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Abstract

Genetic diversity

Background: The Culex pipiens complex (Diptera: Culicidae) includes the most widespread mosquito species in
the world. Members of this complex are the primary enzootic and epidemic vectors of the West Nile virus
(genus Flavivirus) in several countries. The two recognized forms of Cx. pipiens (Linnaeus, 1758) - pipiens and
molestus - exhibit behavioral and physiological differences. Natural populations of Cx. pipiens were investigated in
several sites in Tunisia to evaluate the ecophysiological and molecular characteristics of their forms.

Results: The analysis showed the sympatric presence of Cx. pipiens forms and hybrids in all studied sites. Of all
the tested larvae of Cx. pipiens, 33.5% were identified as pipiens, 30.8% were identified as molestus, and 35.6%
were identified as hybrids. The molestus and hybrid forms were positively correlated with urban habitats and
belowground sites while the pipiens form was positively correlated with rural habitats and aboveground sites.
Autogeny was expressed in all types of habitats and breeding sites. By contrast with the microsatellite CQ11, the
two molecular markers, ace-2 and cytb, did not allow differentiation between the Cx. pipiens forms.

Conclusions: Our study shows the ubiquitous distribution and the plasticity of the different forms of Cx. pipiens
in a wide range of ecological conditions. It suggests that the behavioral traits assigned to the forms of Cx. pipiens
seem to be more flexible than previously assumed. Our analysis also proves that the microsatellite CQ11 remains
an efficient tool for distinguishing between Cx. pipiens forms.

Keywords: Culex pipiens, Form molestus, Form pipiens, Hybrid, Tunisia, Ecology, Autogeny, Microsatellite CQ11,

Background

The epidemic and zoonotic potential of mosquito-borne
diseases make mosquitoes an important threat to public
health [1]. Mosquitoes of the Culex pipiens complex, the
most widespread species, are among the principal vec-
tors of diseases including the Rift Valley fever virus
(RVFV) and West Nile virus (WNV) [2].

In Tunisia, favorable environmental conditions created
by rapid urbanization and changing agriculture practices
[3, 4] are contributing to the widespread proliferation of
Culex pipiens mosquitoes and their abundant presence
in urban and rural areas. This in turn is leading to the
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spread of WNV [5, 6], as several recent studies have
shown, which has become the most important arboviral
disease in Tunisia. WNV is a flavivirus maintained in an
enzootic cycle (bird-mosquito-bird transmission), that
can lead to encephalitis/meningitis in humans and
horses [7]. In Tunisia, three large outbreaks of WNV
meningoencephalitis (1997, 2003 and 2012) have led to
several deaths [8—11].

The Cx. pipiens complex includes six members: Cux.
quinquefasciatus Say, Cx. pipiens pallens Coquillet, Cx.
australicus Dobrotworsky & Drummond, Cx. globocoxi-
tus Dobrotworsky and the nominal species, Cx. pipiens
Linnaeus, comprising two forms: Culex pipiens f. pipiens
and Culex pipiens f. molestus [2, 12]. The difficulty in
distinguishing among these forms has made the taxonomy
and phylogeny of the Cx. pipiens complex controversial
[13]. Molecular assays have been developed to
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differentiate the species and forms and to detect
hybridization events [14]. Several studies using molecu-
lar tools have led to the description of the two forms of
Cx. pipiens in several parts of the world, particularly in
North Africa, and have provided evidence of various
ecological features. The pipiens form is eurygamous
(mates in open spaces), anautogenous (requires a blood
meal for egg development) and heterodynamic (goes into
diapause during the winter). By contrast, the molestus form
is stenogamous (mates in confined spaces), autogenous
(can lay its first batch of eggs without a blood meal) and
homodynamic (does not enter diapause) [5, 13, 15-18].

The transmission of WNYV is greatly influenced by the
ecology, competence, and feeding behavior of the mosquito
vectors: Cx. p. pipiens is ornithophilic, feeding mainly on
birds, while Cx. p. molestus is anthropophilic, feeding
mainly on mammals, especially humans [19]. Hybrids of
the pipiens and molestus forms have an intermediate host
preference that makes them “bridge vectors” for WNV
transmission from birds to mammals [18, 19]. The recently
reported detection of hybrids of the two forms in several
countries presents a complex scenario regarding the hy-
pothesis of a clear behavioral separation among the forms
of Cx. pipiens [20-23].

Table 1 Characteristics of Culex pipiens sampling sites in Tunisia
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Taxonomic studies of mosquito vectors, their ecology
and their physiology are therefore needed to understand
the epidemiology of the diseases that they transmit and
to establish surveillance and control programs. Indeed,
the unresolved debate about the status of the physio-
logical, ecological and genetic characteristics of the Cx.
pipiens complex makes their ecology, biology and taxo-
nomic status important subjects of study and discussion.

This study used molecular methods to investigate the oc-
currence and distribution of both forms of Cx. pipiens and
their hybrids to characterize different populations, to deter-
mine their expression and rate of autogeny in different envi-
ronments in Tunisia. These traits are known to have obvious
implications for the vectorial capacity of this mosquito.

Methods

Mosquito collection and identification

From 2013 to 2015, mosquito larvae were collected by
dipper sampling from 22 sites covering seven bioclimatic
zones of Tunisia in both urban and rural habitats and in
above- and belowground breeding sites (Table 1). Live
larvae were brought to the insectary of the Pasteur Insti-
tute of Tunis for identification according to the identifi-
cation key of Mediterranean Africa mosquitoes [24].

ID  Bioclimatic zone  Locality Collection date Latitude Longitude  Habitat  Breeding site  No. of specimens analyzed
1 Humid Cap serrat August 2015 37°2023.7"  09°40"11.4"  rural aboveground 20
2 Skhira October 2015 37°03'31.0"  09°20'31.0"  urban aboveground 10
3 Sub-humid Utique December 2014 37°04'17.6"  10°0042.1"  urban aboveground 17
4 Manar April 2015 37°01'77.0"  09°5220.7"  rural aboveground 20
5 Zaarour October 2015 37°06'86.8"  09°44'37.8"  rural aboveground 20
6 Beja oued December 2013 36°43'88.1"  09°12'315"  urban aboveground 20
7 Higher semi-arid  Cité nozha June 2015 36°52'00.8"  10°11'780"  urban belowground 20
8 Chotrana July 2015 36°54'11.1"  10°13'10.0"  urban aboveground 20
9 Cave 1 October 2015 36°48'10.7"  10°10'45.2"  urban belowground 20
10 Cave 2 October 2015 36°48'086"  10°10'444"  urban belowground 20
11 Cité olympique  September 2015  36°50364"  10°11'69.0"  urban belowground 20
12 Korba June 2014 36°34'43.0"  10°51'53.1"  urban aboveground 20
13 Tastour May 2015 36°32'41.8"  09°24"16.7"  rural aboveground 20
14 Middle semi-arid  Cité el Arayes July 2013 36°24'26.0"  10°08'13.1"  urban aboveground 20
15 Higher arid Kairouan July 2014 35°39'85.1"  10°06'41.9"  urban aboveground 20
16 Cité bassatin December 2014 35°1020.0"  08°49'42.2"  urban aboveground 20
17 Sidi bouzid May 2015 34°39'10.0"  09°35'183"  urban aboveground 20
18 Lower arid Gafsa December 2014 34°26'43.0"  08°38'154"  rural aboveground 20
19 Route d'el Ain August 2014 34°44'52.5"  10°45"164"  urban aboveground 20
20 Teboulbou June 2013 33°5028.2"  10°07'52.5"  rural aboveground 20
21 Saharan Route dghech April 2015 33°5721.1"  08°11'04.1"  rural aboveground 20
22 Douz December 2013 33°25'90.8"  09°00'95.2"  rural aboveground 8
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A pool of Cx. pipiens larvae was taken from each site
(n = 22) and stored in 70% alcohol in preparation for the
molecular characterization and genetic analysis of Cx.
pipiens forms. Other larvae pools taken from seven breed-
ing sites representing different combinations of habitat
(rural/urban) and breeding site (above/belowground) were
reared to adults under laboratory conditions, in order to
evaluate their autogenic behavior.

Molecular identification of Cx. pipiens mosquitoes

DNA from individual Culex pipiens larvae and adults from
each breeding site (Table 1) were extracted using the Cetyl-
trimethylammonium bromide (CTAB) protocol [25].
Isolated DNA from each sample was stored at -20 °C.

The CQ11 polymorphic microsatellite marker of Culex
pipiens complex was used to distinguish between form
pipiens and form molestus. The amplification of the CQ11
microsatellite was carried out using sets of primers
CQ11F2, molCQ11R and pipCQ11R. The PCR reactions
were performed in 20 pl of reaction mix using the cycling
conditions listed in Bahnck & Fonseca [26]. Amplified
fragments were visualized on a 2% agarose gel. The
pipiens and molestus forms presented a PCR product of
200 bp and 250 bp, respectively. Hybrids exhibited both
amplicons (200 bp/250 bp) [26].

A second PCR was subsequently used to detect poly-
morphism in the nucleotide sequence of the ace-2 gene of
the different forms of Cx. pipiens and to test its usefulness
as a nuclear marker for form identification. Sequences of
sections of exons 2 and 3 and the entire intron 2 in the
ace-2 gene (the ACE locus) were obtained using the oligo-
nucleotide primers, specific for Cx. pipiens (s.s.), F1457
and B1246 as described by Bourguet et al. [27]. PCR prod-
ucts were run on a 1.5% agarose gel and showed a band of
714 bp specific of Cx. pipiens.

In addition, samples were analyzed by PCR targeting
the cytb gene that was used in species identification
[28-30] to detect any polymorphism in the nucleotide
sequence of Cx. pipiens forms. Amplification of the cytb
gene was carried out using the primers cytb-F and cytb-R
[30]. Polymerase chain reaction products were run on a
1% agarose gel and displayed a band of 853 bp specific of
Cx. pipiens.

Sequencing

Some PCR products obtained by targeting the CQl1,
ace-2 and cytb were randomly chosen and sequenced to
confirm the PCR results and to determine whether nu-
cleotide polymorphisms were informative to distinguish
between Cx. pipiens forms. PCR products were purified
using the ExoSAP cleanup procedure (Amersham Biosci-
ences, Piscataway, NJ, USA). Cycle sequencing was per-
formed using BigDye Terminator v.3.1 Cycle Sequencing
Kit (Applied Biosystems, Foster City, CA, USA) and
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analyzed using a capillary automated sequencer 3500
Genetic Analyzer (Ruo. Hitachi, Foster City, CA, USA).
Sequences were aligned using BioEdit 7.1.9 [31] and
identified by comparison with sequences deposited in
the GenBank database.

Determination of autogeny

To evaluate the expression of autogeny according to the
type of habitat and breeding site, Cx. pipiens larvae from
ID3, 4, 6, 9, 11 and 13 sites (Table 1) were raised in the
insectary under controlled conditions (25 + 2 °C;
70 + 10% relative humidity, and a 12:12 h light:dark
photocycle). Larvae were fed fish flakes and brewer’s
yeast. Emerging males and females of Cx. pipiens housed
in cages (20 x 20 x 20 cm) were given access to a cotton
pad soaked in a 10% sugar solution and an oviposition
small tray containing deionized water that was inspected
daily for 30 days for the presence of egg-rafts. We subse-
quently calculated the number of fertile egg-rafts (which
produce larvae) to estimate the percentage of autogen-
ous females.

In a second test evaluating the expression of autogeny
by form of Cx. pipiens, two types of breeding sites
(aboveground ID8 and belowground ID11) were chosen.
Pupae were separated individually in glass tubes of dis-
tilled water until adults emerged. The adults were isolated
by couples (one male and one female) in cups covered
with a mesh screen with access to a honey solution and an
oviposition tray. The presence of egg-rafts was recorded
daily for 30 days. During this time, females that laid eggs
without blood-feeding were considered to be autogenous.
This test was replicated by visiting the two sites three
times (once a month). We started our experiment with 60
couples from ID8 and 57 from ID11 but we used molecu-
lar analysis only for the survived females to determine the
form.

Data analysis

The relationship between the form of Cx. pipiens and
bioclimatic area, breeding site, habitat and autogenic be-
havior was analyzed using a Generalized Linear Model
(GLM) with Poisson distribution (as the data were over-
dispersed). Statistical analyses and figures were carried
out in R 3.2.2.

Nucleotide sequence accession numbers
Sequence data were deposited in the GenBank database
under the accession numbers KY744191-KY744222.

Results

During our study, 1517 mosquito larvae were collected
from 22 sites in Tunisia’s seven bioclimatic zones (Table 1)
and identified as Cx. pipiens (n = 989), Cx. theileri
(n = 404), Cx. perexiguus (n = 11), Cx. impudicus (n = 9),
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Ochlerotatus caspius (n = 16), O. detritus (n = 10), Anoph-
eles labranchiae (n = 28), Culesita longiareolata (n = 48),
Orthopodomyia pulchripalpis (n = 1) and Uranotaenia
unguiculata (n = 1).

Among the collected larvae, 415 larvae of Cx. pipiens
were molecularly typed using CQ11, ace-2 and cytb PCR
at the form level. Furthermore, approximately 574 larvae
were raised to obtain adults to determine their expres-
sion of autogeny.

Occurrence and distribution of Cx. pipiens forms
Amplification of the CQ11 microsatellite showed differ-
ent frequencies of the Cx. pipiens forms in all 22 sites
(Fig. 1). Of the 415 larvae that were analyzed, 139
(33.50%) specimens were pipiens form, 128 (30.84%)
were molestus form, and 148 (35.66%) were hybrids
(Additional file 1: Table S1). A statistical analysis (using
GLM with Poisson distribution) showed no significant
differences in the frequencies of forms according to
bioclimatic zones (Additional file 2: Table S2). Of the
22 sites, 19 (86.36%) were characterized by a sympatric
presence of the two Cx. pipiens forms with their hy-
brids; two sites [ID21 and ID22; 2/22 (9.1%)] shared
pipiens form and hybrids, and one site [ID3; 1/22
(4.55%)] shared molestus form and hybrids. No pure
sites (only pipiens or molestus) were observed.
Regarding habitat type (Fig. 2a), statistical analysis
showed that the frequency of Cx. pipiens f. pipiens was
significantly higher in rural locations than in urban loca-
tions; that Cx. pipiens f. molestus was significantly more
abundant in urban areas than in rural areas and that the
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frequency of hybrids was significantly higher in urban
sites than in rural sites (see Additional file 3: Table S3).

Statistical analysis also showed that the proportion of
the molestus form was significantly higher in below-
ground breeding sites (see Additional file 3: Table S3;
Fig. 2b) whereas a higher rate of pipiens form was observed
in aboveground sites and hybrids were significantly more
frequent in belowground sites than in aboveground sites
(see Additional file 3: Table S3).

Sequencing and genetic analyses

To clarify the taxonomic status of the Cx. pipiens forms
determined by PCR, we sequenced 12 randomly chosen
amplicons obtained by targeting CQ11, ace-2 and cytb
genes. The results allowed us to compare three available
molecular methods to distinguish the Cx. pipiens forms.

CQ11 microsatellite variability

Eight PCR products of pipiens (n = 4) and molestus
(n = 4) forms were sequenced (GenBank: KY744215-
KY744222). A BLAST analysis of these sequences con-
firmed the results of the PCR but revealed some vari-
ability among available sequences in GenBank. The
four sequences of pipiens form (GenBank: KY744215-
KY744218) showed significant similarity (98-99%) with
sequences of Cx. p. pipiens described in the UK and the
four sequences of molestus form (GenBank: KY744219—
KY744222) showed significant similarity (99-100%)
with sequences of Cx. p. molestus described in the UK
(Table 2).

. Cx. p. pipiens &

() Cx. p. molestus

@ Bybria

Fig. 1 Distribution of Culex pipiens forms. Composition of the Culex pipiens biotypes of 22 field-collected populations in Tunisia using the CQ11 assay
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Fig. 2 Boxplot showing the percentage of Cx. pipiens forms according to the type of habitat (a) and the type of breeding site (b)

Ace-2 gene variability

The DNA of larvae samples including those previously
sequenced for CQ11 locus (n = 4 pipiens; n = 4 moles-
tus) and hybrid samples (n = 4), were amplified and se-
quenced targeting the ace-2 gene (714 bp) (GenBank:
KY744203-KY744214). A BLAST analysis of these se-
quences (n = 12) showed a 99-100% similarity with a se-
quence of Cx. pipiens previously described in the USA
(AY196910.1) [32].

Multiple alignments of our sequences (n = 12) showed
that variable sites were mainly in intron 2 (non-coding
region from 118 bp to 477 bp), which is characterized by
a higher mutation rate [33].

Cytb gene variability

The same DNA samples (n = 12) previously sequenced
for the nuclear gene (ace-2) were amplified and se-
quenced for the mitochondrial gene (cyth) (GenBank:
KY744191-KY744202).

Following the BLAST analysis, 4 of the 12 analyzed
DNA sequences were 100% identical to the sequence of
Cx. p. pipiens from Turkey and shared a 99% similarity
with Cx. p. pipiens previously described in Tunisia
(Table 2). The remaining 8 sequences were 100% similar
to the sequence of Cx. p. pipiens from Tunisia available
on GenBank.

Multiple alignments of sequences showed no variabil-
ity among Cx. pipiens forms as identified by the CQ11
microsatellite.

Autogeny
To determine the autogenic expression of the field-
collected mosquitoes, adults (males and females) from

six breeding sites (ID3, 4, 6, 9, 11 and 13) were reared in
six cages in the insectary. Females that produced fertile
eggs without access to a blood meal were considered
autogenous. The results of this test are represented in
Fig. 3 and Additional file 4: Table S4. Statistical analysis
shows that the highest proportion of autogenous
mosquitoes were found in belowground breeding sites
(Fig. 3a; Additional file 5: Table S5) and in urban habi-
tats (Fig. 3b; Additional file 5: Table S5).

In a second test, we evaluated the Cx. pipiens form
versus autogeny in two types of breeding sites (IDS8:
aboveground; ID11: belowground) by placing couples
from each site in cups and following them for 30 days
for the presence of egg-rafts. These two sites were
visited three times to replicate the test. From 117
tested couples (60 couples for ID8 and 57 for ID11),
survived females (n = 90) were subsequently identi-
fied molecularly at the form level targeting the CQ11
microsatellite.

The CQIl1 assay of autogenous females collected from
ID8 (aboveground) showed that 50% (11/22) of the
samples were Cx. p. molestus, 36.36% (8/22) were hy-
brids, and 13.64% (3/41) were Cx. p. pipiens. From the
belowground ID11 site, 52.78% (19/36) of the samples
belonged to the molestus form, 44.44% (16/36) were hy-
brids and the remaining 2.78% (1/36) corresponded to
the pipiens form (Additional file 6: Table S6; Fig. 4).

Anautogenous females from the ID8 site were 42.11%
(8/19) hybrids, 31.58% (6/19) Cx. p. pipiens and 26.32%
(5/19) Cx. p. molestus. From the ID11 site, 61.54% (8/13)
of anautogenous females were the molestus form,
38.46% (5/13) hybrids and 0% were the pipiens form
(Additional file 6: Table S6; Fig. 4).
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Statistical analyses showed that Cx. p. molestus was
the most autogenous form in the two types of breeding
sites (50% in ID8; 52.78% in ID11) and that autogeny
was negatively related to the pipiens form. Statistical
analyses also demonstrated that differences between Cx.
p. molestus and hybrids concerning the rate of autogeny
in the aboveground and belowground site were not sig-
nificant (Additional file 7: Table S7).

Discussion

Of the 1517 mosquito larvae collected from 22 breeding
sites distributed in seven different climatic zones of
Tunisia, Culex pipiens was the most abundant (65%).
This mosquito species occurs throughout temperate lati-
tudes and is involved in the transmission of West Nile
virus in Tunisia [5, 34].

In this study, we investigated the physiological, eco-
logical, and genetic characteristics of the Cx. pipiens
populations that we collected. The screening of 415 Cx.
pipiens larvae by CQ11 microsatellite showed the pres-
ence of two Cx. pipiens forms (pipiens and molestus)
and their hybrids. All 22 breeding sites contained both
Cx. pipiens forms and hybrids with varying frequencies.
A previous study in Tunisia has already identified
pipiens and molestus and their hybrids occurring in sym-
patry in different aboveground collection sites, but found
no pipiens form in belowground sites [16]. Previous
studies had shown that the different forms of Cx. pipiens

were separated primarily on the basis of their ecological
and physiological characteristics and that they occupied
distinct habitats [35—-38]. By contrast, our results showed
the co-occurrence of both Cx. pipiens forms and their hy-
brids in different breeding sites, matching other studies
conducted in Algeria [39, 40], Morocco [5], several Euro-
pean countries, i.e. Portugal [21, 41], the Netherlands [22]
and Italy [23], and in the USA [20]. Whereas the molestus
form was previously considered to be strictly anthropophi-
lic and limited to belowground and confined breeding
sites, we found that it can occur naturally in open and
aboveground habitats. Similar observations were re-
ported in other studies in Chicago and New York
(USA) and in Algeria [39, 42].

The sympatric occurrence thus favors mating between
the two forms and the emergence of hybrid populations.
Indeed, hybrids were found in all breeding sites shared
by the two parental forms. Interestingly, our results re-
vealed that hybrids share the same ecological preferences
of the molestus form, which may have increased the
transmission of WNV to humans. The significant role
played by hybrids in transmitting pathogens is well
established; their opportunistic feeding behavior acts as
a bridge vector for WNV transmission between birds
and humans [4, 19, 20, 43, 44].

These findings confirm that Cx. pipiens forms can
share the same site regardless of breeding site or habitat,
without competitive exclusion. They also point to the
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adaptive capacity of Cx. pipiens forms to various environ-
ments and support the species’ ecological and physiological
adaptability to urbanization [4, 45]. Man-made artificial
habitats including canals, storage lakes, swimming pools,
gardens and stormwater drainage systems, act as new
breeding sites that primarily favor Cx. pipiens. Changes in
climate may also influence mosquito physiology and ecol-
ogy. Rises in temperature are known to influence adult
flight activity, the digestion of blood meals, and egg devel-
opment [46, 47]. Indeed, exposure to high temperatures
can cause genetic mutations such as DNA methylation,
which seems to play a role in facilitating plasticity in re-
sponse to environmental stress [48, 49].

Insofar as the CQ11 microsatellite may overestimate
the rate of hybrids when compared with full microsatel-
lite analysis [42], we chose to compare the CQ11 ampli-
fication and sequencing results with the ace-2 and cyth
genes to evaluate their utility for discriminating Cx.
pipiens forms.

The sequencing of the CQ11 PCR product confirmed
the presence of the pipiens and molestus forms in the
sites studied, and confirms the results of other, similar
studies. It constitutes a valuable tool for characterizing
the Cx. pipiens forms in Tunisia and remains the most
appropriate tool of confirmation, especially given the
evolved ecological differences.

The amplification and sequencing of the PCR products
targeting the ace-2 and cytb did not show any specific
differences in sequences and did not allow the recogni-
tion of the different forms. Even though, when compar-
ing two available sequences of ace-2 gene in GenBank
[from Iran (pipiens) and from Japan (molestus)], the re-
sult did show differences in two nucleotide positions
(Additional file 8: Table S8). In fact, our results showed
that the two forms of Cx. pipiens are genetically too close
to permit their discrimination using a nuclear (ace-2) [32]
or mitochondrial (cyth) genes. Indeed, previous research
comparing different mitochondrial genes (cox1, nad4 and
12S) confirmed their limited utility for the intraspecific
differentiation of Cx. pipiens [50]. Thus, to date the mo-
lecular analyses seeking to differentiate the forms of Cx.
pipiens indicate that the CQ11 locus remains the most
promising diagnostic marker [21, 41] as it makes it pos-
sible to differentiate the two forms of Cx. pipiens and their
hybrids.

This study shows the simultaneous occurrence of the
two forms of Cx. pipiens with their hybrids in the same
breeding sites. It is still necessary to determine whether
they are also autogenous, a character always related to
the molestus form that occur in urban belowground sites
[13]. Our results demonstrated that autogeny was
expressed in the collected females from above- and below-
ground sites, but that it was significantly higher in the lat-
ter. This could be due to the fact that subterranean
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mosquitoes adapt to habitats where potential blood meals
are scarce by developing autogeny [51]. This suggests that
Cx. pipiens has a capacity to adapt to the absence of
nutrition by carrying over reserves from the larval stage
to produce eggs. In aboveground sites, the low percent-
age of autogeny in tested females corroborated studies
conducted in North Africa [16, 52], East Asia [53] and
Portugal [54].

Autogeny was expressed more in urban than in rural
habitats, suggesting that environmental factors such as
limited access to a breeding site, larval nutrition and
photoperiod, would affect it. Its expression may also be
influenced by the non-availability of hosts for a blood
meal and limited space for mating [35]. This high expres-
sion of autogeny may be related to the high proportion of
molestus form observed in this habitat, which supports
previous studies conducted in Australia and Italy [23, 51].
Our findings also demonstrate that a low proportion of
pipiens form can also lay eggs without blood meals, a rare
observation that corroborates a study in Portugal [21] and
further confirms the ecological and physiological flexibility
of the Cx. pipiens mosquito. We also observed that some
molestus females can be anautogenous. Poor adaptation to
insectary conditions may cause gonotrophic dissociation,
which could explain the absence of oviposition in families
that might otherwise be autogenous [21].

Conclusions

Our study shows the ubiquitous distribution of Cx. pipiens
in Tunisia and provides evidence for the sympatric occur-
rence of Cx. pipiens molestus, Cx. pipiens pipiens and their
hybrids. We also demonstrated the great plasticity of this
complex of mosquitoes to a wide range of ecological con-
ditions. The results suggest that the behavioral traits
assigned to the forms of Cx. pipiens seem to be more flex-
ible than previously assumed, especially the dispersion of
molestus and hybrids forms. Our observations also high-
light the abundance of autogeny, which is expressed in
molestus and hybrids in belowground and aboveground
sites. Our analysis proved that CQ1l1 microsatellite
continues to be an appropriate molecular tool for the
identification of the Cx. pipiens forms and their hybrids.
However, further studies are needed to develop additional
molecular markers given the genetic complexity of Cx.
pipiens and the limitation of the use of a single molecular
marker.
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