Pre-Coded NRZ and Electrical Duo-Binary Transmission in C and O-band at Data Bit Rates up to 25 Gbit/s
Justine Konopacki, Bertrand Le Guyader, Naveena Genay, Luiz Anet Neto, Philippe Chanclou, Didier Erasme

To cite this version:
<hal-01569728>

HAL Id: hal-01569728
https://hal.archives-ouvertes.fr/hal-01569728
Submitted on 27 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pre-coded NRZ and Electrical Duo-Binary Transmission in C and O-band at Data Bit Rates Up To 25 Gbit/s

Justine Konopacki¹⁻², Bertrand Le Guyader¹, Naveena Genay¹, Luiz Anet Neto¹, Philippe Chanclou¹, Didier Erasme²

(1) Orange Labs, 2 avenue Pierre-Marzin, 22307 Lannion, France
(2) LTCI, Télécom ParisTech, Université Paris-Saclay, 75013 Paris, France

Abstract
We present real-time transmission performance up to 25 Gbit/s for optical access networks.
• Based on pre-coded NRZ and electrical duo-binary modulations
• Using limited electrical bandwidth DML in C and O-band at transceiver
• And an electrical duo-binary receiver with an 8 GHz APD photodiode and a duo-binary to binary converter

Data bit rates evolution in the optical access network
• Presently PON solutions are based on NRZ modulation formats. [1-4]
• Standardization groups are working on 25 Gbit/s PON.
• Solutions proposed:
 o NRZ coupled with electrical equalization [5, 6]
 o Efficient modulation formats such as PAM-4 [7, 8] & duo-binary [9, 10]

EDB modulation format
• What is EDB?
 NRZ
 EDB
 0
 0
 1
 +1 or -1
• Where?
 At Tx → coder
 At Rx → 8 GHz APD
• FIR
• How?
• Pre-coder
• Low-pass filter

EDB electrical spectrum is compressed by a factor 2 compared to a NRZ signal at the same data bit rate [9]. Opportunity to re-use optical components already developed for 10 Gbit/s transmission.

EDB and pre-coded NRZ (p-NRZ) transmission experimental setup
• Tx: 14/16 GHz C/O band DML
• Rx: 8 GHz APD/TIA → EDB detection
• Duo-binary to NRZ decoder: APD out and oút + limiting amplifiers + XOR gate

O band performance

Bb & Rx: NRZ
Tx: p-NRZ 20 Gbit/s
| BER 10⁻³ |
| Optical Budget - OB (dB) |

Bb & Rx: EDB
Tx: p-NRZ 20 Gbit/s

N1 class: maximum OB 29 dB

C band performance

Bb & Rx: NRZ
Tx: p-NRZ 25 Gbit/s
40 km & Rx: EDB
| BER 10⁻³ |
| Optical Budget - OB (dB) |

C band performance

Conclusion
O-band transmission
At 25 Gbit/s, up to 40 km propagation with 26.5 dB OB using pre-coded NRZ emission.
At 20 Gbit/s, up to 40 km propagation with 28 dB OB using EDB & pre-coded NRZ emission.

C-band transmission
Performance is worse due to chromatic dispersion.
At 20 Gbit/s, up to 10 km propagation with 28 dB OB with pre-coded NRZ emission. Use pre-equalization and mitigation techniques to increase performance.

References: