Skip to Main content Skip to Navigation
Journal articles

Fusion-based Surveillance WSN Deployment using Dempster-Shafer Theory

Résumé : In mission-critical wireless sensor networks surveillance applications, a high detection rate coupled with a low false alarm rate is essential. Additionally, fusion methods can be employed with the hope that aggregation of uncertain information from multiple sensors enhances the quality of surveillance provided by the network. This paper investigates the following fundamental problem: what is the best way to deploy a finite number of unreliable sensors characterized by uncertain readings in order to satisfy the user detection requirements. Unlike prior efforts that rely on simple fusion schemes, we use the Dempster-Shafer theory to define a generic evidence fusion scheme that captures several characteristics of real-world applications. The fusion-based uncertainty-aware sensor networks deployment problem is formulated as a binary non-linear and non-convex optimization problem that is NP-hard, and an efficient heuristic using genetic algorithms is investigated. The effectiveness and efficiency of the proposed approach are evaluated using both simulations and experiments. The obtained results demonstrate the appropriateness of the evidence fusion model that considers in a meaningful way the information on the quality of sensors decisions as well as the reliability of these sensors along with their uncertain and imprecise decisions. Also, the proposed approach outperforms state-of-the-art deployment strategies.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-01351590
Contributor : Ifsttar Cadic <>
Submitted on : Thursday, August 4, 2016 - 11:19:11 AM
Last modification on : Tuesday, December 8, 2020 - 10:20:44 AM

Identifiers

Collections

Citation

Mustapha Reda Senouci, Abdelhamid Mellouk, Nadjib Aitsaadi, Latifa Oukhellou. Fusion-based Surveillance WSN Deployment using Dempster-Shafer Theory. Journal of network and computer applications, 2016, 64, pp 154-166. ⟨10.1016/j.jnca.2015.12.014⟩. ⟨hal-01351590⟩

Share

Metrics

Record views

218