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In this paper we study three domination-like problems, namely identifying codes, locating-dominating codes, and
locating-total-dominating codes. We are interested in finding the minimum cardinality of such codes in circular and
infinite grid graphs of given height. We provide an alternate proof for already known results, as well as new results.
These were obtained by a computer search based on a generic framework, that we developed earlier, for the search of
a minimum labeling satisfying a pseudo-d-local property in rotagraphs.
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1 Framework
The aim of this paper is to determine particular subsets of vertices of minimum density in grid graphs
of fixed height. All these subsets are dominating sets with special properties that are related to several
applications such as fault diagnosis in array of processors [23] or safeguard analysis of a facility using
sensor networks [29]. We show here that the corresponding problems have the properties that are required
by the method described in [6] and we provide new results for grids of small heights (at most 4).

This section contains all basic definitions and a brief bibliographic review of the subject.
The next section is dedicated to the description of the adaptation of the theoretical framework of [6] to

the case of the search of the minimum cardinality of an ID-code in circular strips of given height.
Then, in Section 3, we will explain why the method works in constant time. We will also describe how

one can find the minimum cardinality of ID-codes in non-circular strips as well as the minimum densities
of ID-codes in infinite strips.

In Section 4 we provide details related to the implementation of the algorithms. There, the reader will
find information such as technical tricks, memory used in the RAM, or running times.

Our results concerning the minimum cardinality or density of ID-, LD-, and LTD-codes in finite
circular and in infinite strips of the square, triangular, and king grids, are displayed in Section 5.
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1.1 Graphs and codes
A graph G is a couple (V,E) in which V is a set of vertices and E is a set of 2-elements subsets of V
called edges. Two vertices that are joined by an edge in G are said to be neighbors. For a vertex v ∈ V ,
the set of neighbors of v in G is denoted by NG(v), and the closed neighborhood NG(v) ∪ {v} of v is
denoted by NG[v] (the subscript G may be omitted when there is no ambiguity).

A code of a graph G is simply a subset of vertices of G.
Given a code C of a graph G, we say that a vertex v is dominated by C if NG[v] ∩ C 6= ∅, and it

is totally dominated by C if NG(v) ∩ C 6= ∅. Two distinct vertices u and v are said separated by C if
NG[u] ∩ C 6= NG[v] ∩ C.

A code C of a graph G is : dominating, or a D-code, if every vertex of G is dominated by C ; total-
dominating, or a TD-code, if every vertex of G is totally dominated by C ; locating-dominating, or an
LD-code, if it is a D-code and every two distinct vertices u and v not in C are separated by C ; locating-
total-dominating, or an LTD-code, if it is a TD-code and an LD-code ; identifying, or an ID-code, if it
is a D-code and every two distinct vertices u and v of G are separated by C.

From previous definitions it is immediate to see that given a graph G and a code C of G, the following
holds:

- C is an ID-code of G⇒ C is a LD-code of G,

- C is an LTD-code of G⇒ C is an LD-code and a TD-code of G,

- C is an LD-code or a TD-code of G⇒ C is a D-code of G,

For the notions of D, TD, LD and LTD-codes, see [15, 18]. For the notion of ID-code, see [23].
The following Lemma holds by the definition of domination and separation.

Lemma 1 Let C be a code of a graph G = (V,E) and v ∈ V \ C. In G, every vertex dominated by C is
dominated by C ∪ {v} and every two vertices separated by C are separated by C ∪ {v}.

As a corollary of this Lemma we get that G contains a D-code (resp. a TD-, an LD-, an LTD-, an
ID-code) only if V itself is a D-code (resp. a TD-, an LD-, an LTD-, an ID-code). Hence, deciding
if in a given graph there exists one of these codes is not hard. The problem is to find one of minimum
cardinality.

1.2 Grids and strips
We define three infinite graphs, that all have Z2 as vertex set :

The square grid, denoted S, is the graph such that (i, j)(k, l) is an edge whenever |i− k|+ |j − l| = 1
(see Figure 1). The triangular grid, denoted T , is the graph obtained by adding to S all edges (i, j)(k, l)
such that (k− i) = (j − l) = 1 (see Figure 2). The king grid, denoted K, is the graph obtained by adding
to T all edges (i, j)(k, l) such that (k − i) = (l − j) = 1 (see Figure 2).

Any of these three graphs will be said to be a grid.
Consider a grid G and a positive integer h.
The infinite strip of height h of G, denoted Gh, is the subgraph of G induced by the vertices (i, j) with

i ∈ {1, . . . , h}. The infinite toroidal strip of height h ≥ 3, denoted S◦h, is obtained from the infinite
square strip Sh by adding all edges (1, j)(h, j) for j ∈ Z.
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The finite strip of height h and size s ≥ 1 of G is the subgraph of G, denoted Gh,s induced by the
vertices (i, j) with i ∈ {1, . . . , h} and j ∈ {1, . . . , s}. The circular strip of G of height h ≥ 1 and size
s ≥ 3, denoted G◦

h,s, is obtained from Gh,s by adding all edges (i, s)(i′, 1) such that (i, s)(i′, s + 1) is
an edge of G, for i, i′ ∈ {1, . . . , h}. The toroidal circular strip of height h ≥ 3 and size s ≥ 3, denoted
S◦
◦h,s, is obtained from the circular square strip S◦h,s by adding all edges (1, j)(h, j) for j ∈ {1, . . . , s}.
Let G be a graph whose set of vertices is included in Z2. The k-th column of G denotes the set of

vertices (i, j) of G such that j = k. A set E of columns of G is said to be a set of consecutive columns
if there exist integers k and l, k ≤ l, such that E is equal to the set of columns numbered from k to l.
The columns that are neighbors of the k-th column of G are the (k − 1)-th and the (k + 1)-th columns
(if defined), with addition modulo n in the case G is a circular strip on n columns. Notice that if G is a
subgraph of a grid then any of its vertices has neighbors only in its column or in a neighbor of it. Given a
strip S (of any kind), any non-circular strip induced in S by a set of consecutive columns of S will be a
called a substrip of S. In the case S is a circular strip of size s, a substrip of S of size s is obtained from
S by deleting the edges between a pair of consecutive columns of S.

1.3 Literature review
There is a broad literature about LD- and ID-codes in infinite grids, see for instance [1, 7, 8, 28]. ID-
and LD-codes in infinite strips were addressed in [2, 12, 27]. As for LTD-codes in infinite strips, the
problem was studied in [17, 22].

In the above-mentioned references, bounds or exact values are given for the minimum density of a code
in infinite grids or strips. These results are obtained by combinatorial arguments based on the analysis of
local configurations.

There are also papers dealing with the algorithmic aspects of finding the minimum cardinality of some
codes in grids or in grid-like structures. For instance, in [12, 14, 24, 32, 33, 34], efficient algorithms are
provided to compute the minimum cardinality of a D- or ID-code in broad classes of graphs, containing
in particular circular strips. The classes of graphs involved in these papers are called fasciagraphs and
rotagraphs ; fasciagraphs generalize strips of grids and rotagraphs generalize circular strips of grids. For
short, a fasciagraph is constituted by multiple consecutive copies of a given graph, each copy being linked
to the next one by a fixed scheme.

In [6] one can find the definition of a fasciagraph and of a rotagraph, as well as a general framework that
unifies the results presented in the above-mentioned papers. It is shown there that, due to the repetitive
structure of these graphs, dynamic programming can be applied to address optimization problems that are
— in some sense — “local”.

In Section 5 we present the results we obtained by implementing the algorithm described in [6], to get
new results on the minimum cardinality of ID-, LD-, and LTD-codes in strips of small height.

2 The algorithm
The present section is dedicated to the description of the adaptation of the theoretical framework of [6]
to the case of the search of an ID-code of minimum cardinality in circular strips of given height. The
algorithms for LD- or LTD-codes being similar, they are not described hereafter. Notice that in [6] the
algorithm for finding a minimum D-code is described, and it can easily be adapted for a TD-code.
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2.1 Labelings, codes and pseudo-d-local properties
In the framework of [6], we can address combinatorial problems whose solutions may be described as
particular q-labelings of the vertices of an associated graph. Given an integer q ≥ 2, a q-labeling of a
graph is simply a function f that maps each vertex v of the graph to an integer f(v) ∈ {0, . . . , q − 1}.
There is a one-to-one correspondence between 2-labelings and codes by considering that the vertices of
the code are exactly those that are labeled 1. Given a 2-labeling f of the vertices of a graph we will denote
by Cf the corresponding code. We will see now that, for the kind of 2-labelings of circular strips we are
looking for, it is enough to require a property of the labeling limited to ”small” subgraphs of the strip.
From now on, we will focus on the special case of a minimum ID-code.

Given a labeling f of a strip Gh,s and 1 ≤ i ≤ j ≤ s, fi,j denotes the labeling of Gh,j−i+1 correspond-
ing to the restriction of f to the columns of Gh,s numbered from i to j. Similarly, for a labeling f of a
circular strip G◦h,s and two integers 1 ≤ i, j ≤ s we will denote by fi,j the labeling by f of the columns
i, i+ 1 . . . , j − 1, j of G◦h,s (addition modulo s).

Let us now see more precisely in which sense we consider the property of being an ID-code as ”local”.
We will say that a 2-labeling f of a strip Gh,s or a circular strip G◦h,s, of size s ≥ 5 (for some grid G)
satisfies the property PI if in every (non-circular) substrip F of size 5, the vertices in the three middle
columns are dominated and separated from each other by the vertices of Cf that are in F . It is easy to see
that one can check within a finite number of steps if a labeling of a finite circular strip of size at least 5
satisfies this property. From the following theorem we can then deduce that being an identifying code of
a circular string is a pseudo-5-local property (as defined in [6](i)).

Theorem 1 The code Cf associated to a 2-labeling f of a circular strip G◦h,s (s ≥ 5) is an ID-code of
G◦h,s if and only f satisfies PI .

Proof: We remark that the vertices that are in the three middle columns of a 5-column substrip F of
G◦h,s have their neighborhoods included in F , so the condition is clearly necessary. Assume now that the
condition is fulfilled and let us consider any vertex v of G◦h,s. It belongs to the third column of a substrip
F of five consecutive columns of G◦h,s so, since f satisfies PI , v is dominated already in F . Hence Cf
is dominating. Let now w be a vertex of G◦h,s distinct from v. If v and w are not contained in the set
of vertices of three consecutive columns of G◦h,s then their closed neighborhoods are disjoint and have a
non-empty intersection with Cf (since Cf is dominating), so v and w are separated by Cf . Assume now
that v and w are contained in the set of vertices of three consecutive columns of G◦h,s. Since s ≥ 5, these
columns are the three middle columns of a substrip of G◦h,s of size 5. The fact that f satisfies PI entails
that v and w are separated by Cf . 2

We notice that, if we were interested by a dominating code of a circular strip, it would have been
sufficient to verify that in every substrip F ′ of size 3, the vertices in the middle column are dominated by

(i) A property P of q-labelings of circular strips is said to be pseudo-d-local if there exists a property Ploc such that

- one can decide in finite time if a q-labeling of a strip of size d satisfies Ploc, and

- a q-labeling of a circular strip of size at least d satisfies P if and only if the induced labeling of each substrip of size d
satisfies Ploc.

Notice that PI is the Ploc associated to ID codes. The definition of a pseudo-d-local property of non-circular strips is pretty much
the same, but we have to define extra-properties for the first and last columns of the strip. These properties will be stated explicitly
for ID codes (see page 9 before Theorem 6).
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the vertices of F ′ labeled 1 [6] ; thus this property is pseudo-3-local.
For all other kind of codes introduced in the present paper, we can define an associated property P loc

of substrips of size d (for some fixed integer d), similar to PI , and a theorem similar to Theorem 1 holds.
As it will be seen below, this enables us to find a minimum code of any kind by considering paths of
minimum weight in an associated directed graph whose vertices are, basically, substrips of size d − 1
equipped with appropriate vertex labelings, and whose arcs correspond to substrips of size d satisfying
P loc, the weight of an arc being equal to the cardinality of the associated code in the last fiber.

2.2 Computation of a minimum ID-code in a circular strip
In the rest of this section we will assume we are given a grid G and a height h. In order to compute the
minimum cardinality of an ID-code of a circular strip of G of height h we build an auxiliary directed
graph with a length function on the arcs.

We first need some additional definitions and notation.
A directed graph ~G is a couple (V,A), where V is a set of elements called vertices and A is a subset of

couples of elements of V called arcs. An arc (u, u) is called a loop.
Let k be a positive integer and ~G = (V,A) be a directed graph.
A path P of cardinality k of ~G, also called a k-path, is a sequence v1, . . . , vk+1 of (non necessarily

distinct) vertices such that (vi, vi+1) ∈ A for all i ∈ {1, . . . , k}. We then say that P is a path from v1 to
vk+1.

A circuit C of cardinality k, also called k-circuit, of a directed graph ~G = (V,A) (k ≥ 1), is a path
v1, . . . , vk+1 such that v1 = vk+1. If {v1, vk+1} is the only pair of non-distinct vertices in the sequence
v1, . . . , vk+1, the circuit is said to be elementary. The cardinality of a path (or a circuit) Q is denoted by
|Q|.

A strongly connected component of a directed graph ~G is a maximal subgraph of ~G such that there
exists a path from any vertex to any other vertex. A strongly connected component of a directed graph ~G
is said to be trivial if it contains only one vertex and no arc.

Let ~G = (V,A) be a directed graph. If a length function ` : A → N is given, then we say that ~G is an
`-graph, and we define the length of a path P = v1, . . . , vk+1 of ~G (k ≥ 1) as follows:

`(P ) = `(v1, v2) + `(v2, v3) + . . .+ `(vk, vk+1).

The mean of a k-path or a k-circuit C of an `-graph ~G is mean(C) = `(C)
k , the mean length of an edge

in C. Assume that ~G has a finite number of vertices. The minimum mean of a circuit in ~G is denoted
by λ(~G) ; in case ~G has no circuit, λ(~G) is set to ∞. Notice that, since the mean of a circuit cannot
be lower than the minimum mean of its elementary subcircuits, λ(~G) is equal to the minimum mean
of an elementary circuit of G. As the number of elementary circuits of a finite graph is finite, λ(~G) is
well-defined for a finite graph. We call min-mean component of ~G, any non-trivial strongly connected
component of the subgraph of ~G induced by arcs belonging to circuits of mean equal to λ(~G). The
periodicity of a min-mean component of ~G is the gcd of the cardinalities of its elementary circuits of mean
λ(~G).

Given two 2-labelings f and f ′ of the 4-column strip Gh,4, we will say that f is compatible with f ′

if f labels the last three columns of Gh,4 exactly as f ′ labels the first three columns of Gh,4. Given two
compatible labelings f and f ′, the concatenation of f and f ′ denoted by f . f ′ is the 2-labeling of the
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5-column strip Gh,5 which is equal to f on the first four columns and to f ′ on the last four columns. If
furthermore the concatenation of f and f ′ satisfies PI we will say that f is I-compatible with f ′.

We denote by ~GI
h the directed `-graph defined as follows :

- the vertices of ~GIh are all 2-labelings f of the 4-column strip Gh,4 such that the 2-labeling of the
6-column strip Gh,6 which is the same as f on the 4 central columns and labels by 1 the vertices in
the two peripheral columns satisfies PI .

- the arcs of ~GIh are the couples (u, v) of vertices of ~GIh (not necessarily distinct) such that u is I-
compatible with v,

- the length `(u, v) of an arc (u, v) of ~GIh is the number of vertices of the 5-th column of Gh,5 labeled
1 by u . v.

The graph ~GIh will be called auxiliary graph for ID-codes in strips of height h.
Notice that this auxiliary graph is not the one described in the general method of [6] where the vertices

are labelings of fasciagraphs of size d (that is, in this particular case, labelings of strips of d = 5 columns)
and not d−1. It is described in Section 5.2 of [6] and may be used since the ”weight” (number of vertices
labeled 1) of a 2-labeling of a strip is equal to the sum of the number of vertices labeled 1 in each column
of the strip. Remark that we have added a condition on the vertices compare to the definition in Section
5.2 of [6] in order to avoid vertices that cannot belong to a circuit.

It is easy to prove (as for Corollary 2 in [6]) that the following ”specific” theorem for ID-codes holds.

Theorem 2 For every integers k ≥ 5 and l ≥ 1, there exists an ID-code of G◦h,k of cardinality l if and
only if ~GIh contains a k-circuit of length l.

From this theorem we immediately get that we may obtain the minimum cardinality of an ID-code
of G◦h,k by computing the minimum length of a k-circuit in ~GIh. There is a well-known way to solve the
problem of computing the minimum length of a k-circuit in a directed graph with a length function on the
arcs. To describe it we need some additional definitions.
Given two n×n matrices A,B with entries in N∪{∞}, we define the product of A and B, denoted AB,
as the n × n matrix such that: [AB]i,j = Minnk=1(Ai,k + Bk,j) for all i, j ∈ {1, . . . , n}. The product
AA . . . A (k occurrences of A) is denoted by Ak.

Let ~G be a directed `-graph on n vertices. Given a numbering u1, u2, . . . , un of the vertices of ~G, the
length-matrix of ~G, is the n× n matrix Π defined as follows:

Πi,j =

{
∞ if (ui, uj) /∈ A
`(ui, uj) otherwise, for i, j ∈ {1, . . . , n}.

The following result is well-known and very useful.

Theorem 3 (Section 4.2 in [13]) Let Π be the length-matrix of an `-graph ~Gwith vertex set {u1, u2, . . . , un}.
For any integers k ≥ 1 and i, j ∈ {1, . . . , n}, we have:

[Πk]i,j =

{
∞ if there is no k-path from ui to uj in ~G,

Min{`(P )|P is a k-path from ui to uj in ~G}, otherwise.

From all the results above, we can obtain the minimum cardinality of an ID-code of a circular strip
G◦h,k (k ≥ 5), by generating the directed `-graph ~GIh, computing the k-th power of the length-matrix of ~GIh
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and then returning the smallest element in the diagonal of this matrix. For a fixed height h this algorithm
has a running-time which is polynomial in k.

In the next section we will see that the length-matrix of ~GIh has another very interesting property that
enables one to compute this minimum cardinality for any size, and even for infinite strips, in constant-time.

3 Constant-time computation of minimum ID-codes in strips of
given height

In this section we will define a stable matrix and express important results on stable matrices due to
Molnárová and Pribiš [26]. These results are essential to show that the minimum cardinality of an ID,
LD, or LTD-code in circular and non-circular strips of given height and any size may be computed by a
constant-time algorithm. Furthermore, as a corollary of these results we get that the minimum density of
a code in an infinite strip of height h is the same as the minimum density of a code in a circular strip of
height h.

3.1 Stable matrices
Given an n×n matrix A with entries in N∪{∞} and an integer c, we define the sum of A and c, denoted
A+ c, as the n× n matrix such that [A+ c]i,j = Ai,j + c (i, j ∈ {1, . . . , n}). We also say that A+ c is
the translation of A by c.

A matrix Π is said (c, p, u)-stable with transfer factor c ∈ N, period p ∈ N, and start u ∈ N, if
Πi+p = Πi + c, ∀i ≥ u.

Remark 1 If Π is (c, p, u)-stable, then the sequence of the powers of Π is pseudo-periodic, that is to say,
it has the following form:

Π,Π2, . . . ,Πu−1, [S0], [S0 + c], [S0 + 2c], . . . , [S0 + ic], . . .

where [S0] is the sequence Πu,Πu+1, . . . ,Πu+p−1, and for j ≥ 1, [S0 + jc] is the sequence Πu +
jc,Πu+1 + jc, . . . ,Πu+p−1 + jc. So, once the first u + p powers of Π have been computed, for any
integer k > u+ p, Πk can be obtained by a constant number of elementary operations.

A matrix is said stable if it is (c, p, u)-stable for some c, p, u (these are not unique).
The property of stability of a matrix may be characterized by the circuits of minimum mean in its

associated `-graph, as shown by the following theorem. This result has been proved by Molnárová and
Pribiš [26]. Molnárová [25] showed that the same proof is valid for matrices with entries in a divisible
Min-Plus algebra.

Theorem 4 (Theorems 3.1 and 3.4 in [26]) The length-matrix Π of a directed `-graph ~G is stable if and
only if every non-trivial strongly connected component of ~G contains a circuit of mean λ(~G).

Furthermore if Π is stable and ~G contains circuits, then Π is stable with period p equals to the lcm of
the periodicities of the min-mean components of ~G, and transfer factor c equals to pλ(~G).

Corollary 1 If the directed `-graph ~G has at most one non-trivial strongly connected component then its
length matrix is stable.
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Proof: Only non-trivial strongly connected components contain circuits of ~G and all vertices of a circuit
of ~G belong the same strongly connected component. Hence if ~G contains at most one non-trivial strongly
connected component then the condition of Theorem 4 is fulfilled. 2

3.2 Circular strips
Now we can prove the following theorem.

Theorem 5 Let G be a grid. For every integer h ≥ 1, the length-matrix of ~GIh is stable.

Proof: If ~GIh contains at most one vertex belonging to a non-trivial strongly connected component, then it
contains at most one such component and then by Corollary 1 the length-matrix of ~GIh is stable.

Assume now that there exist two distinct vertices x and y of ~GIh that belong each to a non-trivial strongly
connected component. We claim that x and y should then be in the same strongly connected component.
Indeed, consider the labeling f of the strip Gh,11, defined as follows: f1,4 = x ; f5,7 labels with 1 all
the vertices in the 5-th, 6-th and 7-th column of Gh,11 ; f8,11 = y. By definition of a non-trivial strongly
connected component, x and y belong each to at least one circuit of ~GIh. So there exist vertices x′ and y′

such that xx′ and y′y are arcs of ~GIh. Since xx′ is an arc of ~GIh, x and x′ are I-compatible and so x . x′

satisfies PI . Then either h 6= 2 or G 6= K : indeed the two vertices of any column of K2,5 have the
same closed neighborhood and no code may separate them. Notice that f1,5 is equal to the labeling of
Gh,5 obtained from x . x′ by changing all 0-labels in the last column by a 1-label. So, by Lemma 1, it
still satisfies PI . Consider the labeling f2,6 on the columns 2 to 6. Since the vertices on columns 3 and
4 are dominated and separated from each other in x . x′ this remains true in f2,6. Furthermore, since all
vertices in column 6 are labeled 1 by f , and either h 6= 2 or G 6= K, we get that the vertices in column
5 are dominated and separated from those in columns 3 and 4 and from each other. So f2,6 satisfies PI .
Consider f3,7: the vertices on columns 5 and 6 are all labeled 1, so, as h 6= 2 or G 6= K, the vertices in
columns 4, 5 and 6 are dominated and separated from each other by the labeling f3,7. Consider now f4,8:
in this labeling all three central columns are completely labeled 1, so again it satisfies PI . By symmetry
we get that f5,9, f6,10, f7,11 all satisfy PI . Then, x = f1,4, zi = fi,i+3 (i= 2, . . . , 7), y = f8,11, are
vertices of ~GIh and xz2, z2z3, z3z4, z4z5, z5z6, z6z7 and z7y are arcs of ~GIh, so that xz2z3z4z5z6z7y is a
path from x to y in ~GIh. As x and y were any two vertices in a non-trivial strongly connected component
this imply that there exists only one such component of ~GIh. By Corollary 1 the proof is done. 2

As a corollary of Remark 1 and Theorems 2, 3 and 5, for a given h, there is a constant-time algorithm
to compute the minimum cardinality of an ID-code in a circular strip of height h and size at least 5 (see
the algorithm Stable (P, w,M)−MRP in [6]).

3.3 Non-circular strips
We consider here the problem of computing the minimum cardinality of an ID-code in non-circular strips.
It can be solved almost as for the case of circular strip but we have to take into account the specificity of
the beginning and end of the strip.

Let f be a 2-labeling of a strip Gh,4 of a grid G. We will say that f satisfies the property PI
b (”b” for

beginning) if the vertices in the first three columns of Gh,4 are dominated and separated from each other
by the vertices of Cf .
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Similarly f satisfies the property PI
e (”e” for ending) if the vertices in the last three columns of Gh,4

are dominated and separated from each other by the vertices of Cf .
It is easy to see that one can check within a finite number of steps if a labeling of a strip of size 4

satisfies P Ib or P Ie . From the following easy theorem we can then deduce that being an ID-code is a
pseudo-5-local property of strips (as defined in [6] for ”fasciagraphs”).

Theorem 6 The code Cf associated to a 2-labeling f of a strip Gh,s (s ≥ 4) is an ID-code of Gh,s if and
only f satisfies PI , f1,4 satisfies PIb and fs−3,s satisfies PIe .

We denote by ~ΓI
h the directed `-graph obtained from ~GIh as follows :

- add two specific vertices: a source s and a sink t,

- for each vertex u of ~GIh such that u satisfies PIb , add an arc su of length `(s, u) equal to the number
of vertices of Gh,4 labeled 1 by u,

- for each vertex v of ~GIh such that v satisfies PIe , add an arc ut of length `(u, t) equal to 0.

It is then easy to prove using the model described in Section 5.2 of [6] that the following analog of
Theorem 5 of [6] holds. (Notice that since d = 5, the condition on the length of the path is equal to
k− (d− 1) + 2 and not k−d+ 2 as in Theorem 5 of [6]. This is because here the vertices of the auxiliary
graph are defined as labelings of only d− 1 columns.)

Theorem 7 For every integers k ≥ 4 and c ≥ 0, there exists an ID-code of Gh,k of cardinality c if and
only if ~ΓIh contains a (k − 2)-path from s to t of length c.

Furthermore we have again a theorem of stability.

Theorem 8 For every integer h ≥ 1, the length-matrix of the `-graph ~ΓIh is stable.

Proof: The directed graph ~ΓIh is obtained from ~GIh by adding appropriately a source s and a sink t.
These two vertices are trivial strongly connected components of ~ΓIh, so the number of non-trivial strongly
connected components is the same in the two directed graphs. By the proof of Theorem 5 we know that
this number is equal to 1. Corollary 1 concludes the proof. 2

As a corollary we get again that there is a constant-time algorithm that computes the minimum cardi-
nality of an ID-code in a non-circular strip of height h (for a fixed h).

3.4 Infinite strips
In the case on an infinite strip there exists clearly no finite ID-code and we need another way to define the
size of a ”minimum code”, using the concept of density. In a finite graph G = (V,E) the density dG(C)

of a code C of G is equal to |C||V | . We define the density D(C) of a code in the infinite strip Gh (h ≥ 1) as

D(C) = lim sup
n→+∞

|C ∩ Vn|
|Vn|

where Vn is the set of vertices (x, y) of Gh such that |y| ≤ n (in other words, Vn is the set of vertices of
Gh that belong to the columns numbered from −n to n).

From Lemma 1 and the fact that in a strip of height 2 of the king grid, two vertices that are in the same
column have exactly the same closed neighborhood, it is easy to deduce the following fact.
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Proposition 1 There exists no ID-code of a king strip of height 2. All other strips (circular or not) of
size at least 4 have an ID-code.

We have the following corollary of Theorem 4 (see Corollary 1 in [6]).

Corollary 2 Let Gh be an infinite strip such that G 6= K or h 6= 2 and let λ = λ(~GIh) be the minimum
mean of an elementary circuit of ~GIh. The minimum density on an ID-code of Gh is DGh = λ

h .

Proof: Let C be an identifying code of the infinite strip Gh and f the associated labeling of the vertices
of Gh (f(v) = 1 if v ∈ C). From Proposition 1, there exists such a code and the circular strip G◦h,5 also
has one. Then by Theorem 2 the directed graph ~GIh contains at least one circuit and λ 6=∞.

By Theorem 5, the length matrix Π of ~GIh is (c, p, u)-stable for some integers c, p, u and by Theorem 4
the transfer factor c is equal to pλ.

We remark that, for every n ≥ 4, f−n,n satisfiesPI , so by Theorem 3, |C∩Vn| ≥Min{π| π entry of Π2n+1}.
Let m be the minimum entry in the matrices Πu,Πu+1, . . . ,Πu+p−1. If 2n + 1 ≥ u then 2n + 1 =
u + k + jp for some integers 0 ≤ k ≤ p − 1 and j ≥ 0 and we have Π2n+1 = Πu+k + jpλ, so
Min{π| π entry of Π2n+1} ≥ m+ jpλ ≥ m+ (2n+ 1− u− p+ 1)λ.

We get that the density of C, D(C) = lim sup
n→+∞

|C∩Vn|
|Vn| ≥ lim sup

n→+∞
m

h(2n+1) + (2n+2−u−p)λ
h(2n+1) = λ

h . So

DGh ≥ λ
h .

Consider now an elementary circuit C of ~GIh of mean λ (by assumption there exists at least one such
circuit) and let k be the cardinality of C. This circuit corresponds to a labeling f∗ of the strip Gh,k+4 that
satisfy PI and such that f∗1,4 = f∗k+1,k+4. The density of Cf∗5,k on the last k columns of Gh,k+4 is equal
to kλ

kh = λ
h . The code of the infinite strip corresponding to an infinite repetition of f∗5,k is an ID-code of

Gh of density equal to λ
h .

Thus we have proved that DGh = λ
h . 2

Remark that, by Corollary 2, the problem of computing the minimum density of an ID-code of an
infinite strip S of height h is the same as the problem of computing the minimum cardinality of an ID-
code of a circular strip of height h on the same grid than S.

In the next section, we explain how we implemented the algorithm we have described above to get
ID-codes of minimum density for circular and infinite strips of grids of height at most 4.

4 Implementation of the algorithm
4.1 General scheme
The algorithms were implemented using the C++ language. They were designed to be executed in mul-
tithread, that is to say on several processors in parallel. These algorithms were run on the computational
server of the G-SCOP lab having 10 processors.

The first task consisted in generating all possible 2-labelings of strips of a given height and size 4
(vertices of the graph) and the entries of the length-matrix (lengths of the arcs of the auxiliary graph).
Coefficients of powers of the length-matrix matrix Π of the auxiliary graph ~G were stored as 16-bits
shorts.
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At any step k of the algorithm, in order to compute Πk, three matrices need to be stored in the RAM:
The initial length matrix Π, its power Πk−1, as well as its power Πk that we compute as the product of Π
with Πk−1.

In order to detect a period in the sequence of matrices, we need to store on the hard disk drive the matrix
obtained at each step k.

When a period is detected, we get the values c, p, u such that Π is (c, p, u)-stable. This enables one to
find the minimum cardinality of a code in a strip of size n using only a constant number of elementary
operations.

If one wishes to obtain also the configuration of an optimal code, then one can perform a backtrack
analysis of the algorithm, in order to get an optimal circuit of the auxiliary graph with the desired number
of arcs.

4.2 Technical tricks to speed up the process
Size of the matrices The number of vertices, hence the size of the length-matrix Π, increases rapidly
as the height of the strip increases. For instance, in the case of ID-codes, for the strip of the square grid
of height 3, the auxiliary graph has 16 824 vertices. Using the approach described in Section 4.1, the size
of a power of Π is approximately 540 Mo. Hence, in this algorithm, the size of the matrices is a critical
parameter, since we have to be able to store three such matrices in the RAM.

Detecting the period In order to detect a period in the sequence of matrices, we stored on the hard disk
drive the matrix Π̃k = Πk −mini,j(Π

k
i,j) for each k, instead of Πk. Hence there is a period when we find

k′ > k such that Π̃k = Π̃k′ . In oder to speed up the process, hashcodes of each matrix were computed.
Since different values of the hashcode ensure that the matrices are different, this enables one to avoid a
large number of tests of the form “do we have Π̃k = Π̃k′ ?”.

Speeding up the backtrack Due to the prohibitive size of the matrices, we did not perform any back-
track to get optimal codes. Indeed, a backtrack would have required to load into the RAM each of the
matrices computed before the detection of the pseudo-period. Instead, we used constraint programming,
using the java language and the CHOCO library. On a personal computer, the program finds an optimal
code in less than 1 second for strips of height 1 and 2. For height 3, the computation time is about 1 hour.
For height 4, the computation time is about 1 day.

4.3 Running times
We provide here the running times and the size of the length-matrixmatrix for the case of ID-codes in the
strip of the square grid. Running times in strips of other types of grids are of the same order.

Height Number of vertices Computation time Size of a matrix
1 10 1 sec 200 o
2 169 2 sec 56 Ko
3 2 598 6 min 13 Mo
4 37 791 16 days 2,6 Go

Tab. 1: Running times and matrix size in the case of ID-codes in strips of the square grid.
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5 New results on ID-, LD-, and LTD-codes in finite circular strips
and infinite strips

In this section, we report the results we obtained thanks to our implementation of the algorithm described
above (and in [6]) for computing the minimum cardinality of an ID-, LD-, or LTD-code in finite circular
strips and the minimum density of such codes in infinite strips.

We remark that the number of vertices in a strip of size n and height h is equal to nh (it is the same for
all kind of strips).

For each case we will underline the period p, the transfer factor c, the minimum mean λ = c
p of a

circuit in the auxiliary graph and specify the smaller size of a circular strip for which the corresponding
minimum density λ

h is attained as well as one corresponding pattern. By Corollary 2 a code of minimum
density of the infinite strip is obtained by an infinite repetition of such a pattern.

The strips of height 1 of the king grid, and of the triangular grid are the same as the one of the square
grid, so this case is studied only in the square grid section. Toroidal grid or strips are defined only for an
height at least 3.

5.1 Identifying codes

5.1.1 Square grid
Some of the results stated here for strips of height 1 or 2 were already in [2] and in [12].

Proposition 2 Let IDS(n, h) denote the minimum cardinality of an ID-code in a circular strip of the
square grid of size n and height h:

• h = 1: IDS(n, 1) =


3, for n = 5

n
2 , for n ≥ 6 and n ≡ 0[2]

dn2 e+ 1, for n ≥ 7 and n ≡ 1[2].

So that, p = 2, c = 1, and λ = 1
2 is the minimum density (see Figure 1 for a pattern of minimum

density that applies for any circular strip of even size greater than or equal to 6)

• h = 2: IDS(n, 2) =

 d 6n7 e+ 1, for n ≥ 8 and n ≡ 1 or 2[7]

d 6n7 e, for n ≥ 5, and n ≡ 0, 3, 4, 5 or 6[7].

So that, p = 7, c = 6, λ = 6
7 corresponds to the minimum density 6

7/2 = 3
7 (see Figure 1 for a

pattern of minimum density that applies for any circular strip whose size is a multiple of 7).

• h = 3: IDS(n, 3) =

 d 7n6 e, for n ≥ 5 and n ≡ 0, 1, 2, 3, 4, 5, 7, 8, 9, or 10[12]

d 7n6 e+ 1, for n ≥ 6 and n ≡ 6, or 11[12].

So that, p = 12, c = 14, λ = 7
6 corresponds to the minimum density 7

6/3 = 7
18 (see Figure 1 for a

pattern of minimum density that applies for any circular strip whose size is a multiple of 12).
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• h = 4:

IDS(n, 4) =


11n
7 , for n ≥ 14 and n ≡ 0[14]

d 11n7 e, for n ≥ 5 and n ≡ 1, 2, 3, 4, 5, or 6[7]

11n
7 + 1, for n ≥ 7 and n ≡ 7[14].

So that, p = 14, c = 22, λ = 11
7 corresponds to the minimum density 11

7 /4 = 11
28 (see Figure 1 for

a pattern of minimum density that applies for any circular strip whose size is a multiple of 14).

Fig. 1: Periodic patterns for minimum density ID-codes of infinite square strips of heights 1, 2, 3, 4.

5.1.2 King grid
Proposition 3 Let IDK(n, 3) denote the minimum cardinality of an ID-code in a circular strip of the
king grid of size n ≥ 5 and height 3:

IDK(n, 3) =

 n+ 1, for n = 7, 9, 13, 19

n, for n 6= 7, 9, 13, 19.

So that, p = c = 1, λ = 1 corresponds to the minimum density 1
3 (see Figure 2 for a pattern of minimum

density that applies for any circular strip of even size at least 6).

5.1.3 Toroidal circular strip
Proposition 4 Let IDS

T

(n, h) denote the minimum cardinality of an ID-code in a toroidal circular strip
of size n ≥ 5 and height h.

• h = 3: IDS
T

(n, 3) = d5n
4
e.

So that, p = 4, c = 5, λ = 5
4 corresponds to the minimum density 5

4/3 = 5
12 (see Figure 2 for a

pattern of minimum density that applies for any circular strip whose size is a multiple of 4).

• h = 4: IDS
T

(n, 4) =

 d 10n7 e+ 1 for n = 7, 9, 14, 16, 21, 35, 63

d 10n7 e, for n 6= 7, 9, 14, 16, 21, 35, 63.
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So that, p = 7, c = 10, λ = 10
7 corresponds to the minimum density 10

7 /4 = 5
14 (see Figure 3 for a

pattern of minimum density that applies for any circular strip whose size is a multiple of 28).

5.1.4 Triangular grid
Proposition 5 Let IDT (n, h) denote the minimum cardinality of an ID- code in a circular strip of the
triangular grid of size n ≥ 5 and height h.

• h = 2: IDT (n, 2) = n.

So that, p = c = 1 and λ = 1 corresponds to the minimum density 1
2 (see Figure 2 for a pattern of

minimum density that applies for any circular strip of size at least 4).

• h = 3: IDT (n, 3) =

 n+ 1, for n = 7

n, for n 6= 7.

So that, p = c = 1 and λ = 1 corresponds to the minimum density 1
3 (see Figure 2 for a pattern of

minimum density that applies for any circular strip of even size at least 6).

Fig. 2: Periodic patterns for minimum density ID-codes of infinite king, triangular and toroidal strips of heights 2, 3.

Fig. 3: Periodic pattern for minimum density ID-codes of the toroidal strips of height 4.

5.2 Locating-dominating codes

5.2.1 Square grid
Proposition 6 Let LDS(n, h) denote the minimum cardinality of an LD-code in a circular strip of the
square grid of size n ≥ 5 and height h:
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• h = 1: LDS(n, 1) = d 2n5 e.
So that, p = 5, c = 2, λ = 2

5 is the minimum density (see Figure 4 for a pattern of minimum density
that applies for any circular strip whose size is a multiple of 5). This result was already stated in
[30].

• h = 2: LDS(n, 2) =

 d 3n4 e, for n ≡ 0, 1, 2, 3, 5, 6 or 7[8]

3n
4 + 1, for n ≡ 4[8].

So that, p = 8, c = 6, λ = 3
4 corresponds to the minimum density 3

4/2 = 3
8 (see Figure 4 for a

pattern of minimum density that applies for any circular strip whose size is a multiple of 8).

• h = 3: LDS(n, 3) =

 n, for n ≡ 0, 2, 3 or 4[6]

n+ 1, for n ≡ 1 or 5[6].

So that, p = 6, c = 6, λ = 1 corresponds to the minimum density 1
3 (see Figure 4 for a pattern of

minimum density that applies for any circular strip of even size at least 6).

Fig. 4: Periodic patterns for minimum density LD-codes of infinite square strips of heights 1, 2, 3.

5.2.2 King grid
Proposition 7 Let LDK(n, h) denote the minimum cardinality of an LD-code in a circular strip of the
king grid of size n ≥ 5 and height h:

• h = 2: LDK(n, 2) = n.

So that, p = c = 1, λ = 1 corresponds to the minimum density 1
2 (see Figure 5 for a pattern of

minimum density that applies for any circular strip of size at least 4).

• h = 3:

LDK(n, 3) = d 4n5 e.
So that, p = 5, c = 4, λ = 4

5 corresponds to minimum density 4
5/3 = 4

15 (see Figure 5 for a pattern
of minimum density that applies for any circular strip whose size is a multiple of 5).

5.2.3 Toroidal grid
Proposition 8 Let LDS

T

(n, 3) denote the minimum cardinality of an LD-code in a toroidal circular
strip of of size n ≥ 5 and height 3: LDS

T

(n, 3) = n.
So that, p = c = 1, λ = 1 corresponds to the minimum density 1

3 (see Figure 5 for a pattern of minimum
density that applies for any circular strip of even size at least 4).
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5.2.4 Triangular grid
Proposition 9 Let LDT (n, h) denote the minimum cardinality of an LD-code in a circular strip of the
triangular grid of size n ≥ 5 and height h.

• h = 2: LDT (n, 2) = d 2n3 e.
So that, p = 3, c = 2, λ = 2

3 corresponds to the minimum density 2
3/2 = 1

3 (see Figure 5 for a
pattern of minimum density that applies for any circular strip whose size is a multiple of 3 greater
than or equal to 6).

• h = 3: LDT (n, 3) = d 9n10 e.
So that, p = 10, c = 9, λ = 9

10 corresponds to the minimum density 9
10/3 = 3

10 (see Figure 5 for a
pattern of minimum density that applies for any circular strip whose size is a multiple of 10).

Fig. 5: Periodic patterns for minimum density LD-codes of infinite king, triangular and toroidal strips of heights 2,3.

5.3 Locating-total-dominating codes

5.3.1 Square grid
Proposition 10 Let LTDS(n, h) denote the minimum cardinality of an LTD-code in a circular strip of
the square grid of size n ≥ 5 and height h:

• h = 1: LTDS(n, 1) =

 dn2 e, for n ≥ 4 and n ≡ 0, 1 or 3[4]

n
2 + 1, for n ≥ 6 and n ≡ 2[4].

So that, p = 4, c = 2, λ = 1
2 corresponds to the minimum density (see Figure 6 for a pattern of

minimum density that applies for any circular strip whose size is a multiple of 4).

• h = 2: LTDS(n, 2) =

 6, for n = 6

d 4n5 e, for n 6= 6.
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So that, p = 5, c = 4, λ = 4
5 corresponds to the minimum density 4

5/2 = 2
5 (see Figure 6 for a

pattern of minimum density that applies for any circular strip whose size is a multiple of 5).

• h = 3: LTDS(n, 3) = d 7n6 e
So that, p = 6, c = 7, λ = 7

6 corresponds to the minimum density 7
6/3 = 7

18 (see Figure 6 for a
pattern of minimum density that applies for any circular strip whose size is a multiple of 6).

Fig. 6: Periodic patterns for minimum density LTD-codes of infinite square strips of heights 1, 2, 3.

5.3.2 King grid
Proposition 11 Let LTDK(n, h) denote the minimum cardinality of an LTD-code in a circular strip of
the king grid of size n ≥ 5 and height h:

• h = 2: LTDK(n, 2) = n.

So that, p = c = 1, λ = 1 corresponds to the minimum density 1
2 (see Figure 7 for a pattern of

minimum density that applies for any circular strip of size at least 4).

• h = 3: LTDK(n, 3) = d 8n9 e.
So that, p = 9, c = 8, λ = 8

9 corresponds to the minimum density 8
9/3 = 8

27 (see Figure 7 for a
pattern of minimum density that applies for any circular strip whose size is a multiple of 9).

5.3.3 Toroidal grid
Proposition 12 The minimum cardinality of an LTD-code in a toroidal circular strip of of size n ≥ 5
and height 3 is:

LTDS
T

(n, 3) =

 n, for n ≡ 0[6]

n+ 1, for n 6≡ 0[6].

So that, p = c = 1, λ = 1 corresponds to the minimum density 1
3 (see Figure 7 for a pattern of minimum

density that applies for any circular strip whose size is a multiple of 6).

5.3.4 Triangular grid
Proposition 13 The minimum cardinality of an LTD-code in a circular strip of the triangular grid of
size n ≥ 5 and height h is:

• for h = 2: LTDT (n, 2) = d 2n3 e.
So that, p = 3, c = 2, λ = 2

3 corresponds to the minimum density 2
3/2 = 1

3 (achieved for any
circular strip whose size is a multiple of 3 greater than or equal to 6, see Figure 7).
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• for h = 3: LTDT (n, 3) = n.

So that, p = c = 1, λ = 1 corresponds to the minimum density 1
3 achieved for any circular strip of

size at least 5, (see Figure 7 for a pattern valid for any circular strip whose size is a multiple of 3
greater than or equal to 6, see Figure 7).

Fig. 7: Periodic patterns for minimum density LTD-codes of infinite king, triangular and toroidal strips of heights 2
and 3.

5.4 Infinite strips
By Corollary 2, the optimal results on circular strips provide those for the infinite strips. The results
we obtained for infinite strips of height at most 4 are summarized in Table 2 and corresponding patterns
are in Figures 1–7. All were already stated in [4]. Notice that the already known values were only for
strips of height at most 2. Until now the best known density for an ID-code of a infinite square strip of
height 3 was 2

5 [12] and we have shown that the optimal density for such a strip is 7
18 . The same result is

proved by a Discharging Method in [5]. Similarly the best density of an LTD-code in an infinite square
strip has also been proved by Junnila [22] by using a ”Share Method” as defined by Slater [31]. By a
computer search similar to ours, Jiang [21] recently and independently found the optimal density of an
indentifying code in infinite square strips of heights 4 and 5. In Table 2 we give also all known results
on the minimum density in infinite grids (there, when there are two references, the first is for the lower
bound, and the second contains the optimal corresponding pattern(s)). Not surprisingly, these minima are
lower than those in infinite strips. For identifying codes, the minimum density in an infinite square grid is
7
20 [1] [10], and in [5] the following bounds on the minimum density of an identifying code of an infinite
square strip are proved:

7

20
+

1

20h
≤ IDS(∞, h) ≤ min

{
2

5
,

7

20
+

3

10h

}
.

Note that, however, the smallest density of an identifying code in an infinite square strip is lower in the
case of height 3 ( 7

18 ) than in the case of height 4 ( 1128 ).
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Sh Kh S◦h Th

h ID LD LTD ID LD LTD ID LD LTD ID LD LTD

1 1
2

2
5

1
2 X X X X X X X X X

[2] [2] [16]

2 3
7

3
8

2
5 ∅ 1

2
1
2 X X X 1

2
1
3

1
3

[12] [16]

3 7
18

1
3

7
18

1
3

4
15

8
27

5
12

1
3

1
3

1
3

3
10

1
3

[5] [22]

4 11
28

5
14

∞ 7
20

3
10

2
9

1
5 X X X 1

4
13
57

[1] [10] [31] [11] [9] [20] [23] [19]

Tab. 2: Minimum densities of codes in infinite strips of height at most 4 (computed by our algorithm), and
minimum densities of codes in infinite grids. A cross “X” indicates that the corresponding graph is not relevant.
For instance, the graph K∞

1 is identical to S∞
1 . The symbol ∅ means that the code does not exist for the corre-

sponding graph (the graph K∞
2 has no ID code, since, for instance, vertices (1, 1) and (2, 1) have the same closed

neighborhood). Empty cells in the row of the height 4 correspond to cases for which we did not run the computer
search.
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[26] Monika Molnárová and Ján Pribiš. Matrix period in max-algebra. Discrete Applied Mathematics,
103:167–175, 2000.

[27] Julien Moncel. Codes identifiants dans les graphes. PhD thesis, Université Joseph Fourier, Grenoble
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