Z

1 (z), . . . , wY Z
l (z)

]
=

[
wA′

1 (a), . . . , wA′

l (a)
]
⊆ TaXj

and in particular for every a ∈ X0 = X

lim
z→a

z∈TY Z (1)

TzHU ′
i
Z = lim

z→a
z∈TY Z (1)

[
wY Z

1 (z), . . . , wY Z
l (z)

]
=

[
wA′

1 (a), . . . , wA′

l (a)
]

= TaX .

Remark 8. Making the same construction with two different charts (hi, Vi), (hj , Vj),
one obtains open domains of conical charts U ′i and U ′j of Y such that we have (Remark 7):

a) if the frame fields of Vi and Vj coincide in the intersection Vi ∩ Vj then the k-
foliations, of leaves Np0

z0
, HU ′

i
Z and HU ′

j
,Z coincide in the intersection π−1

Y Z(U ′i ∩ U ′j) ;

b) the two l-foliations HU ′
i
Z and HU ′

j
Z coincide in the intersection π−1

Y Z(U ′i ∩U ′j) and
their frame field (wY Z

1 , . . . , wY Z
l ) does not depend on U ′i and U ′j . 2
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It follows that there exists an l-foliation union HY Z := ∪iHU ′
i
Z of π−1

Y Z(π−1
XY (U))

which, by ∪iV
′
i = π−1

XY (x0), can be written by

HY Z = {F yi
0,t

z0 }z0∈π−1
Y Z

(yi
0,t) , yi

0,t∈∪iV ′
i

= {F x0
z0
}z0∈π−1

Y Z
(π−1

XY
(x0))

such that for every a ∈ Xj ⊆ A′ one has :

lim
z→a

z∈TY Z (1)

TzHY Z = lim
z→a

z∈TY Z (1)

[
wY Z

1 (z), . . . , wY Z
l (z)

]
=

[
wA′

1 (a), . . . , wA′

l (a)
]
⊆ TaXj

and in particular for a ∈ X

lim
z→a

z∈TY Z (1)

TzHY Z = lim
z→a

z∈TY Z (1)

[
wY Z

1 (z), . . . , wY Z
l (z)

]
=

[
u1(a), . . . , ul(a)

]
= TaX .

Figure 13

Step 4 : Constructing a controlled (a)-regular l-foliation Fx0 over W by gluing HXZ

and HXY Z .
We now define a new frame field (wZ

1 , . . . , w
Z
l ) of π−1

XZ(U) by gluing together, by an
adapted “partition of unity”, the two integrable continuous l-controlled frame fields:

(
wXZ

1 , . . . , wXZ
l

)
generating the foliation HXZ on π−1

XZ(U) ≡ TXZ(1) ,
and(
wY Z

1 , . . . , wY Z
l

)
generating the foliation HY Z on π−1

Y Z(π−1
XY (U)) ≡ TXZ(1) ∩ TY Z(1) .

Note that each l-leaf Mx0
z0

of HXZ meets the fiber π−1
XZ(x0) in the unique point z0 and

similarly each l-leaf F x0
z0

of HY Z meets the fiber π−1
XZ(x0) in the unique point z0.
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We define (wZ
1 , . . . , w

Z
l ) by decreasing induction on i = l ≥ · · · ≥ 1.

For i = l, define wl := vl so that it coincides with wXZ
l and wY Z

l .
Let i = l − 1, and consider the open covering O := {O1, O2} of π−1

XZ(x0) defined by :
O1 := π−1

XZ(x0) ∩
(
TXZ(1)− TY Z(1/2)

)
,

O2 := π−1
XZ(x0) ∩

(
TXZ(1) ∩ TY Z(1)

)
≡ π−1

Y Z

(
π−1

XY (x0)
)

and let Pl−1 := {α, β} be a partition of unity subordinate to the open covering O.

The open covering O and the partition of unity Pl−1 on the fiber π−1
XZ(x0) induce an

open covering O ′ :=
{
O′1 , O

′
2} of π−1

XZ(U) where
O′1 := HXZ(U ×O1) =

⊔
z0∈O1

HXZ(U × {z0}) =
⊔

z0∈O1
Mx0

z0

O′2 :=
⋃

iKU ′
i
Z(U ′i ×O2) =

⋃
i

⊔
z0∈O2

KU ′
i
Z(Mx0

y0,t
× {z0}) =

⊔
z0∈O2

F x0
z0

(see Remark 8), and a partition of unity Pl−∞ := {αl−∞, βl−∞} of π−1
XZ(U) subordinate

to O ′ is obtained extending {α, β} in a constant way along each trajectory of wl and Pl−∞
is thus adapted to {O′1, O′2} in the sense of the proof of Theorem 2 of §4.

To simplify notation we will denote

wi := wZ
i , w1

i := wXZ
i and w2

i := wY Z
i ∀ i = 1, . . . , l .

Let wl−1 be the vector field defined by :

wl−1(z) := αl−1(z)w1
l−1(z) + βl−1(z)w2

l−1(z) .

With formally the same calculation as in the proof of Theorem 2 of §4 we have that
the Lie bracket [wl−1, wl] satisfies :

[wl−1(y), wl(y)] = [αl−1w
1
l−1(y), wl(y)] + [βl−1w

2
l−1(y), wl(y)]

=
(
αl−1 ∗y(wl(y)) · w1

l−1(y) + αl−1(y)[w1
l−1(y), wl(y)]

)
+

+
(
βl−1 ∗y(wl(y)) ·w2

l−1(y) + βl−1(y)[w2
l−1(y), wl(y)]

)
= 0

where αl−1 ∗y(wl(y)) = βl−1 ∗y(wl(y)) = 0 since αl−1 and βl−1 are constant along the trajec-
tories of wl and [w1

l−1(y), wl(y)] = [w2
l−1(y), wl(y)] = 0 since (w1

1, . . . , w
1
l ) and (w2

1, . . . , w
2
l )

are generating frame fields respectively of HXZ and HY Z with w1
l = w2

l = wl.

At this point the definition by induction of wi for i < l − 1 is obtained in the same
formal way as in Theorem 2 of §4 and this completes the inductive step.

Therefore, by gluing the l-frame field (w1
1, . . . , w

1
l ) generating HXZ together to the l-

frame field (w2
1, . . . , w

2
l ) generatingHY Z , we obtain a final integrable frame field (w1, . . . , wl)

on TXZ ≡ π−1
XZ(U) :

wi(z) = αi(z) · w1
i (z) + βi(z) · w2

i (z) for every i = 1, . . . , l
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such that :

(w1, . . . , wl) =

 (w1
1, . . . , w

1
l ) = (wXZ

1 , . . . , wXZ
l ) on TXZ(1)− TY Z(1)

(w2
1, . . . , w

2
l ) = (wY Z

1 , . . . , wY Z
l ) on TXZ(1) ∩ TY Z(1/2) .

Hence :

(w1, . . . , wl) generates the foliation

HXZ on TXZ(1)− TY Z(1)

HY Z on TXZ(1) ∩ TY Z(1/2) .

Lemma 2. The frame field (w1, . . . , wl) satisfies the following :

i) (w1, . . . , wl) is a (π, ρ)-controlled extension of (wA′

1 , . . . , wA′

l ) on π−1
X (U) ;

ii) (w1, . . . , wl) extends continuously (wA′

1 , . . . , wA′

l ) on π−1
X (U).

Proof of i). By inductive hypothesis all the (π, ρ)-conditions are satisfied for the strata
X ≤ Xj ≤ Y of the stratification X ′ = (A′,Σ′) in which depthΣ′X = s− 1.

Thus it will be sufficient to prove the control condition for strata X ≤ Xj < Z, with
j = 1, . . . , s− 1. Let us fix then a point z ∈ TXjZ . We have :

πXjZ∗
(
wi(z)

)
= α(z) · πXjZ∗

(
w1

i (z)
)

+ β(z) · πXjY ∗πY Z∗
(
w2

i (z)
)

then since by construction w1
i (z) = wXZ

i (z) is a πXjZ-controlled lifting of wA′

i (y) on
TXjZ(1), and w2

i (z) = wY Z
i (z) is a πY Z-controlled lifting of wY

i (y) on TY Z(1), this is
also equal to:

= α(z) · wA′

i (πXjZ(z)) + β(z) · πXjY ∗w
Y
i (πY Z(z))

and since by induction wY
i (y) = wA′

i (y) is a πXjY -controlled lifting on TXjY (1),

= α(z) · wA′

i (πXjZ(z)) + β(z) · wA′

i (πXjY πY Z(z))

= α(z) · wA′

i (πXjZ(z)) + β(z) · wA′

i (πXjZ(z))

= [α(z) + β(z)] · wA′

i (πXjZ(z)) = wA′

i (πXjZ(z)) .

Similarly, to prove the ρ-control condition we write :

ρXjZ∗(wi(z)) = α(z) · ρXjZ∗(w1
i (z)) + β(z) · ρXjZ∗(w2

i (z))

= α(z) · ρXjZ∗(wXZ
i (z)) + β(z) · ρXjY ∗πY Z∗(wY Z

i (z))

= α(z) · ρXjZ∗(wXZ
i (z)) + β(z) · ρXjY ∗(wY

i (πY Z(z))) = 0 + 0 = 0

since ρXjZ∗(wXZ
i (z)) = 0 by construction and ρXjY ∗(wY

i (y)) = 0 by induction.

Proof of ii). Let Xj be a stratum, X ≤ Xj ≤ Y and a ∈ TXXj
(1) ⊆ Xj ⊆ A′ .

There are essentially three cases :

Case 1) : Xj = Y , a ∈ TXY (1).

48



ON THE SMOOTH WHITNEY FIBERING CONJECTURE

In this case in a sufficiently small neighbourhood of y ∈ Y contained in A, for every
z ∈ TY Z(1/2) by construction we have (α(z), β(z)) = (0, 1), so wi(z) = wY Z

i (z) and then :

(∗∗) : lim
z→a

wi(z) = lim
z→a

wY Z
i (z) = wY

i (a) = wA′

i (a).

Thus wi is a continuous extension of wA′

i at each a ∈ Y .

Case 2) : Xj = X < Y , a ∈ X.
We write :

wi(z)− wA′

i (a) = α(z)
(
w1

i (z)− wA′

i (a)
)

+ β(z)
(
w2

i (z)− wA′

i (a)
)

= α(z)
(
wXZ

i (z)− wA′

i (a)
)

+ β(z)
(
wY Z

i (z)− wA′

i (xj)
)

with wXZ
i the continuous lifting on TXZ(1) of ui and by induction ui = wA′

i |X , so we find :

lim
z→a

α(z) ·
(
wi(z)− wA′

i (a)
)

= lim
z→a

α(z)
(
wXZ

i (z)− wA′

i (a)
)

= 0 .

Moreover as in (∗∗) we also have :

lim
z→a

β(z) ·
(
wY Z

i (z)− wA′

i (a)
)

= 0 since β(z) ∈ [0, 1]

and so :

lim
z→a

wi(z)− wA′

i (a) = 0 , i.e. wi(z) extends continuously wA′

i at a ∈ X.

Case 3) : X < Xj < Y , a ∈ TXXj (1) ⊆ Xj .

In this case d(a,X) > 0, so a ∈ TY Z −X, hence by construction

lim
z→a

(α(z), β(z)) = (0, 1) and the proof follows as in Case 2.

We deduce the continuity of each wi on every stratum Xj of TX(1) = ts
j=1TXXj

(1) :

lim
z→a

wi(z) = wA′

i (a). 2

By ii), denoting again (with a slight abuse of notation) wi = wA
i the stratified vector

field extension wA
i := wA′

i t wZ
i = wA′

i t wi, it follows easily that the stratified foliation
Fx0 generated by the stratified continuous (π, ρ)-controlled frame field (w1, . . . , wl) :

Fx0 :=
{
F x0

z

}
z∈π−1

X
(x0)

defined by F x0
z := [w1(z), . . . , wl(z)]

satisfies for every stratum Xj such that X ≤ Xj ≤ Z and for every a ∈ Xj∩W = π−1
XXj

(U):

lim
z→a

TzF
x0
z = lim

z→a

[
w1(z), . . . , wl(z)

]
=

[
wA′

1 (a), . . . , wA′

l (a)
]
⊆ TaXj

and in particular for every a ∈ U = W ∩X :

lim
z→a

TzF
x0
z = lim

z→a

[
w1(a), . . . , wl(a)

]
=

[
u1(a), . . . , ul(a)

]
= TaX .
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We conclude then that the controlled foliation Fx0 generated by the frame field
(w1, . . . , wl) satisfies all the properties in the statement of the Theorem. 2

Corollary 4. Every analytic variety or subanalytic set or definable set in an o-minimal
structure satisfies the smooth version of the Whitney fibering conjecture.

Prof. Since analytic varieties, subanalytic sets, and definable sets admit Whitney
stratifications ([Ve], [Hi] and [Loi], [NTT]) and Whitney regularity implies (c)-regularity
[Be]1 [Tr]1, the proof follows from Theorem 7. 2

We generalize now Theorems 5 and 6 of section 6 to a stratum X of arbitrary depth.

Theorem 8. Let X = (A,Σ) be a Bekka (c)- (resp. Whitney (b))-regular stratification.
Let X be a stratum of X , x0 ∈ X and U a domain of a chart near x0 of X.
Then X admits a (c)- (resp. (b)-) regular wing structure Wx0 = {Wz0}z0∈L(x0,ε) on

W = π−1
X (U) over U such that for every stratum Y > X, Y ∩W is a union of wings, and

moreover Wx0 satisfies :

(3) : lim
z→y

TzWz0 = TyWy ⊆ TyY . for every y ∈ Y ∩W .

Proof. Let X ′ = (A′,Σ′) be the stratification induced by X on A′ := π−1
X (x0)∩TX(1):

π−1
X (x0) =

⊔
X≤Y

π−1
XY (x0) .

By (c)-regularity, as in Theorems 5 and 6, X ′ admits a natural stratified foliation by
lines

Lx0 :=
{
Lz0 := γz0(]0, 1[)

}
z0∈L(x0,1)

satisfying {x0} ⊆ Lz0 where we suppose as usual (after a change of scale) ε = 1.

By (c)-regularity and Theorem 7 there exists a trivialization of W := π−1
X (U) ,

H : U × π−1
X (x0) ≡ Rl × π−1

X (x0) −→ W = π−1
X (U) ,

(t1, . . . , tl, z0) 7−→ z := φl(tl, . . . , φ1(t1, z0) . . .)

whose induced “horizontal” foliation

Fx0 = {Fz0 := H(U × {z0})}z0∈π−1
X

(x0)
is globally (a)-regular over U.

Hence, we define the global family of wings over U , as in Theorems 5 and 6, by :

Wx0 :=
{
Wz0 = H

(
U × Lz0

) }
z0∈L(x0,1)

such that each wing Wz0 satisfies :

Wz0 := H
(
U × Lz0

)
=

⊔
s∈]0,1[

H
(
U × {γz0(s)}

)
⊇ H

(
U × {γz0(s)}

)
= Fγz0 (s) .
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The proofs follow as in Theorems 5 and 6 since, by the global (a)-regularity at x ∈ U
of the foliation Fx0 , this time we can write :

lim
z→x

TzWz0 ⊇ lim
z→x

TzFγz0 (s) ⊇ TxX .

This proves (a)-regularity at every x ∈ U of the strata U < Wz0 and this for every
wing Wz0 ⊆W = tX≤Y π

−1
XY (U) and so

Wx0 :=
{
Wz0

}
z0∈L(x0,1)

is a foliation by wings satisfying the (a)- and (c)-regular wing properties over U .
If X is (b)-regular, (bπ)-regularity of U < Wy0 follows exactly as in Theorem 6.

To show that the foliation of wings Wx0 satisfies the limit property (3), we have to
specify more carefully the stratified foliation of lines

Lx0 :=
{
Lz0 := γz0(]0, 1[)

}
z0∈L(x0,1)

.

By (c)-regularity, using the theorem of continuous lifting of vector fields [MT]2 we
can obtain the continuity on π−1

X (U) − U = ∪X<Y π
−1
XY (U) of the stratified vector field

γ′z0
(t) = {γ′z0 XY (t)}Y≥X . Hence by denoting y0 = πY Z(z0) ∈ Y , we have :

(∗) : lim
z→y

TzLz0 = TyLy0 for every y ∈ Y, Y ≥ X .

Let us fix a stratum Y > X and remark that, with the same notation as in the proof
of Theorem 7, for every stratum Z > Y the neighbourhood TY Z(1/2) is foliated by the
family of k-leaves

HU ′
i
Z :=

{
N

pi
0

z0 := KU ′
i
Z(U ′i × {z0})

}
z0∈π−1

Y Z
(pi

0)
with pi

0 := yi
0, 1

2
, yi

0 ∈ Vi

which is (a)-regular over U ′i : i.e. satisfies the limit property (1) of Theorem 7.

Moreover each leaf Npi
0

z0 of HU ′
i
Z is the continuous lifting of U ′i ⊆ π−1

XY (U) and is
generated by the frame field (wY Z

1 , . . . , wY Z
k ) where (Remark 7) for every

z = γz0(t) ∈ π−1
Y Z(U ′i) ∩ TY Z(1/2) ⊆ π−1

XZ(U) ∩ TY Z(1/2)

we have :

[wY Z
l+1(z)] = [γ′z0

(t)] = TzLz0 with z0 ∈ S := SXZ(1) ∩ TY Z(1/2) .

By property (∗) above, for every z0 ∈ TY Z(1/2) and y0 = πY Z(z0), the line Lz0 is the
continuous lifting on TY Z(1/2) of the line Ly0 , and hence at the level of the wings :

(∗∗) : z0 ∈ L(x0, 1) ∩ TY Z(1/2) =⇒ Wz0 is the continuous lifting of Wy0 .

On the other hand, for every z0 ∈ π−1
Y Z(pi

0), we have that (see Theorem 7 for the
notation)

N
pi
0

z0 := KU ′
i
Z(U ′i × {z0}) =

⊔
yi
0,t∈V ′

i

KU ′
i
Z

(
Mx0

yi
0,t

× {z0}
)
,
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so it is foliated by the family of l-leaves generated by the frame field (wY Z
1 , . . . , wY Z

l ) :

N
pi
0

z0 := HU ′
i
Z(U ′i × {z0}) =

⊔
yi
0∈Vi

⊔
t∈]0,1[

KU ′
i
Z

(
Mx0

yi
0,t

× {z0}
)

=
⊔

yi
0∈Vi

KU ′
i
Z

( ⊔
t∈]0,1[

HXY (U × {yi
0,t})× {z0}

)
=

⊔
yi
0∈Vi

KU ′
i
Z

(
HXY

(
U ×

( ⊔
t∈]0,1[

{yi
0,t}

))
× {z0}

)
=

⊔
yi
0∈Vi

KU ′
i
Z

(
HXY (U × Lyi

0
)× {z0}

)
=

⊔
yi
0∈Vi

KU ′
i
Z

(
Wyi

0
× {z0}

)
=

⊔
z0∈π−1

Y Z
(Vi)

Wz0 .

In conclusion for every z0 ∈ S ⊆ TY Z(1/2) each k-leaf Npi
0

z0 of TY Z(1/2) is foliated by
the sub-family of (l + 1)-wings {Wz0}z0∈π−1

Y Z
(Vi)

and so for every y ∈ Y ∩W one has :

lim
z→y

TzWz0 = lim
z→y

z∈TY Z (1/2)

[wY Z
1 (z), . . . , wY Z

l+1(z)]

= [wXY
1 (y), . . . , wXY

l+1 (y)] = TyWy ⊆ TyY . 2

Corollary 5. Every analytic variety or subanalytic set or definable set in an o-minimal
structure admits a stratification Σ in which for every stratum X and every U domain of a
chart of X there exists a local (b)-regular wing structure over U .

Proof. Since analytic varieties, subanalytic sets and respectively definable sets admit
Whitney stratifications ([Ve], [Hi], respectively [VM], [Loi], [NTT]) the proof follows
from Theorems 7 and 8. 2

8. F-semidifferentiable first Thom-Mather Isotopy Theorems.

The first Thom-Mather isotopy theorem is the most important result in stratification
theory. For a stratified submersion f : X → M defined on a (c)-regular stratification
and into a manifold M , it provides, for every m0 ∈ M a stratified isomorphism Hm0 :
Um0 × f−1(m0) → f−1(Um0) which is a diffeomorphism on each stratum of X but globally
only a homeomorphism and which cannot be made in general C1, since by real examples
similar to the Whitney counterexample the complex four lines family (see section 2), one
easily see that H cannot be made in general C1.

In this section we give a significant application of Theorem 7 by showing for (c)-
and hence (b)-regular stratifications X , as consequences of the fact that X satisfies the
smooth Whitney fibering conjecture, that this isomorphism Hm0 can be made to satisfy
two regularity conditions between C0- and C1-regularity : horizontally-C1 and the finer
condition F-semidifferentiability.

In this section X = (A,Σ) will be a (c)-regular stratification of a closed subset A in a
manifold M , X an l-stratum of X , x0 ∈ X,

H = Hx0 : Ux0 × π−1
X (x0) → π−1

X (Ux0) , H(t1, . . . , tl, y0) = φl(tl, . . . , φ1(t1, y0)..)
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the topological trivialization of the projection πX : TX(1) → X over a neighbourhood
Ux0 ⊆ X of X defined by composition of flows φ1, . . . , φl of continuous lifted controlled
vector fields u1, . . . , ul, and H = {My = {H(Ux0×{y0})}y0∈π−1

X
(x0)

the stratified controlled

(a)-regular l-foliation of W := π−1
X (Ux0) defined by H.

Such a stratified l-foliation of W , (a)-regular on Ux0 , exists by Theorem 7 and all
foliations that we consider in this section will be of this type.

First we describe some results on the regularity of the flows of the continuous lifted
vector fields toH, which are significant because they imply an improvement of the regularity
of the trivialization H. Then we obtain horizontally-C1 and F-semidifferentiable versions
of the first Thom-Mather Isotopy Theorem.

These results were initially announced under the hypothesis of the existence of an
(a)-regular foliation without proof in [MT]1,3, then proved in [MT]4. By Theorem 7 they
apply to all strata X of a (c)-regular stratification. The proofs are contained in [MT]4.

8.1. Horizontally-C1 morphisms and the first Thom-Mather Isotopy Theorem.

In [MT]1,3,4 we introduce the notions of horizontally-C1 stratified maps f : X → X ′.
Definition 11. Let f : X → X ′ be a stratified morphism between two (c)-regular

stratifications X = (A,Σ) and X ′ = (A′,Σ′) in smooth manifolds M and (resp.) N , X an
l-stratum of X and x ∈ X. For each X ∈ Σ let X ′ be the stratum of Σ′ containing f(X).

We say that f is horizontally-C1 at x ∈ X if there exists a (local) canonical l-
distribution DX = {DXY }Y≥X defined on a neighbourhood W of x in A, such that for each
stratum Y > X (so Y ′ ≥ X ′), the restriction fY ∗|DXY

: DXY → TY ′ extends continuously
the differential fX∗ : TX → TX ′.

That is for every sequence {(yn, vn)}n ⊆ ∪y∈Y {y} × DXY (y) :

lim
n→∞

(yn, vn) = (x, v) ∈ TX =⇒ lim
n→∞

fY ∗yn
(vn) = fX∗x(v) .

This makes sense because by the frontier condition, X ⊆ Y ⊆ M , and (a)-regularity
implies that TX ⊆ TY and TX ′ ⊆ TY ′ in TM and (resp.) TN .

Remark 9. Every controlled map f : X →M into a manifold M is horizontally-C1.
Proof. Since M is a manifold, its system of control data reduces to the identity map

and for every Y ≥ X the πX -control condition for f becomes fY = fX ◦ πXY .
Hence fY ∗ = fX∗ ◦ πXY ∗ and so limn fY ∗yn(vn) = fX∗x(v) follows since fX : X →M

and πXY : TXY → X are C1. 2

Continuous controlled lifting of vector fields plays an important role in studying
horizontally-C1 regularity. In fact, if a vector field ξX is lifted to a stratified continuous
(π, ρ)-controlled vector field ξ = {ξY }Y≥X on a neighborhood TX of X in A, then assuming
the existence of an integrable canonical distribution DX the lifted flow φ = ∪Y≥XφY on
TX is a horizontally-C1 extension of φX ([MT]4, Theorem 4).

An arbitrary (local) canonical distribution DX is not integrable in general. However,
for a stratum X of a (c)-regular stratification X , by Theorem 7 we can consider as canonical
distribution DX = TH the distribution tangent to a local (a)-regular foliation and we find:

Corollary 6. Let DX = TH be the canonical distribution tangent to a stratified l-
foliation (a)-regular near x0 ∈ U ⊆ X, ξX a smooth vector field on X and ξ = {ξY }Y≥X

its continuous controlled lifting tangent to H = {My}y∈W .
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Then the flow φt = {φY t : Y → Y }Y≥X to a fixed t ∈ R of ξ is horizontally-C1 on U .
Proof. Theorem 4 of [MT]4. 2

With the usual hypotheses and notations and by identifying Ux0 ≡ Rl × 0m and the
frame field (u1, . . . , ul) of Ux0 with the standard frame field (E1, . . . , El), we have :

Corollary 7. Let H be the local topological trivialization of πX : TX(1) → X obtained
by lifting the vector fields {ui ≡ Ei}l

i=1 tangent to a stratified l-foliation H of W = π−1
X (Ux0)

satisfying the smooth Whitney fibering conjecture.
The following properties hold and are equivalent conditions :

1) The stratified l-foliation H = {My}y∈W of W = π−1
X (Ux0) is (a)-regular on the

neighbourhood Ux0 of x0 ∈ X.

2) The topological trivialization homeomorphism of the projection πX : TX(1) → X,

H : Ux0 × π−1
X (x0) → π−1

X (Ux0) , H(t1, . . . , tl, y0) = φl(tl, . . . , φ1(t1, y0)..)

is horizontally-C1 on Ux0 .

3) lim
(t1,...,tl,y0)→x

H∗(t1,...,tl,y0)(Ei) = Ei , ∀x ∈ Ux0 ≡ Rl × 0m , and ∀ i = 1, . . . , l .

4) The controlled liftings w1, . . . , wl tangent to the foliation H = {My}y∈W of the
vector fields E1, . . . , El are continuous on Ux0 and have horizontally-C1 flows on Ux0 .

5) The controlled lifting ξ tangent to the foliation H = {My}y∈W of every vector field
ξX on X is continuous over Ux0 and has a horizontally-C1 flow on Ux0 .

Proof. The equivalence of the properties 1), . . . , 5) is proved in Theorem 8 in [MT]4.
Now H satisfies the smooth Whitney fibering conjecture, limz→x TxH = TxX, ∀x ∈

Ux0 and so is (a)-regular on Ux0 . Hence property 1) holds and properties 2), . . . 5) hold
too. 2

We also have the following equivalence with the theory of E-tame retractions of du
Plessis-Wall [PW].

Remark 10. Let π′ be the stratified “horizontal” projection :

π′ : π−1
X (Ux0) −→ π−1

X (x0) , π′(y) = y0 = My0 ∩ π−1
X (x0) , ∀ y ∈My0 .

The following conditions are equivalent :
1) The foliation H is (a)-regular on Ux0 .
2) The stratified horizontal projection π′ satisfies the (af ) condition of Thom on Ux0 .
3) The stratified horizontal projection π′ is an E-tame retraction.
Proof. 1) ⇔ 2) is elementary. 2) ⇔ 3) is Proposition 4, of §8, Chapter II [Mu]1. 2

Corollary 6 also holds for such general morphisms :

Theorem 9. Let f : X → X ′ be a stratified controlled morphism between two (c)-
regular spaces X and X ′, X a stratum of X , x0 ∈ X and x′0 = f(x0) ∈ X ′.

Let H = {My}y∈W and H′ = {My′}y′∈W ′ be two stratified l-foliations of the neighbour-
hoods W = π−1

X (Ux0) of x0 ∈ X in A and (resp.) W ′ = π−1
X′ (U ′x′0) of x′0 ∈ X ′ in A′.

If H and H′ are (a)-regular on Ux0 and U ′x′0 and if f : X → X ′ sends each leaf of H
into a unique leaf of H′, then f is horizontally-C1 on Ux0 .
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Proof. Theorem 9 in [MT]4. 2

One deduces a horizontally-C1 version of the first Thom-Mather Isotopy Theorem.

Theorem 10 (Horizontally-C1 first Thom-Mather Isotopy Theorem).
Let X = (A,Σ) be a (c)-regular stratification, X ∈ Σ a stratum of X x0 ∈ X, Ux0 a

domain of a chart near x0 in X, W = π−1
X (Ux0) and H = {My}y∈W a controlled l-foliation

(a)-regular on Ux0 (which exists by Theorem 7).
Let f : (A,Σ) →M be a stratified proper submersion into a smooth m-manifold M .
For every m0 ∈ M , and for every domain of a chart Um0 ≡ Rm of M near m0, the

stratified homeomorphism of the topological trivialization of f :

H : Um0 × f−1(m0) → f−1(Um0) , H(t1, . . . , tm, a0) = φm(tm, . . . φ1(t1, a0))..)

is horizontally-C1 on Um0 ×
[
f−1(m0) ∩ Ux0

]
, and its inverse stratified homeomorphism:

G : f−1(Um0) → Um0 × f−1(m0) , G(a) =
(
f(a), φ1(−t1, . . . φm(−tm, a) . . .)

)
is horizontally-C1 on f−1(Um0) ∩ Ux0 .

Above f(a) := (t1, . . . , tm) and for all i = 1, . . . ,m, φ1, . . . , φm are the flows of the
continuous controlled lifted vector fields v1, . . . , vm, such that f∗(vi) = Ei, on f−1(Um0) of
the standard vector fields E1, . . . , Em ∈ Rm ≡ Um0 .

Proof. Theorem 10 in [MT]4. 2

Corollary 8. The topological trivialization K of the projection πX : TX(1) → X
corresponding to the continuous, controlled, integrable frame field (w1, . . . , wl) tangent to
the foliation H constructed in Theorem 7,

K : U ×
( ⊔

X≤Y

π−1
XY (x0)

)
−→ π−1

X (U) =
⊔

X≤Y

π−1
XY (U)

is horizontally-C1 on each stratum of U ×
(
tX≤Y π−1

XY (x0)
)

and its inverse stratified
homeomorphism K−1 is horizontally-C1 on each stratum π−1

XY (U) of the stratification W =
π−1

X (U) = tX≤Y π
−1
XY (U).

Proof. It follows by Theorem 10 applied to the projection πX : TX(1) → X. 2

8.2. F-semidifferentiable morphisms and the first Thom-Mather Isotopy Theorem.

In this section we generalize the horizontally-C1 regularity of section 8.1 through the
notion of F-semidiferentiability, a finer regularity condition for stratified morphisms.

We saw in §8.1 that (a)-regularity over a neighbourhood Ux0 of x0 in X, of a foliation
H = {Mz}z∈W of W = π−1

X (Ux0) implies the horizontally-C1 regularity over Ux0 of the
stratified flows of continuous lifting of vector fields and of the topological trivialization
maps. In a similar way we see here that (a)-regularity of H on the whole of W implies, for
these stratified morphisms, an analogous and more complete regularity :

lim
z→y′

fZ∗z|TzMz
= fY ∗y|TyMy

.
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The notion of F-semidifférentiability below refines horizontally-C1 regularity.

Definition 12. Let F = {Fz}z be an (a)-regular stratified C1,0 l-foliation of an open
set U of A, Y a stratum of X and y ∈ Y .

We say a morphism f = {fZ}Z∈Σ : X → X ′ is F-semidifférentiable at y ∈ Y iff for
every ∀ (y, v) ∈ TY and sequence {(zn, vn)} ⊆ Tzn

F , with Zn the stratum containing zn

we have :

lim
n

(zn, vn) = (y, v) =⇒ lim
n
fZn∗zn(vn) = fY ∗y(v).

That is the differentials of f|Fzn
must converge to the differential of f|Fy

.
In an obvious way one defines the F-semidifférentiability on a stratum X (or on X∩U)

and on X (or on U).

Remark 11. Let f : X → X ′ be a stratified morphism, X a l-stratum of X , l = dimF .
Then f : X → X ′ is F-semidifférentiable at x ∈ X iff f is horizontally-C1 at x with

respect to the canonical distribution D = D(z) = TzF . 2

With the same hypotheses and notation as in section 8.1, the analogues of the results
of 8.1 hold again for F-semidifférentiability.

Remark 12. Every controlled map f :X →M into a manifold is H-semidifférentiable.

Corollary 9 below improves in a F-semidifferentiable version the previous Corollary 7:

Corollary 9. Let X = (A,Σ) be a (c)-regular stratification X ∈ Σ a stratum of X ,
x0 ∈ X and Ux0 ≡ Rl × 0m a domain of a chart of X near x0 and W = π−1

X (Ux0).
Let H be the local topological trivialization of πX obtained by lifting the vector fields

{ui ≡ Ei}l
i=1 tangent to a stratified controlled l-foliation H of W = π−1

X (Ux0) satisfying
the Whitney fibering conjecture.

The following properties hold and are equivalent conditions :

1) The stratified l-foliation H = {My}y∈W of W is (a)-regular on W .

2) The topological trivialization homeomorphism of the projection πX : TX → X,

H : Ux0 × π−1
X (x0) → π−1

X (Ux0) , y := H(t1, . . . , tl, y0) = φl(tl, . . . , φ1(t1, y0)..)

is H-semidifferentiable on W .

3) For every y := H(t1, . . . , tl, y0) ∈ π−1
XY (Ux0) ⊆W one has :

lim
(t′1,...,t′

l
,z0)→(t1,...,tl,y0)

H∗(t′1,...,t′
l
,z0)(Ei) = wi(y), ∀ , ∀ i = 1, . . . , l .

4) The controlled liftings w1, . . . , wl tangent to the foliation H = {My}y∈W of the
vector fields E1, . . . , El are continuous on W and have H-semidifferentiable flows on W .

5) The controlled lifting ξ tangent to H = {My}y∈W of every vector field ξX on X is
continuous on W and has an H-semidifferentiable flow on W .

Proof. Similar to Corollary 7 ; see also Theorem 6 and Theorem 11 in [MT]4. 2

In the same spirit as Theorem 9 we have :
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Theorem 11. Let f : X → X ′ be a stratified controlled morphism between two (c)-
regular spaces X and X ′, X a stratum of X , x0 ∈ X and x′0 = f(x0) ∈ X ′.

Let H = {My}y∈W and H′ = {My′}y′∈W ′ be two stratified l-foliations of the neighbour-
hoods W = π−1

X (Ux0) of x0 ∈ X in A and (resp.) W ′ = π−1
X′ (U ′x′0) of x′0 ∈ X ′ in A′.

If H and H′ are (a)-regular on W and W ′ and if f : X → X ′ sends each leaf of H
into a unique leaf of H′ then f is H-semidifferentiable on W .

Proof. See Theorem 9 and Theorem 12 [MT]4. 2

Theorem 12 below improves the Horizontally−C1 first Thom-Mather Isotopy Theorem,
adding regularity with respect to all strata, in an F-semidifferentiable version :

Theorem 12. (H-semidifferentiable first Thom-Mather Isotopy Theorem).
Let X = (A,Σ) be a (c)-regular stratification, X ∈ Σ a stratum of X , x0 ∈ X, Ux0

a domain of a chart near x0 in X, W = π−1
X (Ux0) and H = {My}y∈W an l-foliation

(a)-regular on W (which exists by Theorem 7).
Let f : (A,Σ) →M be a stratified proper submersion into a smooth m-manifold M .
For every m0 ∈ M , and for every domain of a chart Um0 ≡ Rm of M near m0, the

stratified homeomorphism of topological trivialization of f :

H : Um0 × f−1(m0) → f−1(Um0) , H(t1, . . . , tm, a0) = φm(tm, . . . φ1(t1, a0))..)

is H-semidifferentiable on Um0×
[
f−1(m0)∩W

]
, and its inverse stratified homeomorphism:

G : f−1(Um0) → Um0 × f−1(m0) , G(a) =
(
f(a), φ1(−t1, . . . φm(−tm, a) . . .)

)
is H-semidifferentiable on f−1(Um0) ∩W .

Above f(a) := (t1, . . . , tm) and for all i = 1, . . . ,m, φ1, . . . , φm are the flows of the
continuous controlled lifted vector fields v1, . . . , vm, such that f∗(vi) = Ei, on f−1(Um0) of
the standard vector fields E1, . . . , Em ∈ Rm ≡ Um0 .

Proof. Similar to the proof of Theorem 10 using Theorem 11 instead of Theorem 9.
See Theorem 13 [MT]4. 2

As in Corollary 8, for a (c)-regular stratification X = (A,Σ), X ∈ Σ, x0 ∈ X, we find:

Corollary 10. The topological trivialization K of the projection πX : TX(1) → X
corresponding to the continuous, controlled, integrable frame field (w1, . . . , wl) tangent to
the controlled foliation H constructed in Theorem 7,

K : U ×
( ⊔

X≤Y

π−1
XY (x0)

)
−→ π−1

X (U) =
⊔

X≤Y

π−1
XY (U)

is F-semidifferentiable, with F = {U×{z}}z∈π−1
X

(x0)
, at each point of U×

(
tX≤Y π

−1
XY (x0)

)
and its inverse stratified homeomorphism K−1 is H-semidifferentiable at each point of the
stratification W = π−1

X (U) = tX≤Y π
−1
XY (U).

Proof. This is an immediate consequence of Theorem 12 applied to the projection
πX : TX(1) → X of the system of control data of X . 2
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9. Strong topological stability of smooth maps

In this section we use Theorem 7 to prove a result (Theorem 13) providing sufficient
conditions for a smooth map between smooth manifolds to be strongly topologically stable
(a notion recalled below).

For some definitions that we do not recall here, the reader can refer to [PW].

Let N, P be smooth manifolds.
In what follows, we use the Whitney C∞-topology on C∞(N,P ), and the Whitney

C0-topologies on the spaces of homeomorphisms Homeo(N) and Homeo(P ).

Definition 13. Let f, g : N → P be two smooth maps.
One says that f and g are topologically equivalent if there exist homeomorphisms

h : N → N , k : P → P such that g = k ◦ f ◦ h, we write then f ∼ g. This defines an
equivalence relation in C∞(N,P ).

The smooth map f : N → P is called topologically stable if there is a neighbourhood
W of f in C∞(N,P ) such that all g ∈W are topologically equivalent.

One says that f ∈ C∞(N,P ) is strongly topologically stable if there exists a neighbour-
hood W of f in C∞(N,P ) and a continuous map

(h, k) : W −→ Homeo(N)×Homeo(P ) , (h, k)(g) := (h(g), k(g))

such that g = k(g) ◦ f ◦ h(g) for all g ∈W .

Definition 14. Let f : N → P be a smooth map.
An unfolding of f is a triple (F ; i, j) where F : N ′ → P ′ is smooth and j : P → P ′

and i : N → N ′ are smooth embeddings such that j ◦ f = F ◦ i with j transverse to F .
In this case one has :
i) since j is transverse to F , the set (j × F )−1(∆) = {(y, z) ∈ P ×N ′ | j(y) = F (x)}

is a smooth manifold and (i, f) : N → N ′ × P defines a diffeomorphism of N onto the
manifold {(x, y) ∈ N ′ × P | j(y) = F (x)} ;

ii) if (r, s) is a pair of smooth retractions for the embeddings (i, j) (i.e. r ◦ i = 1N and
s ◦ j = 1P ), the following diagram is commutative :

N
i
↪→ N ′ r−→ N

f ↓ ↓ F ↓ f

P
j
↪→ P ′

s−→ P

and we call (r, s) a retraction from F to f and write (r, s) : F → f .

Definition 15. Let f : N → P be a smooth map. A (b)(resp. (c))-regular strati-
fication of f is a pair of (b)(resp. (c))-regular stratifications (N ,P) of (N,P ) such that
f : N → P is a Thom map.

Definition 16. Let f : N → P be a smooth map and Σ(f) the set of its critical
points. One says that f is quasi-proper if there exists an open neighbourhood V of f(Σ(f))
in P such that the restriction f|f−1(V ) : f−1(V ) → V is proper.

For more details see [PW], §3.2. It is known in particular (see [PW], 4.3.2 (iii)) that
if f is strongly topologically stable, then f is quasi-proper. Now we study the converse.
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In theorem 13 below K is the usual group of contact equivalences, introduced by
Mather [Ma]3.

Theorem 13. Let f : N → P be a quasi-proper smooth map of bounded K-codimension.
For each y ∈ f(Σ(f)) write Σy = f−1(y) ∩ Σ(f), and fy : (N,Σy) → (P, y) for the

germ of f at Σy.
Suppose that for each y ∈ f(Σ(f)) there is a C∞-stable unfolding (Fy; iy, jy) of fy

which admits a (c)-regular stratification (Sy, Ty) such that jy is transverse to Ty.
Then f is strongly topologically stable.

Before proving Theorem 13, let us see how it can be used to strengthen a theorem of
Mather on topological stability.

For n, p, ` ∈ N, let W `(n, p) ⊂ J`(n, p) be the set of `-jets with Kr
e-codimension ≥ `

(see [PW] for more details).

For N a smooth n-manifold and P a smooth p-manifold, let W `(N,P ) be the corre-
sponding sub-bundle of the jet-bundle J`(N,P ).

In [Ma]2 and [Ma]4 (see also [GWPL]) Mather proved that J`(N,P ) −W `(N,P )
admits a canonical Whitney-regular stratification A`(N ,P), such that, if f : N → P
is a proper smooth map of finite singularity type whose `-jet avoids W `(N,P ) and is
multi-transverse to A`(N ,P), then f is topologically stable. The improvement to strong
topological stability remained an outstanding open problem that we are now able to solve.

Using Theorem 13, we find:

Corollary 11. Let f : N → P be a quasi-proper smooth map of finite singularity type
whose `-jet avoids W `(N,P ) and is multi-transverse to A`(N ,P).

Then f is strongly topologically stable.

Proof. Let V be an open neighbourhood of f(Σ(f)) such that f|f−1(V ) : f−1(V ) → V
is proper. Replacing N by f−1(V ) and P by V , we may suppose that f is proper.

Because f is proper and of finite singularity type, f has a proper C∞-stable unfolding
(F : N ′ → P ′; i, j). Then F has a canonical (b)-regular stratification (S, T ), and, since f
is multi-transverse to A`(N ,P) (see [PW], p. 5) , j is transverse to T . Since S and T are
(b)-regular, they are (c)-regular.

For any y ∈ Σ(f) let Σy = f−1(y)∩Σ(f). Taking germs at Σy and y and their images
under i and j, respectively, shows that the hypotheses of the theorem are satisfied; so f is
strongly topologically stable. 2

Corollary 11 has as an immediate consequence the next corollary which improves upon
the classical density theorem of Mather ([Ma]4, [GWPL]) for topologically stable maps.

Corollary 12. The space of strongly topologically stable maps is dense in the space of
(quasi-)proper maps between two smooth manifolds. 2

We will need the following definitions of tame and E-tame retractions, and of tame
P-C0-stability, extracted from [PW], Chapters 4 and 9.

Definition 17. Let M,N be Ck manifolds and let i : M → N be a Ck embedding.
A retraction r : N → M for i is said to be tame if there exists a neighbourhood U of i in
C∞(M,N) such that for every φ ∈ U , r ◦ φ is a homeomorphism.

A retraction r : N → M for the Ck embedding i : M → N is said to be extremely
tame or E-tame if there is a neighbourhood V of i(M) in N such that the fibres of the
restriction rV : V →M are the leaves of a C0,1 foliation and are all transverse to i(M).
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This is not the original definition of tame retraction given in [PW], but it is equivalent
to that definition by Proposition 9.3.11 of [PW], and suggests a relation with the conclusion
of the smooth Whitney fibering conjecture (cf. Remark 10). Note that E-tame retractions
are tame.

Definition 18. A Ck map f : N → P is tamely P-C0-stable (the P here signifies para-
metrized) if for every unfolding (g; a, b) of f , there exists a tame retraction (r, s) : g → f ,
i.e. a pair of retractions r, s, for a, b respectively, with s a tame retraction and making the
following diagram commute :

N
a
↪→ N ′ r→ N

f ↓ ↓ g ↓ f

P
b
↪→ P ′

s→ P.

We recall the following important result in [PW], 9.1.2(i) :

Theorem 14 Let f : N → P be a quasi-proper smooth map with multi-germs of
bounded K-codimension, and suppose that f is locally tamely P-C0-stable.

Then f is strongly topologically stable. 2

Thus, to prove Theorem 13 it will be enough to prove Proposition 5 below.

Proposition 5. Let S0 ⊂ N be a finite set, and let f : (N,S0) → (P, y0) be a
map-germ of finite singularity type.

Suppose that there is a C∞-stable unfolding (F : (N ′, S′0) → (P ′, y′0); i, j) of f such
that F admits a (c)-regular stratification F : N ′ → P ′ with j transverse to P ′.

Then f is tamely P-C0-stable.
Proof. We show first that there exists an E-tame (and hence tame) retraction-germ

(R,S) : F → f .
With respect to appropriate coordinate systems we can make the identifications

(N ′, S′0) ≡ (N × Rl, S0 × 0l) and (P ′, y′0) ≡ (P × Rl, y0 × 0l)

and view F as an (Rl, 0)-level-preserving map-germ

F : (N × Rl, S0 × 0l) → (P × Rl, y0 × 0l),

with i, j germs of the inclusions : i(x) = (x, 0l) and j(y) = (y, 0l).
We will construct the retraction (R,S) : F → f from F to f as in the diagram below:

(N,S0)
i
↪→ (N × Rl, S0 × 0l)

R
−− → (N,S0)

f ↓ ↓ F ↓ f

(P, y0)
j
↪→ (P × Rl, y0 × 0l)

S
−− → (P, y0)

where the retractions R,S will be defined by (R,S) := (πN ◦H−1, πP ◦K−1) and where
(H,K) are germs of stratified homeomorphisms obtained as stratified trivialization maps
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and πN : N × Rl → N , πP : P × Rl → P the natural projections, as in the following
diagram :

(N × Rl, S0 × 0l)
H−1

−− → (N × Rl, S0 × 0l) πN−→ (N,S0)

F ↓ (1) ↓ f × 1Rl (2) ↓ f

(P × Rl, y0 × 0l)
K−1

−− → (P × Rl, y0 × 0l) πP−→ (P, y0) .

If Z denotes the stratum of P ′ containing x0 = (y0, 0l) ∈ P ×Rl, since j is transverse
to P ′ then Z is transverse to P × 0l and dimZ ≥ l.

Let X be an l-submanifold of Z and U ≡ Rl a domain of a chart near x0 of X,
transverse to P × 0l and having boundary ∂U ≡ Sl−1 .

Then the projection π : P×Rl → Rl restricts to a diffeomorphism-germ π|X : X → Rl.
We refine the stratification P ′ of P ×Rl by replacing Z with the strata {Z−U, ∂U,U}

and we refine the stratification N ′ of N ×Rl by replacing any stratum S′ mapped (neces-
sarily submersively) to Z by F with strata {S′ ∩F−1(Z−U), F−1(Z−∂U), S′ ∩F−1(U)}.

It is easy to see that the stratifications N ∗, P∗ so constructed define a (c)-regular
stratification of F : N ∗ → P∗, with P × 0l transverse to P∗.

Let (u1, . . . , ul) be coordinate frame fields of U , then by Theorem 7 there exists a
lifted controlled frame field (w1, . . . , wl) in the open neighbourhood W := π−1

X (U) of x0

in P × Rl (where πX : TX → X is the projection on X of the system of control data of
P∗ which we can take such that π−1

X (x0) ⊆ P × 0l) whose flows (ψ1, . . . , ψl) commute and
define a trivialisation homeomorphism

K : Rl × π−1
X (x0) → π−1

X (U) = W , K(t1, . . . , tl, z0) = ψl(tl, . . . ψ1(t1, z0))..) =: z

such that, denoting πX(z) ≡ (t1, . . . , tl) ∈ U , its inverse stratified homeomorphism is

K−1 : π−1
X (U) = W → Rl × π−1

X (x0) , K−1(z) =
(
πX(z), ψ1(−t1, . . . ψl(−tl, z) . . .)

)
and K and K−1 are both horizontally-C1 (Theorem 10 and Corollary 8) and also F-
semidifferentiable (Theorem 12 and Corollary 10).

Hence the corresponding l-foliation F of W is (a)-regular, i.e. it has continuously-
varying leaf tangent spaces, and respects the distance-functions of the strata of P∗ (and
hence respects the strata themselves) and is such that the leaves of F are mapped submer-
sively by πX : W → U .

We can suppose that the stratifications N ∗,P∗ admit a system of compatible tubular
neighbourhoods with respect to F [Ma]1,2; this yields integrable lifts (η1, . . . , ηl) over F
of (w1, . . . , wl), i.e. F∗(ηi) = wi for every i = 1, . . . , l.

Denoting by (χt
1, . . . , χ

t
l) the flows at time t of (η1, . . . , ηl) we have then :

F ◦ χt
i = ψt

i ◦ F for every i = 1, . . . , l, and t ∈ R.

By considering the corresponding map H defined by the flows (χt
1, . . . , χ

t
l) it follows

that the diagram below commutes :

Rl × F−1
(
π−1

X (x0)
)
⊆ Rl × (N × 0l) H→ W ′ := F−1(W ) ⊆ N × Rl

1Rl × F ↓ ↓ F

Rl × π−1
X (x0) ⊆ Rl × (P × 0l) K→ W = π−1

X (U) ⊆ P × Rl .
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I.e. F ◦H (t1, . . . , tl, z′0) = F
(
χl(tl, . . . χ1(t1, z′0))..

)
= ψl

(
tl, . . . ψ1(t1, F (z′0))..

)
= K

(
t1, . . . , tl, F (z′0)

)
= K ◦ (1Rl × F ) (t1, . . . , tl, z′0) .

Then, since π−1
X (x0) ⊆ P × 0l and F|N×0l acts as f × 1Rl , one deduces the existence

and the commutativity of the above diagram (1) (and obviously (2)).
Hence (R,S) := (πN ◦H−1, πP ◦K−1) : F → f is a retraction from F to f .
Moreover, since fibres of the retraction S = πP ◦K−1 are exactly the leaves of F then

S is E-tame, and using 9.3.11 in [PW] (πN ◦H−1, πP ◦K−1) is E-tame as claimed.
Observe that the retraction S = πP ◦K−1 coincides with the ‘horizontal” projection

of Remark 10 §8

π′ : π−1
X (U) → π−1

X (x0) , π′(z) = Mz ∩ π−1
X (x0)

whose fibres are the leaves of F .

Now let (g; a, b) be any unfolding of f with g : N × Rq → P × Rq. In order to show
that f is tamely P-C0-stable, we must show that there is a tame retraction (r, s) : g → f .

It will be enough to treat the case when g is C∞-stable. For if g is not C∞-stable, it
admits a further unfolding (g1; a1, b1) with g1 C∞-stable; and if there is a tame retraction
(r1, s1) : g1 → f , then (r1 ◦ a1, s1 ◦ b1) is a tame retraction : g → f (see [PW], 9.3.22(ii)).

So we assume that g is C∞-stable. The unfoldings (g; a, b) and (F ; i, j) are then stably
smoothly equivalent, i.e. for some h ≥ 0 there is either :

(i) a smooth equivalence (Φ,Ψ) : F × 1Rh ' g of unfoldings of f or
(ii) a smooth equivalence (Φ,Ψ) : g × 1Rh ' F of unfoldings of f .
In case (i) there is an obvious smooth retraction of the unfolding F × 1Rh of F to g

given by the projections (pN×Rl , pP×Rl); composing this with the tame retraction (R,S)
gives a tame retraction F × 1Rh → f (using [PW], 9.3.22(i)); and then composing with
(Φ,Ψ) gives an E-tame retraction (r, s) : g → f .

In case (ii), composing the equivalence (Φ,Ψ) with the tame retraction (R,S) gives a
tame retraction (R ◦ Φ, S ◦ Ψ) : g × 1Rh → f . Composing with the unfolding inclusions
then gives a tame retraction (r, s) : g → f (using [PW], 9.3.22(ii), again). 2

Remark. The more usual way to discuss stability of mappings is via multi-transversality
to a submanifold partition of jet-bundles. In the book [PW] a central result is [PW, 9.1.1],
showing that strong C0-stability follows from transversality to what are called civilised sub-
manifolds.

As on [PW, p.347], a JkK-invariant submanifold S of codimension m of the space
Jk(n, p)−W k(n, p) satisfying the immersion condition is civilised if, for any isomorphism
class of local algebras represented by a JkK-orbit contained in S, there exists a germ
f : (Rm, 0) → (Rm+p−n, 0) with this local algebra, a stable unfolding(

F : (Rm+a, 0) → (Rm+p−n+a, 0), 1Rm × 0, 1Rm+p−n × 0
)

of f,

and a V -tame retraction (r, s) : F → f such that s−1(0) = F
(
(jkF )−1(S)

)
(see [PW]).
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Arguing as in Proposition 5, the existence of the V -tame retraction required will be
assured if there is a (c)-regular stratification of F such that the stratum of the target
stratification containing the origin is F

(
(jkF )−1(S)

)
.

The approach to civilisation in [PW, 9.6.6] is more technical, and relies on (weighted)
homogeneity of the germs considered; (c)-regularity, particularly in weighted homogeneous
situations, is likely to be much easier to establish. It seems likely, therefore, that the lists
of canonical strata in [PW] can be considerably extended using (c)-regularity arguments
instead. This will be reported on elsewhere.
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