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Injective homomorphisms of mapping class groups of
non-orientable surfaces

ELMAS IRMAK

LUIS PARIS

Let N be a compact, connected, non-orientable surface of genus ρ with n boundary
components, with ρ ≥ 5 and n ≥ 0, and let M(N) be the mapping class group of
N . We show that, if G is a finite index subgroup of M(N) and ϕ : G →M(N) is
an injective homomorphism, then there exists f0 ∈M(N) such that ϕ(g) = f0gf−1

0
for all g ∈ G . We deduce that the abstract commensurator of M(N) coincides
with M(N).

57N05

1 Introduction

Let N be a connected and compact surface that can be non-orientable and have boundary
but whose Euler characteristic is negative. We denote by Homeo(N) the group of
homeomorphisms of N . The mapping class group of N , denoted by M(N), is the
group of isotopy classes of elements of Homeo(N). Note that it is usually assumed that
the elements of Homeo(N) preserve the orientation when N is orientable. However,
the present paper deals with non-orientable surfaces and we want to keep the same
definition for all surfaces, so, for us, the elements of Homeo(N) can reverse the
orientation even if N is orientable. On the other hand, we do not assume that the
elements of Homeo(N) pointwise fix the boundary. In particular, a Dehn twist along a
circle isotopic to a boundary component is trivial. If N is not connected, the mapping
class group of N , denoted by M(N), has the same definition. Although our results
concern connected surfaces, we shall use in some places mapping class groups of
non-connected surfaces.

The purpose of this paper is to prove the following.

Theorem 1.1 Let N be a compact, connected, non-orientable surface of genus ρ with
n boundary components, with ρ ≥ 5 and n ≥ 0, let G be a finite index subgroup of
M(N), and let ϕ : G → M(N) be an injective homomorphism. Then there exists
f0 ∈M(N) such that ϕ(g) = f0gf−1

0 for all g ∈ G .

http://www.ams.org/mathscinet/search/mscdoc.html?code=57N05
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The same result is known for orientable surfaces (see Irmak [9, 10, 11], Behrstock–
Margalit [4], Bell–Margalit [5]). A first consequence of Theorem 1.1 is as follows.
This corollary was proved in Atalan–Szepietowski [1, 3] for compact, connected, non-
orientable surfaces of genus ρ ≥ 7. Our contribution is just an extension to compact,
connected, non-orientable surfaces of genus 5 and 6.

Corollary 1.2 Let N be a compact, connected, non-orientable surface of genus ρ with
n boundary components, with ρ ≥ 5 and n ≥ 0. Then Aut(M(N)) ∼= M(N) and
Out(M(N)) ∼= {1}.

Note that the ideas of Atalan–Szepietowski [1, 3] cannot be extended to the more
flexible framework of Theorem 1.1 because they use rather precise relations in M(N)
that do not necessarily hold in a finite index subgroup.

Let G be a group. We denote by C̃om(G) the set of triples (A,B, ϕ), where A and
B are finite index subgroups of G and ϕ : A → B is an isomorphism. Let ∼ be the
equivalence relation on C̃om(G) defined as follows. We set (A1,B1, ϕ1) ∼ (A2,B2, ϕ2)
if there exists a finite index subgroup C of A1 ∩ A2 such that ϕ1(g) = ϕ2(g) for all
g ∈ C . The (abstract) commensurator of G is defined to be the quotient Com(G) =

C̃om(G)/ ∼. This is a group. A more general consequence of Theorem 1.1 is the
following.

Corollary 1.3 Let N be a compact, connected, non-orientable surface of genus ρ with
n boundary components, with ρ ≥ 5 and n ≥ 0. Then Com(M(N)) ∼=M(N).

Let N be a compact, connected, non-orientable surface of genus ρ with n boundary
components, with ρ ≥ 5 and n ≥ 0. We denote by C(N) the complex of curves of
N and by T (N) the subcomplex of C(N) formed by the isotopy classes of two-sided
circles. For α, β ∈ C(N) we denote by i(α, β) the intersection index of α and β and,
for α ∈ T (N), we denote tα the Dehn twist along α . A map λ : T (N) → T (N) is
called a super-injective simplicial map if the condition i(λ(α), λ(β)) = 0 is equivalent
to the condition i(α, β) = 0 for all α, β ∈ T (N).

The proof of Theorem 1.1 is based on two other theorems. The first one, proved in
Irmak–Paris [13, Theorem 1.1], says that, if λ : T (N) → T (N) is a super-injective
simplicial map, then there exists f0 ∈M(N) such that λ(α) = f0(α) for all α ∈ T (N).
Let T ′(N) be the subfamily of T (N) formed by the isotopy classes of circles that do
not bound one-holed Klein bottles. The second theorem is the aim of Section 3 of
this paper (see Theorem 3.1). It says that, if G is a finite index subgroup of M(N)
and ϕ : G →M(N) is an injective homomorphism, then there exists a super-injective
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simplicial map λ : T (N)→ T (N) which sends a non-trivial power of tα to a non-trivial
power of tλ(α) for all α ∈ T ′(N).

The proof of Theorem 3.1 uses several results on reduction classes of elements ofM(N)
and on maximal abelian subgroups of M(N). These results are classical and widely
used in the theory of mapping class groups of orientable surfaces, but they are more or
less incomplete in the literature for mapping class groups of non-orientable surfaces.
So, the aim of Section 2 is to recall and complete what is known on non-orientable
case.

In order to prove Theorem 3.1 we first prove an algebraic characterization of some
Dehn twists up to roots and powers (see Proposition 3.3). This characterization seems
interesting by itself and we believe that it could be used for other purposes. Note
also that this characterization is independent from related works of Atalan [1, 2] and
Atalan–Szepietowski [3].

The final proofs of Theorem 1.1 and Corollary 1.3 are given in Section 4. The proof
of Corollary 1.2 is left to the reader.

2 Preliminaries

2.1 Canonical reduction systems

From now on N = Nρ,n denotes compact, connected, non-orientable surface of genus
ρ ≥ 5 with n ≥ 0 boundary components. A circle in N is an embedding a : S1 ↪→
N \ ∂N . This is assumed to be non-oriented. It is called generic if it does not bound a
disk, it does not bound a Möbius band, and it is not isotopic to a boundary component.
The isotopy class of a circle a is denoted by [a]. A circle a is called two-sided (resp.
one-sided) if a regular neighborhood of a is an annulus (resp. a Möbius band). We
denote by C(N) the set of isotopy classes of generic circles, and by T (N) the subset of
C(N) of isotopy classes of generic two-sided circles.

The intersection index of two classes α, β ∈ C(N) is i(α, β) = min{|a ∩ b| | a ∈
α and b ∈ β}. The set C(N) is endowed with a structure of simplicial complex, where
a finite set A is a simplex if i(α, β) = 0 for all α, β ∈ A. This simplicial complex
is called the curve complex of N . Note that M(N) acts naturally on C(N), and this
action is a simplicial action. Note also that T (N) is invariant under this action.

Let A = {α1, . . . , αr} be a simplex of C(N). Let MA(N) denote the stabilizer of
A in M(N). Choose pairwise disjoint representatives ai ∈ αi , i ∈ {1, . . . , r}, and
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denote by NA the natural compactification of N \ (∪r
i=1ai). The groups MA(N) and

M(NA) are linked by a homomorphism ΛA :MA(N)→M(NA), called the reduction
homomorphism along A, defined as follows. Let f ∈MA(N). Choose a representative
F ∈ Homeo(N) of f such that F({a1, . . . , ar}) = {a1, . . . , ar}. The restriction of F
to N \ (∪r

i=1ai) extends in a unique way to a homeomorphism F̂ ∈ Homeo(NA). Then
ΛA(f ) is the element of M(NA) represented by F̂ .

We denote by tα the Dehn twist along a class α ∈ T (N). This is defined up to a
power of ±1, since its definition depends on the choice of an orientation in a regular
neighborhhood of a representative of α , but this lack of precision will not affect the
rest of the paper. If A is a simplex of C(N), we set AT = A∩T (N), and we denote by
ZA the subgroup of M(N) generated by {tα | α ∈ AT }. The following is a classical
result for mapping class groups of orientable surfaces. It is due to Stukow [18, 19] for
non-orientable surfaces.

Proposition 2.1 (Stukow [18, 19]) Let A be a simplex of C(N). Then ZA is the
kernel of ΛA and it is a free abelian group of rank |AT |.

Let f ∈ M(N). We say that f is pseudo-Anosov if C(N) 6= ∅ and f n(α) 6= α for all
α ∈ C(N) and all n ∈ Z \ {0}. We say that f is periodic if it is of finite order. We
say that f is reducible if there is a non-empty simplex A of C(N) such that f (A) = A.
In that case, A is called a reduction system for f and an element of A is called a
reduction class for f . An element f ∈ M(N) can be both periodic and reducible, but
it cannot be both pseudo-Anosov and periodic, and it cannot be both pseudo-Anosov
and reducible.

Let f ∈ M(N) be a reducible element and let A be a reduction system for f . Let
N1, . . . ,N` be the connected components of NA . Choose n ∈ Z \ {0} such that
f n(Ni) = Ni for all i and denote by Λi,A(f n) ∈M(Ni) the restriction of ΛA(f n) to Ni .
We say that A is an adequate reduction system for f if, for all i ∈ {1, . . . , `}, Λi,A(f n)
is either periodic or pseudo-Anosov. This definition does not depend on the choice
of n. The following was proved by Thurston [8] for orientable surfaces and then was
extended to non-orientable surfaces by Wu [20].

Theorem 2.2 (Thurston [8], Wu [20]) A mapping class f ∈M(N) is either pseudo-
Anosov, periodic or reducible. Moreover, if it is reducible, then it admits an adequate
reduction system.

Let f ∈ M(N). A reduction class α for f is an essential reduction class for f if for
each β ∈ C(N) such that i(α, β) 6= 0 and for each integer m ∈ Z \ {0}, the classes
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f m(β) and β are distinct. We denote by S(f ) the set of essential reduction classes
for f . Note that S(f ) = ∅ if and only if f is either pseudo-Anosov or periodic. The
following was proved by Birman–Lubotzky–McCarthy [6] for orientable surfaces and
by Wu [20] and Kuno [16] for non-orientable surfaces.

Theorem 2.3 (Wu [20], Kuno [16]) Let f ∈ M(N) be a non-periodic reducible
mapping class. Then S(f ) 6= ∅, S(f ) is an adequate reduction system for f , and every
adequate reduction system for f contains S(f ). In other words, S(f ) is the unique
minimal adequate reduction system for f .

Remark The proof of Theorem 2.3 for orientable surfaces given in Birman–Lubotzky–
McCarthy [6] does not extend to non-orientable surfaces, since Lemma 2.4 in [6] is
false for non-orientable surfaces and this lemma is crucial in the proof. The proof for
non-orientable surfaces is partially made in Wu [20] using oriented double coverings,
and it is easy to get the whole result by these means. Kuno’s approach [16] is different
in the sense that she replaces Lemma 2.4 of [6] by another lemma of the same type.

If f ∈M(N) is a non-periodic reducible mapping class, then the set S(f ) is called the
essential reduction system for f . Recall that, if f is either periodic or pseudo-Anosov,
then S(f ) = ∅. The following lemma follows from the definition of S(f ).

Lemma 2.4 Let f ∈M(N). Then

(1) S(f n) = S(f ) for all n ∈ Z \ {0},

(2) S(gfg−1) = g(S(f )) for all g ∈M(N).

Moreover, we will often use the following.

Lemma 2.5 Let A = {α1, . . . , αp} be a simplex of T (N), and, for every i ∈
{1, . . . , p}, let ki ∈ Z \ {0}. Set g = tk1

α1
· · · tkp

αp . Then S(g) = A.

Proof We have g(αi) = αi for all i ∈ {1, . . . , p}, hence A is a reduction system
for g. The reduction ΛA(g) of g along A is the identity, hence A is an adequate
reduction system. Let i ∈ {1, . . . , p}. Set Ai = A \ {αi}. Note that Ai is also a
reduction system for g. We choose disjoint representatives aj ∈ αj , j ∈ {1, . . . , p},
we denote by NAi the natural compactification of N \ (∪j6=iaj), and we denote by N′

the component of NAi that contains ai . The restriction of ΛAi(g) to N′ is tki
ai

, which is
neither periodic, nor pseudo-Anosov. Hence, Ai is not an adequate reduction system.
So, A is the minimal adequate reduction system for g, that is, A = S(g).
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2.2 Abelian subgroups

Let A be a simplex of C(N) and let H be an abelian subgroup of M(N). We say
that A is a reduction system for H if A is a reduction system for every element
of H . Similarly, we say that A is an adequate reduction system for H if A is
an adequate reduction system for every element of H . On the other hand, we set
S(H) =

⋃
f∈H S(f ). The following can be proved exactly in the same way as Lemma

3.1 in Birman–Lubotzky–McCarthy [6].

Lemma 2.6 Let H be an abelian subgroup of M(N). Then S(H) is an adequate
reduction system for H and every adequate reduction system for H contains S(H).

The rank of N is defined by rk(N) = 3
2ρ + n − 3 if ρ is even and by rk(N) =

1
2 (3ρ − 1) + n − 3 if ρ is odd. Let A be a simplex of C(N). As ever, we set
AT = A ∩ T (N). For k ∈ Z \ {0}, we denote by ZA[k] the subgroup of M(N)
generated by {tk

α | α ∈ AT }. By Proposition 2.1, ZA[k] is a free abelian group of
rank |AT |. The rank of an abelian group H is denoted by rk(H).

Kuno [16] proved that the maximal rank of an abelian subgroup of M(N) is precisely
rk(N). Her proof is largely inspired by Birman–Lubotzky–McCarthy [6]. In the present
paper we need the following more precise statement whose proof is also largely inspired
by Birman–Lubotzky–McCarthy [6].

Proposition 2.7 Let H be an abelian subgroup of M(N). Then rk(H) ≤ rk(N).
Moreover, if rk(H) = rk(N), then the following claims hold.

(1) There exists a simplex A in T (N) such that |A| = rk(N) and S(H)∩T (N) ⊂ A.

(2) There exists k ≥ 1 such that ZS(H)[k] ⊂ H .

(3) None of the connected components of NS(H) is homeomorphic to N2,1 .

Remark There are classes of circles that are not included in any simplex of T (N) of
cardinality rk(N). These classes will be considered in Section 3. In particular, Part (1)
of the above proposition is not immediate.

The rest of this subsection is dedicated to the proof of Proposition 2.7.

Let A be a simplex of C(N). We say that A is a pants decomposition if NA is a disjoint
union of pairs of pants. It is easily seen that any simplex of C(N) is included in a pants
decomposition. The following lemma is partially proved in Irmak [12, Lemma 2.2].
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Lemma 2.8 Let A be a simplex of C(N). Set AT = A ∩ T (N) and AO = A \ AT .
Then

|AT |+
1
2
|AO| ≤

3
2
ρ+ n− 3 .

Moreover, equality holds if and only if A is a pants decomposition.

Proof We choose a pants decomposition A′ which contains A. Clearly, |A′T | ≥ |AT |
and |A′O| ≥ |AO|. Let p be the number of connected components of NA′ . Since every
connected component of NA′ is a pair of pants, we have 2|A′T |+ |A′O|+ n = 3p and
2− ρ− n = χ(N) = −p. These equalities imply that |A′T |+

1
2 |A
′
O| =

3
2ρ+ n− 3. It

follows that |AT |+ 1
2 |AO| ≤

3
2ρ+n−3, and equality holds if and only if A = A′ .

Corollary 2.9 If A is a simplex of T (N), then |A| ≤ rk(N).

Proof We have AT = A and AO = ∅. By Lemma 2.8, it follows that |A| ≤
3
2ρ + n − 3. If ρ is even, then the right hand side of this inequality is rk(N), hence
|A| ≤ rk(N). If ρ is odd, then the right hand side of this inequality is not an integer,
but the greatest integer less than the right hand side is rk(N) = 1

2 (3ρ− 1) + n− 3. So,
we have |A| ≤ rk(N) in this case, too.

Remark There are simplices in T (N) of cardinality rk(N). Their construction is left
to the reader.

For ρ, n ≥ 0, we denote by Sρ,n the orientable surface of genus ρ and n boundary
components. The first part of the following lemma is well-known. The second part is
proved in Scharlemann [17] and Stuko [18]. The third part is easy to prove.

Lemma 2.10 (1) The mapping class groups M(S0,3) and M(N1,2) are finite.

(2) The set T (N2,1) is reduced to a unique element, β , and M(N2,1) ' ZoZ/2Z,
where the copy of Z is generated by tβ .

(3) If M is a connected surface, with negative Euler characteristic, different from
S0,3 and N1,2 , then T (M) is non-empty.

The following lemma is well-known for orientable surfaces (see Fathi–Laudenbach–
Poénaru [8, Thm. III, Exp. 12] and Ivanov [14, Lem. 8.13]). It can be easily proved
for a non-orientable surface N from the fact the the lift of a pseudo-Anosov element
of M(N) to the mapping class group of the orientable double-covering of N is a
pseudo-Anosov element (see Wu [20]).
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Lemma 2.11 Let M be a connected surface (orientable or non-orientable), and let
f ∈ M(M) be a pseudo-Anosov element. Then the centralizer of f in M(M) is
virtually cyclic.

Proof of Proposition 2.7 Let H be an abelian subgroup ofM(N). Set S = S(H) and
ST = S ∩ T (N). Denote by ΛS : MS(N) →M(NS) the reduction homomorphism
along S . Note that H ⊂MS(N) since S is a reduction system for H . By Proposition
2.1 we have the following short exact sequence

1→ H ∩ ZS −→ H −→ ΛS(H)→ 1 ,

hence rk(H) = rk(H ∩ ZS) + rk(ΛS(H)). Moreover, again by Proposition 2.1, rk(H ∩
ZS) ≤ rk(ZS) = |ST |.
We denote by Γ(NS) the set of connected components of NS , by S(Γ(NS)) the group of
permutations of Γ(NS), and by ϕ :M(NS)→ S(Γ(NS)) the natural homomorphism.
Note that rk(ΛS(H) ∩ Kerϕ) = rk(ΛS(H)) since ΛS(H) ∩ Kerϕ is of finite index in
ΛS(H). Let f ∈ ΛS(H)∩Kerϕ and let N′ be a connected component of NS . Let f ′ ∈ H
such that f = ΛS(f ′). The set S is an adequate reduction system for f ′ , hence the
restriction of f to N′ is either pseudo-Anosov or periodic. Moreover, by Lemma 2.10,
M(N′) does not contain any pseudo-Anosov element if N′ is homeomorphic to S0,3

or N1,2 , and, by Lemma 2.11, the centralizer of a pseudo-Anosov element of M(N′)
is virtually cyclic. Let N1, . . . ,N` be the connected components of NS that are not
homeomorphic to S0,3 or N1,2 . Then, by the above, rk(ΛS(H)) = rk(ΛS(H)∩Kerϕ) ≤
`.

Let i ∈ {1, . . . , `}. By Lemma 2.10, we have T (Ni) 6= ∅, hence we can choose a class
βi ∈ T (Ni). We set B = {β1, . . . , β`} and A = ST t B . Then A is a simplex of
T (N), hence, by Corollary 2.9, we have |A| ≤ rk(N), and therefore

rk(H) = rk(H ∩ ZS) + rk(ΛS(H)) ≤ |ST |+ |B| = |A| ≤ rk(N) .

Assume that rk(H) = rk(N). Then |A| = rk(N) and ST = S(H) ∩ T (N) ⊂ A.
Moreover, H ∩ ZS is of finite index in ZS , hence there exists k ≥ 1 such that
ZS[k] ⊂ H ∩ ZS . Finally, for every i ∈ {1, . . . , `}, there exists f ∈ ΛS(H) ∩ Kerϕ
such that the restriction of f to Ni is pseudo-Anosov. By Lemma 2.10, this implies
that Ni cannot be homeomorphic to N2,1 .

3 Super-injective simplicial maps

Let B be a subset of C(N). A map λ : B → B is called a super-injective simplicial
map if the condition i(λ(α), λ(β)) = 0 is equivalent to the condition i(α, β) = 0
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for all α, β ∈ B . It is shown in Irmak–Paris [13, Lemma 2.2] that a super-injective
simplicial map on T (N) is always injective. We will see that the same is true for the
set B = T0(N) defined below (see Lemma 3.6).

Let α ∈ T (N). We say that α bounds a Klein bottle if Nα has two connected
components and one of them, N′ , is a one-holed Klein bottle. Recall that T (N′) is a
singleton {α0} (see Lemma 2.10 (2)). The class α0 is then called the interior class
of α . The aim of this section is to prove the following theorem. This together with
Theorem 1.1 of Irmak–Paris [13] are the main ingredients for the proof of Theorem
1.1.

Theorem 3.1 Let G be a finite index subgroup of M(N) and let ϕ : G → M(N) be
an injective homomorphism. There exists a super-injective simplicial map λ : T (N)→
T (N) satisfying the following properties.

(a) Let α ∈ T (N) which does not bound a Klein bottle. There exist k, ` ∈ Z \ {0}
such that tk

α ∈ G and ϕ(tk
α) = t`λ(α) .

(b) Let α ∈ T (N) which bounds a Klein bottle and let α0 be its interior class. The
class λ(α) bounds a Klein bottle, λ(α0) is the interior class of λ(α), and there
exist k, ` ∈ Z \ {0} and `0 ∈ Z such that tk

α ∈ G and ϕ(tk
α) = t`λ(α)t

`0
λ(α0) .

Remark It will follow from Theorem 1.1 that `0 = 0 in Part (b) of the above theorem.

We say that a class α ∈ T (N) is separating (resp. non-separating) if Nα has two
connected components (resp. has one connected component). We denote by T1(N) the
set of separating classes α ∈ T (N) such that both components of Nα are non-orientable
of odd genus. We denote by T2(N) the set of separating classes α ∈ T (N) that bound
Klein bottles. And we denote by T0(N) the complement of T1(N) ∪ T2(N) in T (N).

The rest of the section is devoted to the proof of Theorem 3.1. In Subsection 3.1 we
prove the restriction of Theorem 3.1 to T0(N) (see Proposition 3.4). In Subsection 3.2
we prove several combinatorial properties of super-injective simplicial maps T0(N)→
T0(N). Theorem 3.1 is proved in Subsection 3.3.

3.1 Injective homomorphisms and super-injective simplicial maps of T0(N)

We define the rank of an orientable surface Sρ,n to be rk(Sρ,n) = 3ρ+ n− 3. It is well-
known that rk(Sρ,n) is the maximal cardinality of a simplex of T (Sρ,n) (= C(Sρ,n)).
By Corollary 2.9 the same is true for non-orientable surfaces.
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Lemma 3.2 Let α ∈ T (N).

(1) We have α ∈ T1(N) if and only if there is no simplex A in T (N) of cardinality
rk(N) containing α .

(2) We have α ∈ T2(N) if and only if there exists a simplex A in T (N) of cardinality
rk(N) containing α and there exists a class β ∈ T (N), different from α , such
that every simplex A in T (N) of cardinality rk(N) containing α also contains
β .

(3) We have α ∈ T0(N) if and only if there are two simplices A and A′ in T (N) of
cardinality rk(N) such that A ∩A′ = {α}.

Proof Suppose that α is non-separating. It is easily seen that rk(N) = rk(Nα) + 1.
Take two disjoint simplices A1 and A′1 in T (Nα) of cardinality rk(Nα) and set A =

A1 ∪ {α} and A′ = A′1 ∪ {α}. Then |A| = |A′| = rk(N) and A ∩A′ = {α}.

Suppose that α is separating. Let N1 and N2 be the connected components of Nα .
It is easily seen that rk(N) = rk(N1) + rk(N2) + 2 if α ∈ T1(N) and rk(N) =

rk(N1) + rk(N2) + 1 otherwise.

Suppose that α ∈ T1(N). Let A be a simplex of T (N) containing α . Set A1 =

A ∩ T (N1) and A2 = A ∩ T (N2). We have A = A1 t A2 t {α}, hence

|A| = |A1|+ |A2|+ 1 ≤ rk(N1) + rk(N2) + 1 = rk(N)− 1 < rk(N) .

Suppose that α ∈ T2(N). Then one of the connected components of Nα , say N1 , is
a one-holed Klein bottle. By Lemma 2.10 (2), T (N1) contains a unique element, β .
Let A2 be a simplex of T (N2) of cardinality rk(N2). Set A = A2 ∪ {α, β}. Then
A contains α and |A| = rk(N). Let A be a simplex of T (N) of cardinality rk(N)
containing α . Set A1 = A∩T (N1) and A2 = A∩T (N2). Since A = A1tA2t{α}
and |A2| ≤ rk(N2) = rk(N) − 2, we have A1 6= ∅, hence A1 = {β}, and therefore
β ∈ A.

Suppose that α ∈ T0(N). It is easily seen that there exist two disjoint simplices
A1 and A′1 in T (N1) of cardinality rk(N1). Similarly, one can find two disjoint
simplices A2 and A′2 in T (N2) of cardinality rk(N2). Set A = A1 ∪ A2 ∪ {α} and
A′ = A′1 ∪A′2 ∪{α}. Then A and A′ are two simplices of T (N) of cardinality rk(N)
such that A ∩A′ = {α}.

For α ∈ T (N) we set R(α) = {f ∈ M(N) | there exists ` ∈ Z such that f ` ∈
〈tα〉 \ {1}}. Note that, by Lemma 2.4 and Lemma 2.5, we have S(f ) = {α} for
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all f ∈ R(α). We turn now to prove an algebraic characterization of the Dehn twists
along the elements of T0(N), up to roots and powers. This result and its proof are
independent from the characterizations given in Atalan [1, 2] and Atalan–Szepietowski
[3], and they are interesting by themselves.

Proposition 3.3 (1) Let f be an element of infinite order in M(N). If there exist
two abelian subgroups H and H′ inM(N) of rank rk(N) such that H∩H′ = 〈f 〉,
then there exists α ∈ T0(N) such that f ∈ R(α).

(2) Let G be a finite index subgroup of M(N), let α ∈ T0(N), and let k ∈ Z \ {0}
such that tk

α ∈ G . Then there exist two abelian subgroups H and H′ in G of
rank rk(N) such that H ∩ H′ = 〈tk

α〉.

Proof We take an element f ∈ M(N) of infinite order such that there exist two
abelian subgroups H and H′ of rank rk(N) satisfying H ∩ H′ = 〈f 〉. First we
prove that S(H)∩T (N) 6= ∅. Suppose that S(H)∩T (N) = ∅. This means that all the
elements of S(H) are one-sided. Let ΛS(H) :MS(H)(N)→M(NS(H)) be the reduction
homomorphism along S(H). Then NS(H) is connected and, by Proposition 2.1, ΛS(H)

is injective. On the other hand the set S(H) is an adequate reduction system for all
h ∈ H , hence ΛS(H)(h) is either periodic or pseudo-Anosov for all h ∈ H . By Lemma
2.11 it follows that rk(ΛS(H)(H)) = rk(H) ≤ 1. This contradicts the hypothesis ρ ≥ 5
which implies rk(N) ≥ 2.

Now we show that S(f ) ∩ T (N) 6= ∅. Suppose that S(f ) ∩ T (N) = ∅. Then all the
elements of S(f ) are one-sided, NS(f ) is connected, and the reduction homomorphism
ΛS(f ) :MS(f )(N)→M(NS(f )) is injective. Since S(f ) is an adequate reduction system
for f , the element ΛS(f )(f ) is either periodic or pseudo-Anosov. We know by the above
that S(H) ∩ T (N) is non-empty, hence we can choose a class α ∈ S(H) ∩ T (N). We
have α 6∈ S(f ), since it is two-sided, hence α lies in T (NS(f )) and it is a reduction
class for ΛS(f )(f ). So, ΛS(f )(f ) is periodic, hence f is of finite order: contradiction.

Now we show that there exists α ∈ T (N) such that f ∈ R(α). By the above, we can
choose a class α ∈ S(f ) ∩ T (N). By Proposition 2.7 there exists k ≥ 1 such that
ZS(H)[k] ⊂ H , hence tk

α ∈ H . Similarly there exists k′ ≥ 1 such that tk′
α ∈ H′ . So,

tkk′
α ∈ H ∩ H′ . Since H ∩ H′ = 〈f 〉, it follows that there exists ` ∈ Z \ {0} such that

f ` = tkk′
α .

Since α ∈ S(H), by Proposition 2.7 there exists a simplex A ⊂ T (N) of cardinality
rk(N) containing α . By Lemma 3.2 it follows that α 6∈ T1(N). Suppose that α ∈
T2(N). Then Nα has two connected components, one of which, N′ , is a one-holed



12 E Irmak and L Paris

Klein bottle. By Lemma 2.10, T (N′) is a singleton {β}. If β was not an element of
S(H), then N′ would be a connected component of NS(H) and this would contradict
Proposition 2.7 (3). Hence β ∈ S(H). Moreover, again by Proposition 2.7, there
exists p ≥ 1 such that tp

β ∈ H . Similarly, there exists p′ ≥ 1 such that tp′
β ∈ H′ . So,

tpp′
β ∈ H ∩ H′ . On the other hand, we know that there exist ` ≥ 1 and u ∈ Z \ {0}

such that f ` = tu
α ∈ H ∩ H′ . Then the elements tu

α, t
pp′
β generate a free abelian group

of rank 2 lying in H ∩ H′ ' Z: contradiction. So, α ∈ T0(N).

Now we consider a finite index subgroup G of M(N), a class α ∈ T0(N), and an
integer k ∈ Z \ {0} such that tk

α ∈ G . By Lemma 3.2 there exist two simplices
A = {α1, . . . , αr} and A′ = {α′1, . . . , α′r} in T (N) of cardinality r = rk(N) such that
A ∩ A′ = {α}. We assume that α = α1 = α′1 . Since G is of finite index in M(N),
there exists ` ≥ 1 such that t`αi

, t`α′
i
∈ G for all i ∈ {2, . . . , r}. Let H (resp. H′ ) be the

subgroup of G generated by tk
α, t

`
α2
, . . . , t`αr

(resp. tk
α, t

`
α′

2
, . . . , t`α′

r
). Then H and H′ are

free abelian subgroups of G of rank r = rk(N). It remains to show that H∩H′ = 〈tk
α〉.

Let g ∈ H ∩ H′ . Since g ∈ H , there exist u1, u2, . . . , ur ∈ Z such that g =

tku1
α t`u2

α2
· · · t`ur

αr
. Similarly, there exist v1, v2, . . . , vr ∈ Z such that g = tkv1

α t`v2
α′

2
· · · t`vr

α′
r

.
By Lemma 2.5 we have S(g) = {αi | ui 6= 0} = {α′i | vi 6= 0}. Since A∩A′ = {α},
we have ui = vi = 0 for all i ∈ {2, . . . , r}, hence g = tku1

α ∈ 〈tk
α〉.

Proposition 3.4 Let G be a finite index subgroup of M(N) and let ϕ : G → M(N)
be an injective homomorphism. Then there exits a super-injective simplicial map
λ : T0(N)→ T0(N) satisfying the following. Let α ∈ T0(N). There exist k, ` ∈ Z\{0}
such that tk

α ∈ G and ϕ(tk
α) = t`λ(α) .

Proof Let α ∈ T0(N). Choose u ∈ Z \ {0} such that tu
α ∈ G . By Proposition 3.3

there exist two abelian subgroups H,H′ of G of rank rk(N) such that H ∩ H′ = 〈tu
α〉.

The subgroups ϕ(H) and ϕ(H′) are abelian groups of rank rk(N) and ϕ(H)∩ϕ(H′) =

〈ϕ(tu
α)〉, hence, by Proposition 3.3, there exists β ∈ T0(N) such that ϕ(tu

α) ∈ R(β).
There exist v, ` ∈ Z \ {0} such that ϕ(tuv

α ) = ϕ(tu
α)v = t`β . Then we set k = uv and

λ(α) = β .

Let α, α′ ∈ T0(N) and let k, k′ ∈ Z \ {0}. By Stukow [18] we have that, if tk
α = tk′

α′ ,
then α = α′ , and we have tk

αtk′
α′ = tk′

α′ tk
α if and only if i(α, α′) = 0. We assume that

k, k′ are such that ϕ(tk
α) = t`λ(α) and ϕ(tk′

α′) = t`
′
λ(α′) for some `, `′ ∈ Z \ {0}. Then

i(λ(α), λ(α′)) = 0 ⇔ t`λ(α)t
`′
λ(α′) = t`

′
λ(α′)t

`
λ(α) ⇔ tk

αtk′
α′ = tk′

α′ tk
α ⇔ i(α, α′) = 0 .

So, λ is a super-injective simplicial map.
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3.2 Super-injective simplicial maps of T0(N)

In this subsection λ : T0(N) → T0(N) denotes a given super-injective simplicial map.
Most of the results proved here are proved in Irmak–Paris [13] for super-injective
simplicial maps of T (N). However, we use in Irmak–Paris [13] configurations of
circles containing elements of T2(N) or T1(N), and, on the other hand, here we use
results such as Lemma 3.7 that are false for super-injective simplicial maps of T (N).
So, it is not easy to deduce the results of this subsection from Irmak–Paris [13] without
losing the reader, hence we give independent proofs from Irmak–Paris [13] up to an
exception (Lemma 3.11).

The following lemma is easy to show and its proof is left to the reader. It will be often
used afterwards, hence it is important to keep it in mind.

Lemma 3.5 Let A be a simplex of T (N) of cardinality rk(N). If ρ is even, then all
the connected components of NA are homeomorphic to S0,3 . If ρ is odd, then one of
the connected components of NA is homeomorphic to N1,2 and the other components
are homeomorphic to S0,3 .

Lemma 3.6 The map λ : T0(N)→ T0(N) is injective.

Proof Let α, β be two distinct elements of T0(N). If i(α, β) 6= 0, then i(λ(α), λ(β)) 6=
0, hence λ(α) 6= λ(β). Suppose that i(α, β) = 0. It is easily shown that there exists
γ ∈ T0(N) such that i(α, γ) 6= 0 and i(β, γ) = 0. Then i(λ(α), λ(γ)) 6= 0 and
i(λ(β), λ(γ)) = 0, hence λ(α) 6= λ(β).

Lemma 3.7 Let A = {α1, . . . , αr} be a simplex of T0(N) of cardinality r = rk(N).
There exists β ∈ T0(N) such that i(α1, β) 6= 0 and i(αi, β) = 0 for all i ∈ {2, . . . , r}.

Proof We choose pairwise disjoint representatives ai ∈ αi , i ∈ {1, . . . , r}. We denote
by NA the natural compactification of N \ (∪r

i=1ai) and by πA : NA → N the gluing
map. We denote by a′1 and a′′1 the two components of π−1

A (a1), by P′ the connected
component of NA containing a′1 , and by P′′ the connected component containing a′′1 .

Suppose that P′ = P′′ . Set P = πA(P′) = πA(P′′). Then P is homeomorphic to
S1,1 or N2,1 and there exists i ∈ {2, . . . , r} such that ai = ∂P (say a2 = ∂P). Since
α2 ∈ T0(N), P cannot be homeomorphic to N2,1 , hence P is homeomorphic to S1,1 .
Let β ∈ T (N) be the class represented by the circle b drawn in Figure 3.1 (i). Then
β ∈ T0(N), i(α1, β) = 1, and i(αi, β) = 0 for all i ∈ {2, . . . , r}.
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a1

a2

b
a1 a1

x1

x2

x3

x4

b' b"
' "

(i) (ii)

Figure 3.1: Circles in N (Lemma 3.7)

Suppose that P′ 6= P′′ . By Lemma 3.5, either P′ and P′′ are both homeomorphic to
S0,3 , or one is homeomorphic to S0,3 and the other is homeomorphic to N1,2 . The
surfaces P′ and P′′ are drawn in Figure 3.1 (ii). In this figure each xi either is a
boundary component of NA , or bounds a Möbius band, and there is at most one xi

bounding a Möbius band. Consider the arcs b′ and b′′ drawn in Figure 3.1 (ii) and
set b = πA(b′ ∪ b′′) and β = [b]. Then i(α1, β) = 2 and i(αi, β) = 0 for all
i ∈ {2, . . . , r}. Moreover, we have β 6∈ T2(N), since there is at most one xi bounding
a Möbius band, and we have β 6∈ T1(N), since {β, α2, . . . , αr} is a simplex in T (N)
of cardinality r = rk(N) (see Lemma 3.2), hence β ∈ T0(N).

Let A = {α1, . . . , αr} be a simplex of T0(N). As before we denote by πA : NA → N
the gluing map. We say that α1 and α2 are adjacent with respect to A if there exists
a connected component P of NA and two boundary components a1 and a2 of P such
that α1 = [πA(a1)] and α2 = [πA(a2)].

Lemma 3.8 Let A = {α1, . . . , αr} be a simplex of T0(N) of cardinality r = rk(N).
If α1 and α2 are adjacent with respect to A then there exists β ∈ T0(N) such that
i(α1, β) 6= 0, i(α2, β) 6= 0, and i(αi, β) = 0 for all i ∈ {3, . . . , r}.

Proof We choose pairwise disjoint representatives ai ∈ αi , i ∈ {1, . . . , r}. We
denote by NA the natural compactification of N \ (∪r

i=1ai) and by πA : NA → N the
gluing map. We denote by a′i and a′′i the two components of π−1

A (ai) for all i. We can
assume that a′1 and a′2 are boundary components of the same connected component
P0 of NA . On the other hand, we denote by P1 (resp. P2 ) the connected component
of NA containing a′′1 (resp. a′′2 ).

Suppose first that P0 = P1 . Set P = πA(P0). Then P is homeomorphic to S1,1 or
N2,1 , and a2 is the boundary component of P. But α2 ∈ T0(N), hence P cannot be
homeomorphic to N2,1 , thus P is homeomorphic to S1,1 . There exists a subsurface
K of N homeomorphic to S1,2 endowed with the configuration of circles drawn in
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Figure 3.2 (i). Each boundary component of K either is isotopic to an element of
{a3, . . . , ar}, or is a boundary component of N , or bounds a Möbius band. Moreover,
we have K ∩ ai = ∅ for all i ∈ {3, . . . , r}. Let b be the circle drawn in Figure 3.2 (i)
and let β = [b]. Then β ∈ T0(N), i(α1, β) = 1, i(α2, β) = 2, and i(αi, β) = 0 for all
i ∈ {3, . . . , r}.

a1
a2

b
a1 a2b

a1

a2

(i) (ii) (iii)

b

a1 a2
b

c

(iv) (v)

Figure 3.2: Circles in N (Lemma 3.8)

Suppose that P1 = P2 and P = πA(P0 ∪ P1) is orientable. There exists a subsurface
K of N homeomorphic to S1,2 endowed with the configuration of circles drawn in
Figure 3.2 (ii). Each boundary component of K either is isotopic to an element of
{a3, . . . , ar}, or is a boundary component of N , or bounds a Möbius band. Moreover,
we have K ∩ ai = ∅ for all i ∈ {3, . . . , r}. Let b be the circle drawn in Figure 3.2 (ii)
and let β = [b]. Then β ∈ T0(N), i(α1, β) = i(α2, β) = 1, and i(αi, β) = 0 for all
i ∈ {3, . . . , r}.

Suppose that P1 = P2 and P = πA(P0 ∪ P1) is non-orientable. There exists a
subsurface K of N homeomorphic to N2,2 endowed with the configuration of circles
drawn in Figure 3.2 (iii). In this figure and in all the others a disk with a cross inside
represents a crosscap. This means that the disk containing the cross is removed and
any two antipodal points in the resulting new boundary component are identified. In
particular the circle represented by half of the boundary of the disk is one-sided. Each
boundary component of K either is isotopic to an element of {a3, . . . , ar}, or is a
boundary component of N , or bounds a Möbius band. Moreover, we have K ∩ ai = ∅
for all i ∈ {3, . . . , r}. Let b be the circle drawn in Figure 3.2 (iv) and let β = [b].
Then β ∈ T0(N), i(α1, β) = 2, i(α2, β) = 4, and i(αi, β) = 0 for all i ∈ {3, . . . , r}.

Suppose that P0 6= P1 6= P2 6= P0 . There exists a subsurface K of N homeomorphic to
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S0,5 endowed with the configuration of circles drawn in Figure 3.2 (v). Each boundary
component of K either is isotopic to an element of {a3, . . . , ar}, or is a boundary
component of N , or bounds a Möbius band. Moreover, by Lemma 3.5, at most one
of the boundary components of K bounds a Möbius band. We also have K ∩ ai = ∅
for all i ∈ {3, . . . , r}. Let b and c be the circles drawn in Figure 3.2 (v). Set β = [b]
and γ = [c]. We have i(α1, β) = i(α2, β) = 2 and i(αi, β) = 0 for all i ∈ {3, . . . , r}.
We have β 6∈ T1(N), since {β, γ, α3, . . . , αr} is a simplex of T (N) of cardinality
rk(N) containing β (see Lemma 3.2), and we have β 6∈ T2(N), otherwise at least two
boundary components of K would bound Möbius bands. So, β ∈ T0(N).

Lemma 3.9 Let A be a simplex of T0(N) of cardinality rk(N) and let α1, α2 ∈ A.
Then α1 is adjacent to α2 with respect to A if and only if λ(α1) is adjacent to λ(α2)
with respect to λ(A).

Proof Set A = {α1, α2, α3, . . . , αr}. Suppose that α1 is not adjacent to α2 with
respect to A. By Lemma 3.7 there exist β1, β2 ∈ T0(N) such that i(β1, α1) 6= 0,
i(β1, αi) = 0 for all i ∈ {2, 3, . . . , r}, i(β2, α2) 6= 0, and i(β2, αi) = 0 for all
i ∈ {1, 3, . . . , r}. Since α1 is not adjacent to α2 with respect to A we also have
i(β1, β2) = 0. Since λ is a super-injective simplicial map, we have i(λ(β1), λ(α1)) 6= 0,
i(λ(β1), λ(αi)) = 0 for all i ∈ {2, 3, . . . , r}, i(λ(β2), λ(α2)) 6= 0, i(λ(β2), λ(αi)) = 0
for all i ∈ {1, 3, . . . , r}, and i(λ(β1), λ(β2)) = 0. This is possible only if λ(α1) is not
adjacent to λ(α2) with respect to λ(A).

Suppose that α1 is adjacent to α2 with respect to A. By Lemma 3.8 there exists
β ∈ T0(N) such that i(β, α1) 6= 0, i(β, α2) 6= 0, and i(β, αi) = 0 for all i ∈
{3, . . . , r}. Since λ is a super-injective simplicial map, we have i(λ(β), λ(α1)) 6= 0,
i(λ(β), λ(α2)) 6= 0, and i(λ(β), λ(αi)) = 0 for all i ∈ {3, . . . , r}. This is possible only
if λ(α1) is adjacent to λ(α2) with respect to λ(A).

Let P = {α1, α2, α3} be a simplex of T0(N) of cardinality 3. We choose pairwise
disjoint representatives a1, a2, a3 of α1, α2, α3 , respectively. We say that P is a 3-
simpants if there exists a subsurface P of N homeomorphic to S0,3 whose boundary
components are a1, a2, a3 . Let P = {α1, α2} be a simplex of T0(N) of cardinality 2.
We choose disjoint representatives a1, a2 of α1, α2 , respectively. We say that P is a
2-simpants if there exists a subsurface P of N homeomorphic to S0,3 whose boundary
components are a1, a2 and a boundary component of N . We say that P is a simpskirt if
there exists a subsurface P of N homeomorphic to N1,2 whose boundary components
are a1, a2 . Let β ∈ T0(N). We say that β bounds a torus if Nβ has two connected
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components, one of which, N′ , is a one-holed torus. In this case the elements of T (N′)
are called interior classes of β .

Lemma 3.10 (1) If P is a 3-simpants and NP has two connected components,
then λ(P) is a 3-simpants.

(2) If α ∈ T0(N) is non-separating and Nα is non-orientable, then λ(α) is non-
separating.

(3) If β bounds a torus and α is an interior class of β , then λ(β) bounds a torus
and λ(α) is an interior class of λ(β).

Proof We take a subsurface K of N homeomorphic to S1,2 endowed with the config-
uration of circles drawn in Figure 3.3 (i). We assume that a3, a4 are essential circles
and [a3], [a4] ∈ T0(N). We set αi = [ai] for all i ∈ {1, 2, 3, 4} and β2 = [b2]. The
following claims are easy to prove.

Claim 1. Suppose that P = {γ1, γ2, γ3} is a 3-simpants and that NP has two connected
components. Then γ1, γ2, γ3 are non-separating and at most one of the surfaces Nγi is
orientable. Moreover, up to renumbering γ1, γ2, γ3 , we can choose K so that γi = αi

for all i ∈ {1, 2, 3}. In fact, the only constrain we have is that, if Nγi is orientable,
then γi = γ3 = α3 .

Claim 2. If α is a non-separating class such that Nα is non-orientable, then we can
choose K so that α = α1 .

Claim 3. If β bounds a torus and α is an interior class of β , then we can choose K so
that β = β2 and α = α1 .

a1

a2

a3 a4

b2

a1 b2

a3

a4
x1

x2 x3

' '

'

'

a1

a3 a4

b2

'

'

' '

a1

a2a3 a4

'

'
' '

(i) (ii) (iii) (iv)

Figure 3.3: Circles in N (Lemma 3.10)

We complete {α1, α2, α3, α4} in a simplex A = {α1, . . . , αr} of T0(N) of cardinality
r = rk(N). Let B = {α1, β2, α3, α4, . . . , αr}. Then B is also a simplex of T0(N) of
cardinality r = rk(N). We choose minimally intersecting representatives a′i ∈ λ(αi)
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for all i ∈ {1, . . . , r} and b′2 ∈ λ(β2). By Lemma 3.9 the elements of λ(B) that are
adjacent to λ(β2) with respect to λ(B) are exactly λ(α1), λ(α3), λ(α4), the class λ(α1)
is adjacent only to λ(β2) with respect to λ(B), and the class λ(α3) is adjacent to λ(α4)
with respect to λ(B). It follows that we have one of the following alternatives.

• There exists a subsurface K′ of N homeomorphic to S0,5 endowed with the
configuration of circles drawn in Figure 3.3 (ii), where each circle xi either is a
boundary component of N , or bounds a Möbius band.

• There exists a subsurface K′ of N homeomorphic to S1,2 endowed with the
configuration of circles drawn in Figure 3.3 (iii).

Since i(λ(α2), λ(αi)) = 0 for all i ∈ {1, 3, . . . , r} and i(λ(α2), λ(β2)) 6= 0, the circle
a′2 must lie in K′ . By Lemma 3.9, λ(α1) is adjacent to λ(α3) and λ(α4) with respect
to λ(A), hence a′1, a

′
3, a
′
4 are included in the same connected component of K′ \ a′2 .

Such a circle a′2 does not exist in the configuration of Figure 3.3 (ii), hence K′ is
homeomorphic to S1,2 and a′1, b

′
2, a
′
3, a
′
4 are as shown in Figure 3.3 (iii). This shows

Part (2) and Part (3) of the lemma. This also shows that, up to homeomorphism, K′ is
endowed with the configuration of circles drawn in Figure 3.3 (iv), which shows Part
(1).

The next lemma can be proved in the same way as Irmak–Paris [13, Lemma 2.7] (see
also Ivanov [15, Lemma 1]), so we do not give any poof.

Lemma 3.11 Let α1, α2 ∈ T0(N). If i(α1, α2) = 1, then i(λ(α1), λ(α2)) = 1.

Lemma 3.12 Suppose that ρ is even.

(1) Let P be a 2-simpants such that NP has two connected components and the
connected component of NP non-homeomorphic to S0,3 is non-orientable. Then
λ(P) is a 2-simpants.

(2) Let P be a simpskirt such that NP has two connected components. Then λ(P)
is a simpskirt.

Proof Let P = {α1, α2} be a 2-simpants such that NP has two connected components
and the connected component of NP non-homeomorphic to S0,3 is non-orientable. We
take a subsurface K of N homeomorphic to S1,3 endowed with the configuration of
circles drawn in Figure 3.4 (i). In this configuration a1, a2, a3, a4, a5 are essential
circles that represent elements of T0(N) and x is a boundary component of N . We can
and do choose the configuration so that α1 = [a1] and α2 = [a2]. We set αi = [ai]
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for i ∈ {3, 4, 5} and we complete {α1, . . . , α5} in a simplex A = {α1, . . . , αr} of
T0(N) of cardinality r = rk(N). We set βi = λ(αi) and we choose bi ∈ βi such that
b1, . . . , br are pairwise disjoint. We denote by Nλ(A) the natural compactification of
N \ (∪r

i=1bi) and by πλ(A) : Nλ(A) → N the gluing map. We denote by b′i and b′′i the
two components of π−1

λ(A)(bi). Recall that, by Lemma 3.5, each connected component
of Nλ(A) is a pair of pants. By Lemma 3.9, β3 is adjacent to β1, β2, β4, β5 with respect
to λ(A) and β1 is adjacent to β2 but not to β3 and β4 with respect to λ(A). It follows
that, up to replacing b′′i by b′i , there exists a connected component P1 of Nλ(A) whose
boundary components are b′1, b

′
2, b
′
3 and there exists another connected component

P2 of Nλ(A) whose boundary components are b′′3 , b
′
4, b
′
5 . Let P3 (resp. P4 ) be the

connected component of Nλ(A) containing b′′1 (resp. b′′2 ) in its boundary. By Lemma
3.10, β1 is non-separating and by Lemma 3.9 the elements of λ(A) adjacent to β1

with respect to λ(A) are precisely β2, β3 . This implies that P3 = P4 and the third
boundary component of P3 is sent to a boundary component of N under πλ(A) . So,
λ(P) is a 2-simpants.
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Figure 3.4: Circles in N (Lemma 3.12)

Now we take a simpskirt P such that NP has two connected components and we
show that λ(P) is a simpskirt. We assume that n ≥ 1. The case n = 0 can
be proved in the same way. Consider the configuration of circles in N drawn in
Figure 3.4 (ii). We can and do assume that P = {[a], [b1]}. We choose a′ ∈
λ([a]), a′1 ∈ λ([a1]), . . . , a′ρ−3 ∈ λ([aρ−3]), b′1 ∈ λ([b1]), . . . , b′ρ−3 ∈ λ([bρ−3]), c′1 ∈
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λ([c1]), . . . , c′ρ−3 ∈ λ([cρ−3]), d′1 ∈ λ([d1]), . . . , d′n−1 ∈ λ([dn−1]) that minimally
intersect. By Lemma 3.10, Lemma 3.11, and the above, there exists an orientable
subsurface M of N of genus ρ−2

2 endowed with the configuration of circles drawn
in Figure 3.4 (iii), where x1, . . . , xn are the boundary components of N . For topo-
logical reasons, the circle e′ bounds a one-holed Klein bottle K in N . This im-
plies that either y1 is isotopic to y2 , or y1, y2 both bound Möbius bands. By
Lemma 2.10 (2), T (K) is a singleton {ε′0}. Since i(λ([e0]), [z′]) = 0 for all z′ ∈
{a′1, . . . , a′ρ−3, b

′
1, . . . , b

′
ρ−3, c

′
1, . . . , c

′
ρ−3, d

′
1, . . . , d

′
n−1} and i(λ([e0]), [a′]) 6= 0, we

have λ([e0]) ∈ T (K), that is, λ([e0]) = ε′0 (we cannot have λ([e0]) = [e′] since
[e′] 6∈ T0(N)). If y1 was isotopic to y2 , then we would have [y1] = ε′0 , hence
0 = i([y1], [a′]) = i(λ([e0]), [a′]) 6= 0: contradiction. So, y1, y2 both bound Möbius
bands and therefore λ(P) = {[a′], [b′1]} is a simpskirt.

Lemma 3.13 Assume that ρ is odd.

(1) Let P be a 2-simpants such that NP has two connected components. Then λ(P)
is a 2-simpants.

(2) Let P be a simpskirt such that NP has two connected components. Then λ(P)
is a simpskirt.

Proof Let P = {α1, α2} be a simplex of T0(N) of cardinality 2. We suppose that
P is either a 2-simpants or a simpskirt, and that NP has two connected components.
We take a subsurface K of N homeomorphic to S1,3 endowed with the configuration
of circles drawn in Figure 3.5 (i). In this configuration a1, a2, a3, a4, a5 are essential
circles that represent elements of T0(N), the circle x is a boundary component of N
if P is a 2-simpants, and x bounds a Möbius band if P is a simpskirt. We can and
do choose the configuration so that α1 = [a1] and α2 = [a2]. We set αi = [ai]
for i ∈ {3, 4, 5} and we complete {α1, . . . , α5} in a simplex A = {α1, . . . , αr} of
T0(N) of cardinality r = rk(N). We set βi = λ(αi) and we choose bi ∈ βi such that
b1, . . . , br are pairwise disjoint. We denote by Nλ(A) the natural compactification of
N \ (∪r

i=1bi) and by πλ(A) : Nλ(A) → N the gluing map. We denote by b′i and b′′i the
two boundary components of Nλ(A) that are sent to bi under πλ(A) . By Lemma 3.9,
β3 is adjacent to β1, β2, β4, β5 with respect to λ(A) and β1 is adjacent to β2 but not
to β3 and β4 with respect to λ(A). It follows that, up to replacing b′′i by b′i , there
exists a connected component P1 (resp. P2 ) of Nλ(A) which is a pair of pants and
whose boundary components are b′1, b

′
2, b
′
3 (resp. b′′3 , b

′
4, b
′
5 ). Let P3 (resp. P4 ) be the

connected component of Nλ(A) containing b′′1 (resp. b′′2 ) in its boundary. By Lemma
3.10, β1 is non-separating and by Lemma 3.9 the only elements of λ(A) adjacent to
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β1 with respect to λ(A) are β2, β3 . This implies that P3 = P4 and either P3 is a pair
of pants and its third boundary component is sent to a boundary component of N under
πλ(A) , or P3 is homeomorphic to N1,2 . We conclude that either λ(P) is a 2-simpants,
or λ(P) is a simpskirt.
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x
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Figure 3.5: Circles in N (Lemma 3.13)

Suppose that P is a simpskirt and that the connected component of NP non-homeomor-
phic to N1,2 is non-orientable. Let K be a subsurface of N homeomorphic to N2,2

endowed with the configuration of circles drawn in Figure 3.5 (ii). We suppose that
the complement of K in N is connected. In particular, a1, a2, a3, b1, b2 are non-
separating, hence they represent elements of T0(N). We can and do choose K such that
α1 = [a1] and α2 = [a2]. We set α3 = [a3], β1 = [b1], and β2 = [b2]. We choose
minimally intersecting representatives a′i ∈ λ(αi) for i ∈ {1, 2, 3} and b′j ∈ λ(βj)
for j ∈ {1, 2}. By Lemma 3.10, {λ(α1), λ(β1), λ(β2)} and {λ(α3), λ(β1), λ(β2)} are
3-simpants. It follows that there exists a subsurface K′1 of N homeomorphic to S1,2 or
N2,2 , whose boundary components are a′1 and a′3 , and which contains b′1 and b′2 in its
interior. On the other hand, by the above, each of {λ(α1), λ(α2)} and {λ(α2), λ(α3)}
is either a 2-simpants or a simpskirt. It follows that there exists a subsurface K′2 of N
homeomorphic either to S0,4 , or to N1,3 , or to N2,2 , whose boundary components are
a′1 , a′3 and possibly boundary components of N , and which contains a′2 in its interior.
Since i(λ(α2), λ(β2)) 6= 0, we have a′2 ∩ b′2 6= ∅, hence K′1 = K′2 . We conclude that
K′1 = K′2 is homeomorphic to N2,2 and λ(P) = {λ(α1), λ(α2)} is a simpskirt.

Suppose that P = {α1, α2} is a simpskirt and the connected component of NP non-
homeomorphic to N1,2 is orientable. Let K be a subsurface of N homeomorphic to
N3,2 endowed with the configuration of circles drawn in Figure 3.5 (iii). We assume
that the complement of K in N is connected. In particular, a1, a2, a4, a5, b1, b2 are
non-separating, and therefore they represent elements of T0(N). We choose K so
that N[a3] has two connected components, a non-orientable one of genus 3 and an
orientable one. In particular, we also have [a3] ∈ T0(N). We can and do choose K
such that α1 = [a1] and α2 = [a2]. We set αi = [ai] for i ∈ {3, 4, 5}, βj = [bj]
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for j ∈ {1, 2}, and we complete {α1, . . . , α5} in a simplex A = {α1, . . . , αr} of
T0(N) of cardinality r = rk(N). We choose minimally intersecting representatives
a′i ∈ λ(αi) for i ∈ {1, . . . , r} and b′j ∈ λ(βj) for j ∈ {1, 2}. By the above,
{λ(α4), λ(β1)}, {λ(β1), λ(β2)}, and {λ(β2), λ(α5)} are simpskirts. It follows that
there exists a subsurface K′1 of N homeomorphic to N3,2 whose boundary components
are a′4, a

′
5 and which contains b′1, b

′
2 in its interior. By Lemma 3.9, λ(α3) is adjacent

to λ(α1), λ(α2), λ(α4), λ(α5) with respect to λ(A), hence there exists a subsurface
R′ of N homeomorphic to S0,4 whose boundary components are a′1, a

′
2, a
′
4, a
′
5 and

which contains a′3 in its interior. Recall that we know that {λ(α1), λ(α2)} is either a
2-simpants or a simpskirt. If {λ(α1), λ(α2)} was a 2-simpants, then there would exist a
subsurface K′2 of N homeomorhic to S1,3 or N2,3 , containing R′ , and whose boundary
components are a′4, a

′
5 and a boundary component of N . Since i(α3, β1) 6= 0, we

would have a′3 ∩ b′1 6= ∅, hence K′1 = K′2 : contradiction. So, {λ(α1), λ(α2)} is a
simpskirt.

Suppose now that P = {α1, α2} is a 2-simpants. We know that λ(P) is a simpskirt or
a 2-simpants. We complete P = {α1, α2} in a simplex A = {α1, . . . , αr} of T0(N) of
cardinality r = rk(N). We can and do choose A so that P ′ = {α2, α3} is a simpskirt
and NP ′ has two connected components. By Lemma 3.5 there is at most one pair
{λ(αi), λ(αj)} in λ(A) which is a simpskirt. By the above the pair {λ(α2), λ(α3)} is
a simpskirt, hence {λ(α1), λ(α2)} is a 2-simpants.

3.3 Proof of Theorem 3.1

In this subsection G denotes a finite index subgroup of M(N) and ϕ : G → M(N)
an injective homomorphism. Let µ : T0(N)→ T0(N) be the super-injective simplicial
map induced by ϕ (see Proposition 3.4).

The following lemma is well-known for orientable surfaces (see Castel [7, Proposition
2.1.3] for example). It can be proved for non-orientable surfaces in the same way as
for orientable surfaces.

Lemma 3.14 Let {x1, . . . , x`}, {y1, . . . , y`} be two collections of essential circles
such that:

(a) x1, . . . , x` (resp. y1, . . . , y` ) are pairwise non-isotopic and they minimally in-
tersect;

(b) xi is isotopic to yi for all i ∈ {1, . . . , `};
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(c) there exist no three indices i, j, k ∈ {1, . . . , `} such that i([xi], [xj]) 6= 0,
i([xj], [xk]) 6= 0, and i([xk], [xi]) 6= 0.

Then there exists a homeomorphism H : N → N isotopic to the identity such that
H(xi) = yi for all i ∈ {1, . . . , `}.

Lemma 3.15 Let γ ∈ T1(N). Suppose that one of the connected components of Nγ
is (non-orientable) of genus 1. Then there exist γ′ ∈ T1(N) and z, z′ ∈ Z \ {0} such
that tz

γ ∈ G and ϕ(tz
γ) = tz′

γ′ .

Proof Consider the configuration of circles in N drawn in Figure 3.6. We set αi = [ai]
for i ∈ {1, . . . , ρ − 2}, β = [b], γj = [cj] for j ∈ {1, . . . , n}, δj = [dj] for
j ∈ {1, . . . , n}, and εj = [ej] for j ∈ {2, . . . , n}. We can and do choose this con-
figuration so that γ = γj for some j ∈ {1, . . . , n}. By the results of Subsection
3.2, there exists a homeomorphism H : N → N such that [H(u)] = µ([u]) for all
u ∈ {a1, . . . , aρ−2, b, d1, . . . , dn}. We show by induction on j that [H(ej)] = µ(εj)
for all j ∈ {2, . . . , n}. The class µ(ε2) is the unique element of T0(N) that satis-
fies i(µ(ε2), η) = 0 for all η ∈ {µ(α1), . . . , µ(αρ−2), µ(β), µ(δ1), µ(δ3), . . . , µ(δn)}.
Since [H(e2)] also satisfies this property, we have µ(ε2) = [H(e2)]. We assume
that 3 ≤ j ≤ n and µ(εk) = [H(ek)] for all k ∈ {2, . . . , j − 1}. The class µ(εj)
is the unique element of T0(N) that satisfies i(µ(εj), η) = 0 and µ(εj) 6= η for all
η ∈ {µ(α1), . . . , µ(αρ−2), µ(β), µ(δ1), µ(δj+1), . . . , µ(δn), µ(ε2), . . . , µ(εj−1)}. Since
[H(ej)] also satisfies this property, we have [H(ej)] = µ(εj).
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Figure 3.6: Circles in N (Lemma 3.15)

We set γ′j = [H(cj)] and we show by induction on j that there exist zj, z′j ∈ Z \ {0}

such that tzj
γj ∈ G and ϕ(tzj

γj) = t
z′j
γ′j

. Here and in the other proofs we use the well-
known fact (which is a consequence of Lemma 2.4 and Lemma 2.5) that, if an element
f ∈ M(N) commutes with a non-trivial power of a Dehn twist tα , then f (α) = α .
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Suppose that j = 1. Let u ∈ Z \ {0} such that tu
γ1
∈ G . Set f = ϕ(tu

γ1
). The element

tu
γ1

commutes with every power of tη for all η ∈ C = {α1, . . . , αρ−2, β, δ2, . . . , δn}.
By Proposition 3.4 it follows that f commutes with a non-trivial power of tη′ for
all η′ ∈ µ(C), hence f (η′) = η′ for all η′ ∈ µ(C). In particular each element
of µ(C) is a reduction class for f . None of them is an essential reduction class
since i(µ(αi), µ(β)) 6= 0 for all i ∈ {1, . . . , ρ − 2} and i(µ(β), µ(δj)) 6= 0 for all
j ∈ {2, . . . , n}. By Lemma 3.14, f admits a representative F : N → N such that
F(H(a1)) = H(a1), F(H(b)) = H(b), and F(H(d2)) = H(d2). Take a closed regular
neighborhood U of H(a1)∪H(b)∪H(d2) such that H(c1) is a boundary component of
U . Observe that there is a unique connected component K of N \ U homeomorphic
to N1,2 . We have ∂K ∩ ∂U = H(c1), hence F(H(c1)) is isotopic to H(c1), that is,
f (γ′1) = γ′1 . Let A = {µ(α1), . . . , µ(αρ−2), µ(δ2), . . . , µ(δn), γ′1}. Note that A is
a simplex of T (N) and f (η′) = η′ for all η′ ∈ A. Let ΛA : MA(N) → M(NA)
be the reduction homomorphism along A. Each connected component of NA is
homeomorphic to S0,3 or N1,2 hence, by Lemma 2.10 (1), M(NA) is finite. It follows
that there exists v ∈ Z \ {0} such that f v ∈ ZA = Ker ΛA . By the above the only
element of A which can be an essential reduction class for f v is γ′1 , hence, by Lemma
2.5, f v is a power of tγ′1 . We set z1 = uv. Then there exists z′1 ∈ Z \ {0} such that

ϕ(tz1
γ1

) = tz′1
γ′1

.

We assume that j ≥ 2 plus the inductive hypothesis. Let u ∈ Z \ {0} such that
tu
γj
∈ G . Set f = ϕ(tu

γj
). The element tu

γj
commutes with every power of tη for all η ∈

{α1, . . . , αρ−2, β, δj+1, . . . , δn, ε2, . . . , εj, γ1, . . . , γj−1}. By Proposition 3.4 and the in-
ductive hypothesis it follows that f commutes with a non-trivial power of tη′ for all η′ ∈
C′ = {µ(α1), . . . , µ(αρ−2), µ(β), µ(δj+1), . . . , µ(δn), µ(ε2), . . . , µ(εj), γ′1, . . . , γ

′
j−1},

hence f (η′) = η′ for all η′ ∈ C′ . In particular, each element of C′ is a reduction class
for f . None of them is an essential reduction class since i(µ(αi), µ(β)) 6= 0 for all
i ∈ {1, . . . , ρ−2}, i(µ(β), µ(δk)) 6= 0 for all k ∈ {j+1, . . . , n}, and i(µ(εk), γ′k−1) 6= 0
for all k ∈ {2, . . . , j}. By Lemma 3.14, f admits a representative F : N → N such that
F(H(a1)) = H(a1), F(H(b)) = H(b), and F(H(dj+1)) = H(dj+1). Take a closed regu-
lar neighborhood U of H(a1)∪H(b)∪H(dj+1) such that H(cj) is a boundary component
of U . Observe that there is a unique connected component K of N \ U homeomorphic
to N1,j+1 . We have ∂K ∩ ∂U = H(cj), hence F(H(cj)) is isotopic to H(cj), that is,
f (γ′j ) = γ′j . Let A = {µ(α1), . . . , µ(αρ−2), µ(δj+1), . . . , µ(δn), γ′1, . . . , γ

′
j−1, γ

′
j}. Note

that A is a simplex of T (N) and f (η′) = η′ for all η′ ∈ A. Let ΛA : MA(N) →
M(NA) be the reduction homomorphism along A. Every connected component of
NA is homeomorphic to S0,3 or N1,2 hence, by Lemma 2.10 (1), M(NA) is finite. It
follows that there exists v ∈ Z \ {0} such that f v ∈ ZA = Ker ΛA . By the above the
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only element of A which can be an essential reduction class for f v is γ′j , hence, by
Lemma 2.5, f v is a power of tγ′j . We set zj = uv. Then there exists z′j ∈ Z \ {0} such

that ϕ(tzj
γj) = t

z′j
γ′j

.

Lemma 3.16 Let γ ∈ T1(N). Assume that both connected components of Nγ are
(non-orientable) of genus ≥ 3. Then there exist γ′ ∈ T1(N) and z, z′ ∈ Z \ {0} such
that tz

γ ∈ G and ϕ(tz
γ) = tz′

γ′ .

Proof Consider the configuration of circles in N drawn in Figure 3.7. We can and do
choose this configuration so that γ = [c]. We set αi = [ai] for i ∈ {1, . . . , ρ − 2},
βi = [bi] for i ∈ {1, 2, 3}, and δj = [dj] for j ∈ {1, . . . , n}. By the results of
Subsection 3.2 there exists a homeomorphism H : N → N such that [H(u)] = µ([u])
for all u ∈ {a1, . . . , aρ−2, b1, b2, b3, d1, . . . , dn}. We set γ′ = [H(c)] and we turn
to show that there exist z, z′ ∈ Z \ {0} such that tz

γ ∈ G and ϕ(tz
γ) = tz′

γ′ . Let
u ∈ Z \ {0} such that tu

γ ∈ G . Set f = ϕ(tu
γ). The element tu

γ commutes with every
power of tη for all η ∈ C = {α1, . . . , αρ−2, β1, β3, δ1, . . . , δn}. By Proposition 3.4
it follows that f commutes with a non-trivial power of tη′ for all η′ ∈ µ(C), hence
f (η′) = η′ for all η′ ∈ µ(C). In particular each element of µ(C) is a reduction class
for f . None of them is an essential reduction class since i(µ(αi), µ(β1)) 6= 0 for all
i ∈ {1, . . . , p}, i(µ(αi), µ(β3)) 6= 0 for all i ∈ {p + 1, . . . , ρ− 2}, i(µ(δj), µ(β1)) 6= 0
for all j ∈ {1, . . . , q}, and i(µ(δj), µ(β3)) 6= 0 for all j ∈ {q + 1, . . . , n}. By Lemma
3.14, f admits a representative F : N → N such that F(H(ai)) = H(ai) for all
i ∈ {1, . . . , p}, F(H(b1)) = H(b1), and F(H(dj)) = H(dj) for all j ∈ {1, . . . , q}.
Take a closed regular neighborhood U of H(a1) ∪ · · · ∪ H(ap) ∪ H(b1) ∪ H(d1) ∪
· · · ∪ H(dq) such that H(c) is a boundary component of U . Observe that there is a
unique connected component K of N \ U non-orientable of genus ≥ 3. We have
∂K ∩ ∂U = H(c), hence F(H(c)) is isotopic to H(c), that is, f (γ′) = γ′ . Let
A = {µ(α1), . . . , µ(αρ−2), µ(δ1), . . . , µ(δn), γ′}. Note that A is a simplex of T (N)
and f (η′) = η′ for all η′ ∈ A. Let ΛA : MA(N) → M(NA) be the reduction
homomorphism along A. Every connected component of NA is homeomorphic to
S0,3 or N1,2 hence, by Lemma 2.10 (1), M(NA) is finite. It follows that there exists
v ∈ Z \ {0} such that f v ∈ ZA = Ker ΛA . By the above the only element of A which
can be an essential reduction class for f v is γ′ , hence, by Lemma 2.5, f v is a power of
tγ′ . We set z = uv. Then there exists z′ ∈ Z \ {0} such that ϕ(tz

γ) = tz′
γ′ .

Lemma 3.17 Let γ ∈ T2(N) and let γ0 be the interior class of γ . Then there exist
γ′ ∈ T2(N), z, z′ ∈ Z \ {0} and z′0 ∈ Z such that µ(γ0) is the interior class of γ′ ,

tz
γ ∈ G , and ϕ(tz

γ) = tz′
γ′ t

z′0
µ(γ0) .
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Figure 3.7: Circles in N (Lemma 3.16)

Proof We suppose that the connected component of Nγ non-homeomorphic to N2,1

is non-orientable. The case where this connected component is orientable can be
proved in a similar way. We consider the configuration of circles in N drawn in
Figure 3.8. We can and do choose this configuration so that γ = [c]. We set
αi = [ai] for i ∈ {1, . . . , ρ − 1}, β = [b], γ0 = [c0], and δj = [dj] for j ∈
{1, . . . , n − 1}. By the results of Subsection 3.2, there exists a homeomorphism
H : N → N such that [H(u)] = µ([u]) for all u ∈ {a1, . . . , aρ−1, b, d1, . . . , dn−1}.
We set γ′ = [H(c)]. Note that γ′ ∈ T2(N) and γ′0 = [H(c0)] is the interior class of
γ′ . It is easily seen that γ′0 is the unique element of T0(N) that satisfies i(γ′0, η) = 0
for all η ∈ {µ(α1), µ(α3), . . . , µ(αρ−1), µ(β), µ(δ1), . . . , µ(δn−1)}. Since µ(γ0) also
satisfies this property, we have µ(γ0) = γ′0 . Let u ∈ Z \ {0} such that tu

γ ∈ G . We
set f = ϕ(tu

γ). The element tu
γ commutes with every power of tη for all η ∈ C =

{α1, α3, . . . , αρ−1, β, δ1, . . . , δn−1}. By Proposition 3.4 it follows that f commutes
with a non-trivial power of tη′ for all η′ ∈ µ(C), hence f (η′) = η′ for all η′ ∈ µ(C).
In particular every element of µ(C) is a reduction class for f . None of them is
an essential reduction class since i(µ(αi), µ(β)) 6= 0 for all i ∈ {1, 3, . . . , ρ − 1}
and i(µ(δj), µ(β)) 6= 0 for all j ∈ {1, . . . , n − 1}. We have f (γ′0) = γ′0 for the
same reason (but we do not know if γ′0 is an essential reduction class for f ). By
Lemma 3.14, f admits a representative F : N → N such that F(H(ai)) = H(ai) for all
i ∈ {1, 3, . . . , ρ−1}, F(H(b)) = H(b), and F(H(dj)) = H(dj) for all j ∈ {1, . . . , n−1}.
Take a closed regular neighborhood U of H(a1) ∪ H(a3) ∪ · · · ∪ H(aρ−1) ∪ H(b) ∪
H(d1) ∪ · · · ∪ H(dn−1) such that H(c) is a boundary component of U . Observe that
there is a unique connected component K of N \ U homeomorphic to N2,1 , and the
boundary component of K is H(c). So, F(H(c)) is isotopic to H(c), that is, f (γ′) = γ′ .
Let A = {µ(α1), µ(α3), . . . , µ(αρ−1), µ(δ1), . . . , µ(δn−1), γ′0, γ

′}. Note that A is a
simplex of T (N) and f (η′) = η′ for all η′ ∈ A. Let ΛA : MA(N) → M(NA)
be the reduction homomorphism along A. All the connected components of NA are
homeomorphic to S0,3 or N1,2 hence, by Lemma 2.10 (1), M(NA) is finite. It follows
that there exists v ∈ Z \ {0} such that f v ∈ ZA = Ker ΛA . By the above the only
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elements of A that can be essential reduction classes for f v are γ′ and γ′0 , hence, by
Lemma 2.5, f v ∈ 〈tγ′ , tγ′0〉. We set z = uv. Then there exist z′, z′0 ∈ Z such that

ϕ(tz
γ) = tz′

γ′ t
z′0
γ′0

.

a1

a2 a3 a4 aρ-2

aρ-1

d1 d2 dn-1

b

c c0

Figure 3.8: Circles in N (Lemma 3.17)

It remains to show that z′ 6= 0. Suppose that z′ = 0. Then z′0 6= 0 since tz
γ 6= 1. By

Proposition 3.4 there exist y, y′ ∈ Z\{0} such that ty
γ0 ∈ G and ϕ(ty

γ0) = ty′

γ′0
. We have

ϕ(tzy′
γ ) = tz′0y′

γ′0
= ϕ(tz′0y

γ0 ), hence tzy′
γ = tz′0y

γ0 , and therefore γ = γ0 : contradiction. So,
z′ 6= 0.

Proof of Theorem 3.1 Let α ∈ T (N). If α ∈ T0(N), then we set λ(α) = µ(α).
Suppose that α ∈ T1(N). By Lemma 3.15 and Lemma 3.16 there exist α′ ∈ T1(N)
and x, x′ ∈ Z \ {0} such that tx

α ∈ G and ϕ(tx
α) = tx′

α′ . We choose such a α′ and we set
λ(α) = α′ . Suppose that α ∈ T2(N). Let α0 be the interior class of α . By Lemma
3.17 there exist α′ ∈ T2(N), x, x′ ∈ Z\{0}, and y′ ∈ Z, such that tx

α ∈ G , µ(α0) is the
interior class of α′ , and ϕ(tx

α) = tx′
α′ t

y′
µ(α0) . We choose such a α′ and we set λ(α) = α′ .

We need to prove that λ : T (N) → T (N) is a super-injective simplicial map. To do
that we take two distinct classes α, β ∈ T (N) and we show that i(α, β) = 0 if and
only if i(λ(α), λ(β)) = 0. It is easily shown using the same arguments as in the proof
of Proposition 3.4 that this is true if α, β ∈ T0(N) ∪ T1(N). To prove the other cases
we will use the following claims.

Claim 1. Let γ ∈ T2(N), let γ0 be the interior class of γ , and let δ ∈ T (N). If
i(δ, γ) = 0, then i(δ, γ0) = 0.

Proof of Claim 1. Suppose that i(δ, γ) = 0 and i(δ, γ0) 6= 0. Let N1 be the connected
component of Nγ homeomorphic to N2,1 . Since i(δ, γ) = 0 and i(δ, γ0) 6= 0, we should
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have δ ∈ T (N1) = {γ0}, hence δ = γ0 , and therefore i(δ, γ0) = 0: contradiction.
This proves Claim 1.

Claim 2. Let γ ∈ T2(N) and let γ0 be the interior class of γ . There exist z, z′ ∈ Z\{0}
and q ∈ Z such that tz

γ tq
γ0 ∈ G and ϕ(tz

γ tq
γ0) = tz′

λ(γ) .

Proof of Claim 2. Let x, x′ ∈ Z \ {0} and p′ ∈ Z such that ϕ(tx
γ) = tx′

λ(γ)t
p′
λ(γ0) .

Let y, y′ ∈ Z \ {0} such that ty
γ0 ∈ G and ϕ(ty

γ0) = ty′
λ(γ0) . Then txy′

γ t−p′y
γ0 ∈ G and

ϕ(txy′
γ t−p′y

γ0 ) = tx′y′
λ(γ) . This proves Claim 2.

Suppose that α ∈ T0(N)∪T1(N) and β ∈ T2(N). Let β0 be the interior class of β . We
choose x, x′, y, y′, z, z′ ∈ Z\{0} and p′, q ∈ Z such that tx

α, t
y
β, t

z
βtq
β0
∈ G , ϕ(tx

α) = tx′
λ(α) ,

ϕ(ty
β) = ty′

λ(β)t
p′
λ(β0) , and ϕ(tz

βtq
β0

) = tz′
λ(β) . Suppose that i(λ(α), λ(β)) = 0. By Claim

1 we have i(λ(α), λ(β0)) = 0. Then ϕ(tx
α) = tx′

λ(α) and ϕ(ty
β) = ty′

λ(β)t
p′
λ(β0) commute,

hence tx
α and ty

β commute, and therefore i(α, β) = 0. Suppose that i(α, β) = 0. By
Claim 1 we have i(α, β0) = 0. Then tx

α and tz
βtq
β0

commute, hence ϕ(tx
α) = tx′

λ(α) and

ϕ(tz
βtq
β0

) = tz′
λ(β) commute, and therefore i(λ(α), λ(β)) = 0.

Suppose that α, β ∈ T2(N). Let α0 be the interior class of α and let β0 be the
interior class of β . Let x, x′, y, y′, z, z′, u, u′ ∈ Z \ {0} and p′, q, r′, s ∈ Z such that
tx
α, t

y
αtq
α0 , t

z
β, t

u
βts
β0
∈ G , ϕ(tx

α) = tx′
λ(α)t

p′
λ(α0) , ϕ(ty

αtq
α0) = ty′

λ(α) , ϕ(tz
β) = tz′

λ(β)t
r′
λ(β0) ,

and ϕ(tu
βts
β0

) = tu′
λ(β) . Suppose that i(λ(α), λ(β)) = 0. By Claim 1 we have

i(λ(α0), λ(β)) = i(λ(α), λ(β0)) = 0, hence, again by Claim 1, i(λ(α0), λ(β0)) = 0.
Then ϕ(tx

α) = tx′
λ(α)t

p′
λ(α0) and ϕ(tz

β) = tz′
λ(β)t

r′
λ(β0) commute, hence tx

α and tz
β com-

mute, and therefore i(α, β) = 0. Suppose that i(α, β) = 0. By Claim 1 we have
i(α0, β) = i(α, β0) = 0, hence, again by Claim 1, i(α0, β0) = 0. Then ty

αtq
α0 and

tu
βts
β0

commute, hence ty′
λ(α) = ϕ(ty

αtq
α0) and tu′

λ(β) = ϕ(tu
βts
β0

) commute, and therefore
i(λ(α), λ(β)) = 0.

4 Proofs of Theorem 1.1 and Corollary 1.3

Proof of Theorem 1.1 Let G be a finite index subgroup of M(N) and let ϕ : G →
M(N) be an injective homomorphism. We denote by λ : T (N) → T (N) the super-
injective simplicial map induced by ϕ (see Theorem 3.1). We know by Irmak–Paris [13,
Theorem 1.1] that there exists f0 ∈ M(N) such that λ(α) = f0(α) for all α ∈ T (N).
We turn to show that ϕ(g) = f0gf−1

0 for all g ∈ G .

We say that a collection C ⊂ T (N) has trivial stabilizer if the only element f in
M(N) that satisfies f (α) = α for all α ∈ C is f = id. It is shown in Irmak–Paris [13,
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Lemma 3.6, Lemma 3.7] that there exists a finite collection C ⊂ T0(N) which has trivial
stabilizer. Take such a collection C . Let g ∈ G . Let α ∈ C . Since α, g(α) ∈ T0(N),
by Theorem 3.1, there exist x, x′, y, y′ ∈ Z \ {0} such that tx

α, t
y
g(α) ∈ G , ϕ(tx

α) = tx′
λ(α) ,

and ϕ(ty
g(α)) = ty′

λ(g(α)) . We have

tx′y
(ϕ(g)f0)(α) = ϕ(g)tx′y

f0(α)ϕ(g)−1 = ϕ(g)tx′y
λ(α)ϕ(g)−1 = ϕ(g)ϕ(txy

α )ϕ(g)−1

= ϕ(gtxy
α g−1) = ϕ(txy

g(α)) = txy′
λ(g(α)) = txy′

(f0g)(α) .

So, (ϕ(g)f0)(α) = (f0g)(α), that is, (g−1f−1
0 ϕ(g)f0)(α) = α . Since C has trivial

stabilizer, it follows that g−1f−1
0 ϕ(g)f0 = id, hence ϕ(g) = f0gf−1

0 .

Proof of Corollary 1.3 For f ∈ M(N) we denote by cf : M(N) → M(N), g 7→
fgf−1 , the conjugation by f . We have an obvious homomorphism Ψ : M(N) →
Com(M(N)) which sends f to the class of (M(N),M(N), cf ). Theorem 1.1 clearly
implies that Ψ is surjective, and the following lemma implies that Ψ is injective.

Lemma 4.1 Let G be a finite index subgroup of M(N). Then the centralizer of G in
M(N) is trivial.

Proof As in the proof of Theorem 1.1, we may choose a finite collection C ⊂ T0(N)
having trivial stabilizer. Let g be an element in the centralizer of G . Let α ∈ C . Take
x ∈ Z \ {0} such that tx

α ∈ G . Then tx
α = gtx

αg−1 = tx
g(α) , hence g(α) = α . Since C

has trivial stabilizer, we conclude that g = id.
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