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A probabilistic rate theory connecting kinetics to thermodynamics®

Denis Michel?

¥ Universite de Rennes1-IRSET. Campus de Villejean. 35000 Rennes France. Email: denis.michel@live.fr.

Abstract. Kinetics and thermodynamics are largely
disconnected in current theories because Arrhenius acti-
vation energies (E,) have strictly no influence on equilib-
rium distributions. A first step towards the incorporation
of rate theories in thermodynamics is the identification
of the pre-exponential term of the Arrhenius equation
as an entropic quantity. A second step examined here
is the possible contribution of E, in equilibrium land-
scapes. Interestingly, this possibility exists if envisioning
the energetic exponential term of Arrhenius rate con-
stants as the probability that the energy of the reactant
is sufficient for the transition. This radically new ap-
proach encompasses Maxwell-Boltzmann distributions
and solves inconsistencies in previous theories, in partic-
ular on the role of temperature in kinetics and thermo-
dynamics. These probabilistic rate constants are then
reintroduced in dynamic systems to provide them with
the two distinct facets of time: the time step and the
time arrow.

Keywords: Kinetics; equilibrium; heat capacity; en-
thalpy; entropy; Gibbs free energy.

Notes to readers: The unitless statistical entropy usually
written H will be renamed here S to avoid confusion with
enthalpy. The letter C will be used for heat capacity but
not for concentration.

1 Introduction

Rate constants are the drivers of all dynamic systems and
are widely used in physical chemistry and modeling stud-
ies. By the restrictions they impose on chemical transi-
tions, rate constants prevent our organized world from
falling directly into its state of weaker free energy and
maximal entropy. Yet the profound nature of these con-
stants remains obscure and the main focus of this study
is to clarify their energetic component. After multiple
attempts of description, its most common expression re-
mains the exponential factor of Arrhenius [I} 2]. In its

classical version (without tunneling effects), the empiri-
cal Arrhenius equation

Eq
k=Ae *sT (1)
where kp is the Boltzmann constant and T is the tem-
perature, includes (i) a so-called preexponential factor A,
containing the elementary frequency and configurational
restrictions, and (ii) a unitless exponential function con-
taining an energy barrier called activation energy FE,.
In the present paper, the exponential factor of Arrhe-
nius will be reformulated as the probability to reach a
threshold energy, as initially proposed but incompletely
appraised in [3]. This simple hypothesis will lead to ma-
jor changes in thermodynamic relationships.
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Figure 1. Representation of the energy barrier according to
the Arrhenius principle. The barrier is supposed to restrict
reaction kinetics but to have no influence on equilibrium ra-
tios. E* is a fixed energy threshold necessary for crossing the
barrier in both directions and H are the mean enthalpies of
reaction of the particles.

Using the notations of Fig.1, the Arrhenius approach

*Reference: Michel, D. 2018. A probabilistic rate theory connecting kinetics to thermodynamics. Physica A 503, 26-44



reads

kzj = A,LJ ei(EiiHi)/kBT (2&)
and for the reverse reaction

kji= Ay o (B*=H;)/kpT (2b)

In equilibrium the forward and reverse fluxes equalize
such that

eq R eq .
n; ki =n;" k;

; (2¢)

giving

(ni) _ ki :Kji:@
N5/ eq  Kij Aij

Aji e~ (Hi—H;)/kpT _ Aji e~ AH/kpT

e(EI—Hi—EI—Q—Hj)/kBT

(2d)

Ay Ayj
E* disappears. The equilibrium ratio is independent of
the energetic barrier and depends only on the difference
of energy between the reactants. These currently admit-
ted relationships can be naively questioned.

2 Some concerns and alternative
proposal

2.1 On the universality of kg7 as a mean

energy

1/kpT is introduced in statistical mechanics as a con-
stant called S corresponding to a Lagrangian multiplier
or a distribution parameter, and finally connected to
temperature by analogy with classical thermodynamics.
This introduction of kgT is elegant and perfectly rational
in this context but could be too restrictive for an exten-
sion to more complex systems. kpT is concretely useful
here to adimension the exponent of the Arrhenius expo-
nential and is usually interpreted as the mean particle
energy. This interpretation holds in the kinetic theory
of ideal gases but is much less clear for complex chem-
ical systems in which the mean reactional energies are
precisely different for each type of particle.

2.2 Insensitivity of dynamic equilibria to
activation energies

The accepted conclusion that the presence and the height
of energy barriers do not participate to equilibrium ra-
tios between the reactants, can appear not completely
intuitive because one could expect that increasing the
height of the barrier exponentially amplifies the differ-
ential capacity of the reactants to jump over, including
in equilibrium. By contrast, in the potential surface of
the transition state theory [4], the activated complexes
reside on mountain crests but their energy levels do not
influence the populational distributions.

2.3 A non-probabilistic exponential law

The exponential term of the Arrhenius law has cer-
tain appearences of a probability, but as explained in
the following section, as it stands it cannot correspond
to the exponential distribution. The purpose of the
present study is precisely to examine the theoretical con-
sequences of the hypothesis that it is a probability of
sufficient energy for the transition. This simple hypoth-
esis justified later leads to the novel formulas

Ef Eq
P(sufficient energy) = e~ H = e_<1Jr i) (3a)
which gives the equilibrium relationship
n; A H.\ Et
ln(l) =1In jz+<1_z> _
15 ) eq Aij H;) H; (3b)
A

=1In

i (1o Hi (B

whose structure is completely different from the usual
result

In <m> =In
ny eq

In Eq.(4), the pre-exponential terms A disappear
from the latter form containing Gibbs free energies G.
This modification results from the identification of the
pre-exponential factor as an entropic parameter, which
can then be incorporated in the Gibbs free energies. This
pertinent operation will also be used here and applied to
Eq.(3b), but let us first explain the entropic meaning of
the pre-exponential factor. This factor can be defined
as A = 771Q~! where 77! is the universal thermal fre-
quency (Section 6.2.2), giving their time™! unit to the
rate constants, and 7! is the reciprocal of the number
of possible configurations of the reactant, one of which
allowing the reaction to proceed, as simply illustrated
in Fig.2. As a consequence, In(A4;;/A;;) can be identi-
fied, after elimination of the identical frequencies, as the
difference of statistical entropies

Hj—H, G;-G,
kT ~—  kgT

(4)

Note the inversion of the suffixes between the ratios
of A and . In addition, if a given reactant is involved
in several reactions, one can assume that it is not nec-
essary to precise the nature of the product in reactional
entropy, because it is expected to be the same for all
the reactions starting from this reactant. Indeed, even if
each reaction requires a specific reactional configuration,



this configuration belongs the same set of total configura-
tions  of this reactant. Converting configurational into
thermodynamic entropy through the Boltzmann formula
S = S/kp, allows to detail Eq.(4) step-by-step

. A H:— H;
In (m) =In=L4+ =L
eq

u% E kBT
— ln & + u
Q, kgT
_S;—-S; H;—H,
kg kT
_ H;—H;—T(S; - S;)
N kT
_ (H; —TS;)— (H; —TS;)
N kT
kT

Such a fusion of entropy and enthalpy into free en-
ergy will be retained here for whole systems but not
for individual reactants, because molecular entropy and
enthalpy play different roles in reactions, which are de-
scribed by different probabilities (Fig.2).
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Figure 2. Randomly moving pens and caps simply illustrate
the concept of reactional entropy. The set of their equiprob-
able relative arrangements (which would be much larger in
3D) is noted 2, out of which only one, of probability 1/,
allows the assembly of the caps and the pens, as shown at
the bottom right.
the pen and the cap can stably associate only if the energy of

But even when conveniently positioned,

their collision is sufficient. This second condition is quantified
from 0 to 1 in the energetic term of rate constants defined
here. The configurations illustrated in this figure with sepa-
rate components, can also be conceived for internal domains
of the same molecule.

Eq.(3b) contrasts with Eq.(4) in that it introduces a
role for activation energies in equilibrium distributions.

Large E, do not invert but accentuate the differences de-
termined in both cases by the relative energy levels. This
point results from a mathematical interpretation of the
exponential factor.

3 A new probabilistic interpreta-
tion of the exponential factor

3.1 The exponential distribution

The exponential component of the Arrhenius law and of
the Boltzmann distribution, can be simultaneously de-
rived from the exponential distribution, which is basi-
cally mathematical. According to this law, the proba-
bility that a particle from an homogeneous population
with an average number of energy quanta per particle
(€), reaches a fixed threshold number £*, is

gi
PEz&H=c® (5)
Since & is a temperature-independent threshold and
(€) is temperature dependent, temperature remains at
the denominator of the exponent, but an important dif-
ference with current rate equations is the absence of kgT.
kpT is generally regarded as the mean single particle en-
ergy, acceptable for purely kinetic gases, but not for all
heterogeneous systems containing different kinds of en-
ergies. An other problem even more critical with the
Arrhenius equation of Eq.(1), is that in absence of en-
ergetic barrier (E, = 0), the exponential is equal to 1,
suggesting that reactions are no longer energetically re-
stricted but only affected by the pre-exponential factor.
In other words, the mean particle energy kg1 would be
fully sufficient for all the transitions. This result is clearly
inconsistent with the view of kg1 as a mean energy be-
cause of a basic principle: the average particle energy in
a homogeneous population is no way reached by all the
particles. Indeed, even when E, = 0, that is to say when
the barrier corresponds to the mean particle energy, not
all the particles have a sufficient energy. In the new inter-
pretation, E, = 0 (equivalent to E* = H in Fig.1 and to
&Y = (&) predicts a probability of 1/e (0.37). Even more
strangely when setting H = 0, the new formula gives an
exponential of zero, which means that the transition is
impossible; but the traditional Arrhenius exponential is
non-zero, temperature-dependent and the same for any
energyless reactant (Exp[—FE*/kgT]), which makes little
sense.

3.2 The rule for particle interconversion

The present approach also fundamentally differs from the
classical one in equilibrium. The relative populations of
interconvertible species are determined not only by the



difference of their mean energies, but also by the barri-
ers. Interconversion between particles of different nature
1 and j is possible when either a particle ¢ or a particle
7, has accumulated a minimal number of energy quanta,
denoted below by Sﬁ ;j» which is the same for the con-
versions ¢ — j and j — 4. For a particle of type ¢,
the probability of this accumulation is simply given by
the exponential distribution P(X; > 5ii,j> — eEli/(E)
[B]. As the same holds for the particles of type j, when
(&) > (&), the particles of type ¢ would switch more
probably than the reverse. As a consequence, the system
spontaneously evolves until the reciprocal fluxes equal-
ize. The numbers of particles in the sub-populations i
and j necessarily adjust such that

nfq Ay e—ﬁf,ﬂ(&-) _ n;q Ajq e—Eij/(g]-) (6a)
or
, g 5}( 11 >
(&) e NTE) o)
NjJ eq Ajj

Returning to the correspondence between the unitless
pre-exponential term and entropy, this equation takes the
form

Energetic term

m(™) - §5=s +5§,<—) 7
(”j)eq ’ 7 (&) @

(&)
Eq.(7) can also be written with the activation energy

Entropic term

Ealimg) = 537]» — (&) as follows
w(2) s (i)
i/ eq ' ! (i)

(8)

&) 1)

4 Reconnection of the energetic
parameter of rate constants to
Boltzmann’s energy distribu-
tion

4.1 Starting from the geometric distri-

bution

One of the main goals of present proposal is to unify
kinetic and thermodynamic rules under the same law,

which can be derived from a simple discrete treatment.
Mix E white balls and N black balls, £ and N being pos-
itive integers, into a large bag and draw them at random.
The number of balls E between two balls IV, written &, is
supposed to correspond to the number of energy quanta
in a particle, whose mean number is (£) = E/N. Simple
probabilities say

P> €Y = (EfN)g = <1i€<>5>>gi (9a)

For &% and (€) large and of the same order of magnitude,
this discrete geometric distribution can be approximated
as the continuous exponential distribution.

et

PE>EHY=ec® (9b)

If we no longer reason in term of threshold but of
exact value, we have

PE=¢Y)= <Efzv)g1 <E]+VN)

_<1f@9ﬁlfw>

Switching once again to the continuous distribution,
in the thermodynamic limit

(10a)

1

b3
P(E=EH~ e o (1 - e_ﬁ)
e—E1/(&)
T e i/

(10Db)

which is, when multiplying the numbers of energy
quanta by the energy unit q and when (£)q = kgT,
the Boltzmann probability law where the denominator
can be understood as the sum of all possible microstates,
called the partition function. It was considered by Feyn-
man as the summit of statistical mechanics [0], but is
recovered in two lines from the exponential distribution.
As a consequence, the relative subpopulations of energies
&1 and &5 are given by the ratio of two Eq.(10b)

P(g:gl) 52251

_ = (&)

10c
P (10¢)

Note that the approximations used above are based
on the following property of the exponential function

lim (1+¢a)"/ =e”
e—=0



which can be written

lim (1+(1—g¢) x)l/(l_q) =e”

qg—1
that is the g-exponential or generalized exponential func-
tion which, when ¢ differs from 1, expands the spectrum
of statistical mechanics [6] and has applications in a vari-
ety of fields, thermodynamical and nonthermodynamical

[7]. This function has been proposed as a generalization
of Arrhenius law [§] and is used in rate theories [9, 10} [TT].

4.2 Simplified Maxwell-Boltzmann dis-
tribution

When (€) corresponds to kpT, with energy units, the
structure of Eq.(10b) corresponds exactly to that of the

0.6
04l (E)=1
02/ [ (E)=2
(E)=4
0
0 2 ! 6 13 10

celebrated Boltzmann’s energy distribution, valid for ex-
ample for ideal gases. The ideal monoatomic gas is the
perfect example of a system with a maximal entropy but
whose individual components have an energy strictly pro-
portional to temperature. Inversely, most real systems
have a certain degree of organization (non-maximal en-
tropy) but are made of molecular components with a
certain degree of entropy, which will be examined later.
Let us first deepen the analogies between the exponential
probability distribution and Maxwell-Boltzmann results.
The probability density function (PDF) of the exponen-
tial distribution of particle energies is

1O =5 e ®

represented in Fig.3A.
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Figure 3. Fractional distributions of: (A) particle energetic states, (B) particle velocities, (C) energy density, and (D)
velocity density. Curves drawn with mass and energy of 1 unit. The fractions of particles with energy higher than £* corre-
spond to the colored surfaces in panel A, quantified in Eq.(17a). They increase with (), itself increasing with temperature.

This result meets the traditional interpretation of the role of temperature on rate constants, which supposes that particle
energies increase with temperature, contrary to Gibbs free energies.

Given that the nth moment of this distribution is
E[X"] = (£)" nl, its typical fluctuation is simply
og = E[X?] — E[X]? = ()

and a variance of (5)2 is acceptable without breaking

equilibrium. For a monoatomic ideal gas, the energy
content of a particle is exclusively translational. With

an energy unit q (in joules) such that () = (€)q, a par-
ticle of energy &; has a velocity v; such that & = %mvf,

giving the distribution of particle velocities, after nor-



malization,

2m _ mo?

f(U) = 7T<(E;> 28

represented in Fig.3B and which has a mean value

v = [[Tvuf(v)dv = (/2(E)/mm. The particles which
have an energy content & constitute a fraction of the
system n;/N and bring together in the system a fraction
of energy f(&;) &. The most represented particles are,
according to the exponential as well as Boltzmann distri-
butions, the low-energy and low-mobility particles, which
poorly contribute to the total energy of the system, thus
generating a peak in the energy density curve at the level
of the largest product &; f(&;). The normalized expres-
sion of this curve is the density of the I'y function (shape
shown in Fig.3C).

-
—— e (&

DE) =2(6) = 155 (1)

This function can also be understood as the convolu-
tion of the densities of two independent exponential dis-
tributions of identical parameter, corresponding to the
bottom and top boundaries of the energetic content.

For exclusively translational particles, when substituting
&= %mvf,

2 mo?

my; T
E (&) =—e 28
f(&) 2(E)

whose integration between 0 and oo gives /7 (E)/Sm.

Multiplying the latter equation by the inverse of this
value directly yields the normalized velocity density func-

tion
- (2)"

which gives the bell-shaped curves shown in Fig.3D, with
a mode at

3/2
m 9 _my?
v7e 28

(12)

2()

Ump —
P m

Therefore, we verify that the most probable values of en-
ergy and velocity densities (tips of the curves of Fig.3C
and 3D respectively), naturally coincide through &,,, =
1

$mu?,,. The mean velocity density [; vD(v)dv is

8(€)

™m

(v) =

When substituting (£) = kgT, Eq.(12) is exactly the
celebrated Maxwell velocity distribution, currently intro-
duced in different and longer ways. Let us now consider

more elaborate systems with different types of particles
and energies.

5 Comparative influences of tem-
perature in the different treat-
ments

5.1 Influence of temperature on rate
constants

If the mean reactional energies are proportional to tem-
perature (H = CT), the traditional shape of the Ar-
rhenius plot is obtained with the present treatment, but
through a different way. Increasing the temperature in-
creases the thermal energy stored in the particles and
responsible for their reactional capacity, thus reducing
the activation energy E, = E* — H. By contrast using
the conventional formula of Eq.(1), E, is the constant
steering coefficient of the Arrhenius plot [12], in spite of
its frequently noticed dependence on temperature 8 [13],
and the effect of temperature is assumed to come from
the entity kpT.

5.2 Influence of temperature in equilib-
rium

5.2.1 Where is the temperature in the different
equations?

The specificities of the new proposal can be clearly high-
lighted by taking up the statistical definition of entropy
and grouping together the common elements as follows.
The classical relationship can be written

n$d ni  H; — H;
In - —In-2 =L "* 1
Yo TN, T keT (13)
while that proposed here is
ng? ng? 11
mei _pd gt (- 14
" Qz " Qj ©J (Hz HJ) ( )

The two major differences between the right sides of
Egs.(13) and (14) are (i) the absence of the energy barrier
E* in the classical form and (ii) the (apparent) absence of
the temperature in the new one. It is precisely proposed
here that the effect of temperature is mediated by en-
thalpies, whereas in the classical approach, temperature
is also present explicitly in the component kgT. Using
equilibrium constants for the classical approach, Eq.(13)



is equivalent to

G; -G,
kT

Writing AG = AH — T'AS and supposing that H
and S are temperature-independent, has the practical
advantage to yield the expected van’t Hoff plots linearly
dependent of 1/T. In the present treatment, using an en-
ergy threshold E* and a mean enthalpy H for a reactant
or a group of reactants according to the Hess’s law,

anji = (15)

1

%

b

)

J

(16a)

A A ; ;
@ 5 :
g : :
Bl
< 0 :
< i ;
= ‘AH= constant:
) : '
T T
Temperature

showing that when the compounds have the same en-
thalpy, their equilibrium is governed by entropies. Using
the activation energy F,,

H;
——

anji:Si—Sj+< 77
J

Temperature is not apparent in these equations but
hidden in the enthalpies. The relative temperature-
dependence of the enthalpies regulate the equilibrium,
as schematized in Fig.4.

B4
T
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T

T
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Figure 4. Comparative interpretation of the role of temperature in van’t Hoff plots. (A) In the classical interpretation, the

heat capacities of the two reactants are always parallel and may vary or not. (B) In the present interpretation, temperature

affects in a different manner the reactivity of both reactants because of their different heat capacities. As a consequence, A H

depends on temperature. The variations of enthalpies are exaggerated in this scheme, but even a faint divergence between

the reactant enthalpies would have exponential consequences on the difference of waiting times between the back and forth

reactions.

In the classical interpretation (Fig.4A), the enthalpies
of the reactants are shown to increase in parallel with
temperature, but note that strangely even if they
simply remain constant, the traditional temperature-
dependence of van’t Hoff plots would still be obtained.

5.2.2 The kinetic formalism using Gibbs free en-
ergies

Temperature is intuitively expected to increase the re-
action rates by increasing the energy of the reactants,
but using free energies in the kinetic treatments would
say the opposite. G always decreases with temperature,
thereby increasing the difference E*¥ — G and raising the
height of the barrier. Using the so-called enthalpies of
reaction H instead of Gibbs free energies, allows to cir-
cumvent this contradiction. H is indeed proportional to
temperature in certain ranges of temperature and does

not correspond to G. The energy landscape of Arrhenius
is governed by enthalpies whereas thermodynamic land-
scapes include entropies. The activated complex theory
describes the kinetic barrier in term of difference of Gibbs
free energies [4,[T4]. In this theory, the tip of the barrier is
not a temperature-independent threshold but the energy
of an activated complex that itself depends on tempera-
ture, so that the temperature-dependence of the height of
the barrier AG? results from the relative dependences on
temperature of the ground (G) and transition (G*) states
[15]. The activated complex is an atypical structure sta-
bly standing on a saddle point of the energetic landscape
and with the strange property, when it is reached, to
only evolve in the direction of the complete transition
but cannot turn back. Moreover, the forbidden transi-
tion is not the same depending of the starting reactant
[3]. In the kinetic theory, temperature is the macroscopic
manifestation of microscopic motions, that is re-scaled at



the microscopic level through the Boltzmann constant, so
that kT is an average index of single particle motion.
But temperature is also present in Gibbs free energy, not
only in its most frequent expression G = H—T'S, but also
because H and S are themselves temperature-dependent
[16, I7]. Raising temperature from T; to Tp (> T3) in-
creases enthalpy by H(Tz) — H(Ty) = Cp (T2 — T1) and
entropy by S(Ts) — S(T1) = CpIn(T3/T), where Cp is
the heat capacity supposed constant at constant pres-
sure.

5.3 Reintroducing temperature in reac-
tional energies

5.3.1 Increasing particle energy favors reactions
Using the energy quanta approach, the dependence on
temperature is conferred by the ratio £ (temperature-
independent) over (£) (temperature-dependent). This is
in fact less clear for the traditional Eq.(15) and the ex-
ponent of the rate equation based on a difference of free
energy [15]

At

k=r1"te *sT

where both the numerator and the denominator are
temperature-dependent. Reactions are facilitated when
the energy of the reactants is higher. Possibly because
this reasoning does not hold for Gibbs free energies, many
teachers prefer drawing the Maxwell velocity distribution
to show that increasing the temperature increases the
fractional population over the activation energy thresh-
old. This view can in fact be recovered probabilistically,
without returning to the ideal gas, using the partial in-
tegration of the PDF of the exponential distribution.

> 1 £
P(E =&Y :/ — e wdE
g=et (€)
_ gt
e &

(17a)

One finds again the energetic part of rate constants pro-
posed here, given in Eq.(5) and illustrated by the colored
surfaces in Fig.3A. Remarkably, Boltzmann probability
can also be obtained by integration of the same function,
but in a different manner.

PE=89= /g:gi @)

1 £F
= (1 _e_<£>) e &

gt
Lo drae

(17b)

The global shift of the Boltzmann distribution upon
temperature increase (Fig.3) is commonly used in text-
books as a pedagogical explanation of the increase of the

fraction of particles with a energy higher than a given
activation threshold. This description implicitly assumes
that the Boltzmann distribution of energy is maintained
in homogeneous reactants in presence of particle transfor-
mations. This rational explanation of the role of temper-
ature mediated by particle energies is formally modeled
using Eq.(17a). On the one hand, it can be understood
for enthalpies but not for Gibbs free energies, but on the
other hand, even when using enthalpies, the current and
present approaches strikingly differ, as explained below.

5.3.2 Temperature increases the reactional en-
ergy of the particles

The dimensionless exponents of the two competing struc-
tures of rate constants compared here, contain ener-
gies in the numerator and denominator, but beyond
this common property, the principles are different. In
the usual form, the exponent is H/kpT, whereas in
the present one, it is E*/H. In the former ratio, the
numerator and the denominator both depend on tem-
perature, whereas in the latter one, only the denom-
inator is temperature-dependent. In other words, the
traditional formulas still work even when H are inde-
pendent of temperature, in contradiction with the in-
terpretation of the role of temperature through parti-
cle energies. Thermal energy increases the speed of
molecules, important for the reactional efficacy of colli-
sions, but more generally the heat capacity of molecules
describes how much energy can be stored by a molecule
in its internal vibrations or rotations, which are often
the triggering factors of chemical transformations, par-
ticularly for biological macromolecules whose heat ca-
pacity is clearly not negligible. The heat capacity of
a monoatomic gas is purely translational, but that of
more complex particles include the other forms of en-
ergy. In the new exponent proposed here, the denom-
inator represents the temperature-dependent reactional
energy in all its forms: translational, rotational and vi-
brational. Since all these forms define the macroscopic
notion of temperature, the reactional propensity is nat-
urally expected to follow temperature. This property
precisely characterizes enthalpy, which obeys the ther-
modynamic relation 0H (T')/0T = C, whose integration
with C, temperature-independent and the postulated ini-
tial value H = 0 at T' = 0, simply gives H o CT. The
variation of enthalpies with temperature is in fact less
simple in practice. It is calculated using Kirchhoff’s law
in term of a reference state different from 7'= 0 [I§]. In
addition, the temperature-dependence of C'p should be
introduced using empirical expressions found in tables
like Cp = a+ BT +~T~2 + ... Absolute enthalpies are
refractory to experimental measurements contrary to dif-
ferences of enthalpy calculable by calorimetry. Hence for
simplicity in the following equations, the proportionality
between H and T will be retained as a gross approxi-



mation for theoretical elementary reactants. Introducing
this definition of enthalpy in Eq.(16) gives

Ei 1 1
h’lKji ~S; — Sj + —= ( - ) (18)

T \C

Where C; and C; are the average heat capacities of
the interconvertible reactants weighted by the stoichio-
metric coefficients. Strikingly, Eq.(18) can yield typical
van’t Hoff plots. It also shows that at very high tempera-
ture, the equilibrium constant becomes essentially a mat-
ter of entropy, as expected. Considering the exponential
term of rate constants as a probability implies profound
conceptual changes but moderate apparent changes in
practice, which just impose to reinterpret the experimen-
tal plots, as schematized in Fig.5.
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Figure 5. Comparative interpretations of the Arrhenius

and van’t Hoff plots between the classical and the present
treatments of the energetic exponential. The meaning of the
entropy intersect is unchanged but that of the slopes is com-
pletely different.

The most striking difference is that in the classical
interpretation of the van’t Hoff plot, the temperature-
dependence of enthalpies is denied, whereas the present
probabilistic model is fundamentally based on calorimet-
ric enthalpies. The simplistic dependence on tempera-
ture depicted in Fig.5 should be further refined in these
very approximate equations, using Kirchhoff’s law, set-
ting the standard values Hy at T = 298K, and taking
into account the dependence on temperature of heat ca-
pacities, entropies and enthalpies according to the basic
thermodynamic differentials

95(T) _ Gy

oT T

OH(T)
oT

The frequency of the preexponential factor is also
temperature-dependent. Moreover, certain ranges of
temperature should not be considered in case of phase
transition or of inactivation of certain reactants. For
example, proteins are denatured over 320 K and frozen
below 270 K.

5.3.3 Deviations from the expected plots

Experimental Arrhenius plots are rarely the straight lines
expected from the Arrhenius equation [Ink = InA —
%%], but can have convex or concave shapes, explained
by tunneling effects and other hypotheses [8][19]20]. The
dependence of heat capacities on temperature is an ad-
ditional explanation. Deviations are also the rule for
the so-called van’t Hoff plots in equilibrium. Moreover,
the two types of enthalpy: (i) calorimetric and (ii) de-
termined from the analysis of experimental plots using
the currently admitted functions, are always different
[16, 17]. Reintroducing the temperature-dependence of
enthalpies and entropies might account for certain devi-
ations [2I], 22], but more fundamentally, a difference of
enthalpy between the interconvertible reactants is syn-
onymous to a heat of reaction, that itself reflects a dif-
ference of heat capacity, and heat capacities generally
vary with temperature.

5.4 Giving a calorimetric meaning to the
Boltzmann constant

Heat capacity is assumed to be closely related to energy
fluctuations. We have seen that the typical fluctuation of
the exponential distribution is og¢ = (€). Considering it
as proportional to temperature through an absolute heat
capacity C, gives og¢ = CT, to be compared with the
result of statistical mechanics o = +/Cy kg T obtained
using (E) = U = —%(8Z/36)N7V, 8 = 1/(kpgT) and
Cy = (0U/OT)y - This comparison suggests a corre-
spondence between the Boltzmann constant and a heat
capacity. This correspondence is also supported by the
proportionality, in the classical limit and following the
Dulong-Petit law, between heat capacity and Boltzmann
constant in simple systems like ideal gases. In constant
volume, the heat capacity of ideal gases is Cyv = Fkp,
where n is the number of degrees of freedom. For in-
stance, ideal monoatomic gas particles flying in a con-
stant volume have a mean kinetic energy

3 - ~ 1 9

CyT = 5(5) =Ems = 3 MV

where vpms = 1/3(E) /m is the root mean square velocity,

obtained using velocity vectors split over the 3 spatial co-
ordinates. The interest of taking kp as a minimalist heat



capacity is twofold: kg7 would be a prototypal enthalpy
for simple systems and the two entropies, thermodynamic
and statistical, would be related through a heat capacity.
Volume changes regulate pressure for systems of mutu-
ally colliding particles like gases, but for macromolecules
in solution, pressure is essentially due to microscopic col-
lisions with the solvent, water, that is itself incompress-
ible and whose cellular content automatically adjusts to
the cellular volume. Heat capacity defines the extent of
heat absorbed or released upon temperature change, ac-
cording to AQ = CAT. But at constant temperature if
for some reason the heat capacity evolves, then a release
or uptake of heat is also expected such that AQ = TAC,
thus making a clear connection between changes of heat
capacity and of thermodynamic entropy, the latter one
including in addition the configurational information of
statistical entropy such that S = CS. Under this postu-
late, heat capacities would become the main ingredients
of the thermodynamic constants. For the equilibrium

constant,
S, 8 1o
i (G-g) 7 ag) W
and for the kinetic constant,
Ef
1nkij:_ln7—_0¢<5i+ %J> (20)

Differentiation of Eq.(19) with respect to temperature
gives

¥
dln Kji - . i,j i

which is interesting since Eq.(21) has the structure
of the original equation of van’t Hoff, based on the heat
developed by the reaction [23]. Using conventional Boltz-
mann entropies S = kpS, differentiation of Eq.(18) gives

i
dln Kﬂ o 1 Ei,j
a ~ G- a) <kBT * ciCjT2> (22)

Once again the theoretical heat capacities of these
equations are in fact H/T.

5.5 Extension of the detailed balance to
activation energies
To the properties of the hypothetical rate constants listed

above, is added a complication to satisfy the detailed bal-
ance rule linking the different rates constants of a system.
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The traditional form of the energetic exponential obvi-
ously complies with this rule since the total difference of
energy of a global reaction made of several elementary
steps is simply the sum of energy gaps, with the auto-
matic elimination of activation energies, as illustrated in
Eq.(2d). Things are less simple with the new form since
the activation energies should now take part to the de-
tailed balance relationship. Consider for example a tri-
angular circuit. The compounds a and b can interconvert
either directly, with an activation threshold Ei,b? or in-
directly through an intermediate ¢. Assuming that the
reactional enthalpy and entropy of every reactant are the
same for all its transformations, writing Eg’c the activa-

tion threshold between a and ¢, and Ei , between ¢ and
b, the detailed balance relation

kab kbc kca
— =1 23
kba kcb kac ( a)
implies for the energies
Eciz,c - Ei,b Eziz,b - Eg,c Ebi,c - Eg,c 0 23h
H, + H, + H. B (23b)

generalizable for all the cycles of the system, with any
number of components n

"B - BN .
Z Lt 0, LT =0 with EiO:E

i=1

¥

N
nn+1 = El,n

(23c¢)
These relationships with circular permutations are mu-
tually compatible for all the cycles of a reticulated sys-
tem. In this new treatment, the activation energies
are now envisioned as integral components of the sys-
tem, whereas in the classical theory, they were extra-
parameters whose values can be arbitrary.

6 Rebuilding discrete thermody-
namics

Matter was discretized in the visionary theory of Boltz-
mann and the same was extended to energy by Planck
[24]. Since handling energy as a number of quanta fa-
cilitates the formulation of basic equations, let us ap-
ply again this recipe to the rudiments of thermodynam-
ics and then reintroduce the new kinetic rules proposed
above. In this section, the notions of free energy and
entropy will apply to the system while the reactants will
be supposed purely enthalpic. The concept of system
entropy long proved fruitful to begin statistical physics.

6.1 Index of uncertainty for a population

Two criteria are sufficient for defining this index equiva-
lent to entropy. It should be: (i) a function of the number



of possible configurations (microstates) of the system’s
components and (ii) additive for uncorrelated systems.
(i) The different possible configurations of a macroscopic
system (total number written ), are invisible and def-
initely not measurable in practice, but the number of
these theoretical ”snapshots” can be deduced statisti-
cally. It reflects the uncertainty of the system, a no-
tion closely related to missing information and disorga-
nization. For example, a book is an organized object in
which the page 189 is located between the pages 187 and
191 with a good degree of confidence, but if the pages
are torn and thrown down, this probability strongly de-
creases because the number of possible arrangements of
the pages increases.

(ii) The other requirement for an index of disorganiza-
tion is its additivity for independent systems. This can
also be easily understood: For each microstate of a sys-
tem 1, all the states of a system 2 are possible, so the
total number of states of the global system 1 + 2 is the
product ©4€5. Obviously the function satisfying

FEQ2) = f(n) + F(22)

is the logarithmic function (In€2). We will also define a

(24)

single particle average index & = N In Q. Concretely,

the total number of configurations of a system made of
N noninteracting components falling into r categories is

N!
Q=" 25
nilna!. .. n,! (25)
Using the Stirling approximation x! ~ 2% €™% /27

[25] of which a rough approximation is z! ~ z%,

e ) ) ()T
nytny? . .ongt N N/ TT\N
(26)
so that
r _—
mo=-3"m(%) 27
n ; n (% (27)
giving a single particle average index of
S——lin»ln(ﬁ)——i ; Inp; (28)
- N= l N i:lpl "

with p; = n;/N and ), n; = N. With respect to these
definitions, the so-called Boltzmann entropy (Sp) and
Gibbs/Shannon entropy (S¢) are not equivalent, but re-
lated through S¢ = Sp/N. Sg/kp corresponds to S
whereas Sp/kp corresponds to NS.

But for deriving a pure theory, using an approxima-
tion, as acceptable as it can be, is not satisfactory. To by-
pass the need for the Stirling approximation, it is of some
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interest to reconsider Eq.(26), which could simply mean
that every fractional state n;/N is occupied n; times, so
that € is simply the reciprocal of the probability of oc-
cupancy. Based on the same principle, another equation
can be designed by supposing that the system can evolve.

6.2 Evolving system

In a first-order network, r particle states obey a lin-
ear evolution system, which has a unique stable solution
written n;?. A new state function allows to describe the

eq\ Mi
U .
N
eq

1 < n, .
_ i 7 _ . eq
U= N ;:1 n; ln ( i > = ii_l p; Inp; (29)

U is an index of the mean gap between the current
and equilibrium distributions. This gap can incite the
system to evolve, provided it is higher than its degree of
disorganization U > S§. The difference F =U — S is

T T
F==> pilnp{"+> pilnp;
=1 =1

occupation of the equilibrium proportions (

(30)

F will prove particularly interesting upon derivation.

6.2.1 Introducing time

To concretize the notion of system evolution and of inter-
changeability between single particle states, one should
introduce a temporal ingredient, in the form of rate con-
stants k examined previously of unit time™'. As these
rates depend on the temperature, the system will be con-
sidered closed but not isolated and embedded in a ther-
mal bath (NVT ensemble). As the different states can be
interchanged two by two, a simple two-state system can
be used to derive the proportions of particles in states ¢
and j (or for a single particle, the probability to be at a
given moment in state i or 7). Let us first derive S.

ds

7 (p;Inp; +p;Inp;)

= (kijpi — kjipj)(1 4+ Inp;)
(31a)
+ (kjipj — kijpi)(1 + Inpj)
= (kijpi — kjipj) In <p7>
pPj
which can be generalized to the r nodes
dsS i
E = Z (k'ijpi — kjipj) hl <p;> (31b)

0]



Eq.(31) is not particularly illuminating because it can
be either positive or negative; but things are more in-
teresting when deriving F. Taking two interconvertible
nodes i and 7,

!
.. Pi pPj
F'(i,j) = |piln <e> +pjIn | 2
(4,4) [ P s\ e
Y4 Pi
= (kszz — kjipj) lln <pe]q> — hl (peq)‘|
J %
eq
Di Pj
= — (kijpi — kjipj) In ( éq)
j Dy
and considering that k;;pi = kjipj?,
kijpi
j §ilj k;ips
(32a)
which can be written in term of flux (J = nk) for the r
nodes,
dF T
— == (Jij—Jj) In (J) (32b)
dt Z / Jji

.3

Contrary to Eq.(31), Eq.(32) can be only zero or neg-
ative. For this reason, it remarkably illustrates the free
energy dissipation and can naturally be identified with
the arrow of time [26, 27, 28]. The discrete statistical
functions described above can be reconnected to tradi-
tional thermodynamics by identifying kgTF with the
Gibbs free energy of the system, kpTU with the inter-
nal energy and kpS with the entropy. An increase of
entropy (towards equipartition) logically decreases free
energy and the possibility to extract some work. Further
extensions of this discrete approach to thermodynamics
are described in [29,[30]. Now let us look at Eq.(32) which
has the particularity to bring together the two different
aspects of time.

6.2.2 Time’s arrow and time steps

The arrow of time envisioned as the dissipation of free en-
ergy in Eq.(32) has a clear thermodynamic origin out of
equilibrium, but even in full equilibrium conditions, the
rates constants keep their time units and the particles in-
definitely continue to move and transform. This sort of
time, completely reversible contrary to the time’s arrow,
corresponds to the elementary time steps related to an-
other field of physics: quantum physics. Statistical and
quantum physics are intimately and necessarily related
because enumerating configurations would be infinite in
continuous space and time. Accordingly, the quantum
of time can be defined as the time necessary to cross the
length unit below which successive configurations cannot
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be distinguished, because of the uncertainty principle.
This value can be obtained in multiple ways including
in the context of the Maxwell-Boltzmann system. For a
single particle, the length unit is the thermal wavelength
of de Broglie A = h/p = h/+/27mkpT and the mean par-
ticle velocity determined previously is © = /2kgT /7m.
The ratio gives the minimal time step

A h

— =5 Tm8><10_14satT:300K
B

T= (33)
whose reciprocal is the maximal frequency close to
kpT/h, considered by Eyring as the most remarkable
achievement of his theory [31], and which was already
present in the equation of Herzfeld [32]. In the rate con-
stants, this maximal frequency 7! is more or less de-
creased by entropic and energetic restrictions.

The arrow of time is a source of endless debates, par-
ticularly interesting when applied to the universe taken
as a whole. The free energy of a closed system should
necessarily diminish within the limits of residual fluctu-
ations. Then, whence comes the initial free energy of
our universe which does not seem very organized in its
youth? Did previously latent forces release free energy
during the physico-chemical maturation of the universe?
or do we live in a local fluctuation in a giant universe
in equilibrium? according to an elegant but contested
proposal of Boltzmann [33].

6.3 Introducing discrete energy

The frequencies k;; introduced in Section 6.2.1 remain
abstract and their nature should be precised. In addi-
tion to their temporal parameter, the rate constants in-
clude an energy parameter which can be different in the
different k. Before envisioning reactional systems, the
spreading of energy will be first described in simple sys-
tems without chemical transformations. Instead of dis-
tributing particles into ”energy levels”, energy units are
distributed over particles. Things appear clearer when
energy is handled discretely. Perhaps influenced by what
Boltzmann said him in 1891: "I see no reason why en-
ergy shouldn’t also be regarded as divided atomically”,
Planck proposed in the founder article which opened the
way to quantum physics [24], to discretize energy into
quanta of value hr, written more generally q below.

6.3.1 Homogeneous system

The mean energy of thermal systems can be recovered in
a discrete manner from the second law. Returning to the
white balls supposed to correspond to energy quanta in
Section.4, the number of ways to distribute E objects in
N boxes is

(N+E-1)

2= (N— 1! E!

(34)



E
N

which gives, using the Stirling approximation, a single
E

particle average entropy of
i1 Q=(1+
N T N
(35a)

When the system contains a single category of parti-
cles, the ratio F/N is equivalent to the mean number of
energy quanta per particle U/q [24].

S U U
(1 + ) <1 + )
q q
Temperature can now be introduced using the funda-
mental entropy equation.

8:

— —1n

N

U

— —1In
q

U

(5) @

as 1
WoT (36)
according to which integration of Eq.(35b) yields
kB q o 1
L1t p) =7 (37a)
and U )
T =(&) = SR T 1 (37b)

The reasoning can be circular in statistical thermo-
dynamics and these results can also be recovered in a
reverse way starting from the partition function, as did
Einstein [34]. The ratio of Planck (q = hv) over Boltz-
mann entities, turns to be the logarithm of the inverse
proportion of energy quanta in the mixture.

(@)

+ -
(€)

Replacing enthalpy by this energy yields the new Ar-

rhenius esquation

hv B
kgT

P (38)
n =
N+ F

' (eq/kBT _ 1)

At the thermal scale, q is negligible compared to kgT
and the expansion of Eq.(37b) gives a mean number
(unitless) of energy quanta

Ink/A= —%

(&) ~ p (39a)
and a mean energy (joules) of
(E)q=U ~ kT (39b)

As the heat capacity of a substance is its ability to in-
crease its energy content with temperature, it can there-
fore be deduced from Eq.(37b),

2

(&)

q eCI/kBT
= 9ar

¢ ~ kpT? (ea/knT — 1)2

6.3.2 Heterogeneous system

When the system is composite and made of r different
categories of particles which have different mean energies
(&), we have to fill r boxes with N = ). n; particles and
E =3, n; (&) energy quanta

(n;+ E; — 1)!
(n; — 1! E;!

0= H

(40)

giving, for large populations and using the Stirling
approximation, an entropy of

E

)

?

E;

T

_Eiy,

2

E;
) In (1 +
n;

-

Keeping N and FE constant, this entropy is lower than
that of an homogeneous system, showing that the cate-
gorization of objects is a first step towards organization.
As the derivative of a sum is the sum of the derivatives,

InQ) = inl [(1 +
i=1

1

= qu/kBT —

- (42)

First-order particle interconversion

To render this heterogeneous system dynamic, one should
introduce the possibility of interconversion between the
particles of the different kinds in the form of rate con-
stants. The rule for particle interconversion has been
established in Eq.(8) using the exponential law. For uni-
molecular transconversions which do not modify the total
number of particles, let us abandon the ratios of pre-
exponential factors. The single particle energy averaged
over the r(r —1)/2 couples of categories in the system is

et
_ Do Ej;éi (Ee (&

et
i€

(Em) = (43)

i,7

in which the inexisting interchanges are characterized
by Ei ; = o0o. For a system of enthalpic components, one
can define the transition rate constants

k‘i]’ =7 e g}]/(g) (44&)

ka' 716_51 /4€5) (44b)

=T
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where 7 is the time step and (&;) is the mean energy
of the particles of type i, both depending on temperature
through Eq.(33) and Eq.(42) respectively.

For two categories n1 and nq, the relationships linking
energy and particle numbers are

% <1+e12> @ ) (45a)
n9 1
—= 1+e 12 &7 D 45b
= (1 N e
E P11
et @Jlﬂ((m <52>> (45¢)
Ey (&)
and the mean particle energy in the system is
(&) & (&2) &
e T 4+ (&) e &
(Em) = E— (45d)

Circular equilibria

Three categories of particles are sufficient to establish
the famous detailed balance relationship of Wegscheider
linking the constants of a cycle [35]. The relation

mnang

46
g N3 Np ( a)

is obviously always true, in particular at equilibrium, so
the constants are necessarily related through

Fag kas ka1

46b
ko1 k3o k13 (46b)

The activation energies, which were completely arbi-
trary in previous theories, are now mutually connected
through

.-, &, 35

(&1)

52 .3
<52>

— &l

w0

(47)

Circular equilibria are particularly relevant with re-
spect to catalysts. Contrary to the widespread repre-
sentation of catalysis as a deformation of the energy
landscape along the coordinates of a single transition,
it should rather be envisioned as a circuit, at least trian-
gular and letting unchanged the uncatalysed single step
reaction.

14

6.4 Possible source of confusion for mod-
eling the relationships between frac-
tional populations and energy

The enthalpic particles of the toy systems described
above are sufficient to visualize the important differences
in the description of the ratios of particles, depending on
whether they belong to the same category or not. For a
homogeneous system of mean energy (£;) in which en-
ergy diffuses without barriers between particles nq, the
ratio of particles with energies £, and &, follows, accord-
ing to Eq(10c),

Ea—E&p

ni(a)/ni(b) = e ©

which is a familiar Boltzmann relation when setting
(&1) = kpT, whereas interchangeable particles of differ-
ent categories with different mean energies (£1) and (&s),
are related through

(48)

)

Eq.(48) is valid for a single phase in the pioneer statis-
tical theories, applicable for instance to energy spreading
between gas particles, but the object of this manuscript
is precisely to propose that this form cannot be extended
to chemical reactions. The next tasks in this direction
will be to implement these rules from first order to sec-
ond order networks, to introduce particle entropies, to
extend results to entropic open systems in steady state
like biochemical systems, for modeling the fundamental
ingredients of life: nonlinearity, retroactions and multi-
stability.

t _
ny /s = (@ (49)

7 Conclusions

The present probabilistic treatment based on the ex-
ponential distribution does not invalidate the Maxwell-
Boltzmann distribution, but encompasses it as a par-
ticular case of homogeneous system with temperature-
dependent particle energies. Hence, there is no reason
to not extend this approach to the energy-dependence
of particle conversions, because rate constants are inte-
gral constituents of dynamic systems. The central and
original assumption of statistical physics was the model-
ing of randomness, but randomness is precisely described
in the most fundamental way by the exponential law.
In fact, the equations of Arrhenius and Boltzmann are
two facets of the same law of randomness, unified in the
present theory. This is perfectly illustrated by Eqs.(17a)
and Eq.(17b) respectively: the first one is the probability
that & > &% and the second one that £ = £F. To fur-
ther enlighten this point, Boltzmann probability is sim-
ply obtained using the exponential distribution only, by



subtraction as follows
>

P(E=j)=PE=j)—-PE>j+1)
— e—I/(E) _ g=(+1)/(E)

— o—i/(&) (1 _ e—1/<s>)
e—3/(€)
o€ e

(50)

The relationships established here are simply derived
from the single postulate that the exponential term of
rate constants has the status of a probability, in line with
the profoundly probabilistic spirit of Boltzmann’s theory
and with the intuition of Maxwell: ” The true logic of this
world is in the calculus of probabilities”. In this respect,
the rate constant defined here is entirely probabilistic

kT = P(configuration is OK) x P(energy is OK)

which simply says that the frequency of a transforma-
tion follows the probability of favorable conjunctions of
configurational and energetic conditions, which is

1

_E/(E)
k=~ xe ¢ 51
y (51)
leading to the equilibrium relationship
ng? ng? 1 1
In 2 lnjﬁiﬂ( ) 52
o "o, f\E ey @

The mean reactional energies (£) can logically be
identified with enthalpies, but Gibbs free energies are
not appropriate for these definitions because the entropic
and energetic parts are involved in independent probabil-
ities. If the starting probabilistic postulate is wrong, the
present study would remain a theoretical exercise, but it
is however appealing owing to: (i) its mathematical rele-
vance; (ii) its capacity to recover the Maxwell-Boltzmann
distribution and to unify kinetics and thermodynamics;
(iii) the recovery of the van’t Hoff relation between equi-
librium constants and temperature and (iv) the restora-
tion of the link between the reactional propensity and
the heat capacity, which is strangely ignored in the tra-
ditional interpretation of the slope of van’t Hoff plots
as AH/ky. In the traditional formulas, the enthalpies
are not responsible for the dependence on temperature
that is due only to the division of enthalpies by kpgT.
By contrast, it is proposed here that enthalpies directly
mediate this dependence. Singularly, this view is found
in textbooks explaining the dependence of reactions on
temperature using populational energy distributions, but
without realizing that this explanation contradicts the
general formula where the particle energies are at the nu-
merator of the exponent supposed constant, while tem-
perature is at the denominator. But although profoundly
restructured, the thermodynamic relationships derived
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here yield resembling behaviors, so that the comparison
between the previous and new treatments is more a ques-
tion of interpretation of the experimental plots than a
true discrimination. In the field of rate theories, Laidler
already noticed that, surprisingly, the widely different
rate equations proposed in the past can give reasonably
good fit to the same experimental data [2]. Precise ex-
perimental validations in this field are hindered by nu-
merous problems, including the knowledge of absolute
enthalpies, the complex temperature-dependence of heat
capacities, the interferences with tunnel effects and the
narrow range of testable temperature. Moreover, exper-
imental and calculated values are rarely in good agree-
ment [I8] and strikingly, calorimetric and van’t Hoff en-
thalpies never coincide [16] [I7], which is not a surprise
considering that the enthalpy change for a reaction is re-
sponsible for a heat of reaction, whereas the heat capac-
ity of enthalpies is ignored in the current van’t Hoff plot
approach. In the alternative view examined here, the
entropies of the reactants are completely identical to the
previous ones; the calorimetric enthalpies and the Hess’s
law are unchanged; the favored direction of reactions is
still driven by entropy increase and/or enthalpy decrease;
the equilibrium constants remain defined by the ratios of
interconvertible reactants concentrations in equilibrium
and still satisfies the van’t Hoff formula. Note in this re-
spect that the original formula of van’t Hoff was not the
equation currently attributed to van’t Hoff in texbooks,
since van’t Hoff did not use the Boltzmann’s constant or
the ideal gas constant, and his reasoning was fundamen-
tally calorimetric [23], in line with the changes of heat ca-
pacity on which the present theory is based. In addition,
van’t Hoff indicated that he managed his equation for nu-
merical applications and experimental controls only, but
did not enter into the details of thermodynamics neces-
sary for its demonstration [23]. The 19th century formula
of Arrhenius also remains an equation of practical conve-
nience, even if experimental data show that it is a poor
quantitative predictor of reaction rates, particularly in
high-dimensional, complex chemical kinetics. Attempts
to rectify this form include transition state theory [4],
diffusion from an energy well [36], reactive flux theory
[37], and transition path theory [38]. The alternative ap-
proach proposed here is basically simpler since it is just
the probability for a particle in a population to have a
given level of energy. The energy barrier is conceived
here as a threshold in the Boltzmann distribution of the
reactant itself, but not as the energy of a hypothetical
complex. The present study, however, deals only with
the basic rate constants of unitary transitions between
uniform reactants, in which time and energy are clearly
separated and the energy barrier is unique. These ele-
mentary constants can then be used as ingredients for
real reactions which are most often composite and in-
volve non-uniform reactants. (i) Serial reactions can be
treated as Markovian walks with absorbing boundaries



[39] in which the probabilities of jumps are transposed
to reaction chains by introducing elementary transition
rates (unidentifiable in practice), each one with its own
energy barrier. The resulting mean first passage times
then correspond to the reciprocal of the global reaction
rates. Such serial reactions could ensure valuable roles in
biochemical interactions [40] and in their accuracy [41].
(ii) In biochemistry, real reactants are rarely uniform,
particularly in the case of large macromolecules like for
example proteins. A protein is a typical example of a
giant macromolecule with many chemical bonds and de-
grees of freedom, clearly subject to so-called dynamic dis-
order, particularly important in intrinsically disordered
domains [40], in which a myriad of microreactions is in-
volved even in simple conformational changes. A protein
envisioned as a single species, generally corresponds to
an ensemble of conformers with slightly different ener-
gies.

The elucidation of the fundamental nature of rate con-
stants is essential considering their widespread use from
chemistry to systems modeling. Rate constants are the
regulators of systems dynamics and as such allow to in-
troduce the notion of time. If time proves so difficult
to conceive, it is probably because it relies on two com-
pletely different pedestals belonging to different branches
of physics: (i) the step of time, always at work, both
out of and in equilibrium and originating from quantum
physics and (ii) time arrow, existing only out of equilib-
rium and which is a populational phenomenon emerging
from statistical physics [33]. Dynamic systems clarify
this perception because they combine both aspects: the
time step included in the preexponential component of
the Arrhenius equation, and the time arrow describing
the spontaneous evolution of a system of interconvert-
ible particle states.
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