Joint Reconstruction and Segmentation of Real 3D Data in Computed Tomography thanks to a Gauss-Markov-Potts Prior Model,
Camille Chapdelaine, Ali Mohammad-Djafari, Nicolas Gac, Estelle Parra-Denis

To cite this version:
Camille Chapdelaine, Ali Mohammad-Djafari, Nicolas Gac, Estelle Parra-Denis. Joint Reconstruction and Segmentation of Real 3D Data in Computed Tomography thanks to a Gauss-Markov-Potts Prior Model,. Fully 3D, Jun 2017, Xian, China. pp.810-813. hal-01569301

HAL Id: hal-01569301
https://hal.archives-ouvertes.fr/hal-01569301
Submitted on 26 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Joint Reconstruction and Segmentation of Real 3D Data in Computed Tomography thanks to a Gauss-Markov-Potts Prior Model

Camille Chapdelaine1,2, Ali Mohammad-Djafari1, Nicolas Gac1 and Estelle Parra2.

1 Laboratoire des signaux et systèmes, CNRS, CentraleSupelec-Univ Paris Saclay, Gif-sur-Yvette, France

Abstract—Computed Tomography is a powerful tool to reconstruct a volume in 3D and has a wide field of applications in industry for non-destructive testing. In these applications, the reconstruction process has a key importance to retrieve volumes that can be easily analyzed during the control. In this paper, in order to improve the reconstruction quality, we present a Gauss-Markov-Potts prior model for the object to reconstruct in a Bayesian framework. This model leads to a joint reconstruction and segmentation algorithm which is briefly described. The core of the paper is the application of the algorithm on real 3D data. We show that our method obtains better results than other state-of-the-art methods. We also propose reconstruction quality indicators without reference which uses both reconstruction and segmentation returned by the algorithm.

Index terms—3D Computed Tomography, non-destructive testing, iterative reconstruction algorithm, joint reconstruction and segmentation, Gauss-Markov-Potts

1 Introduction

Computed tomography (CT) is widely used in industry for non-destructive testing (NDT). In many applications, X-rays are projected on a plan of detectors which measure the decrease of their intensity implied by their passing through the industrial part to be controlled. By rotating the object, a set of images is acquired during the acquisition process. Then, these images feed a reconstruction algorithm to retrieve the interior of the object, which make the user able to see if there is any default.

In industry, analytical reconstruction methods, based on Radon transform [1, 2], are widely applied because of they are fast, the most popular of which is FDK algorithm [3]. But these methods suffer from many drawbacks, like artefacts, which require post-reconstruction corrections [4]. Moreover, they have a lack of flexibility when one wants to introduce prior knowledge in order to improve the quality of the reconstruction [5]. On the opposite, algebraic reconstruction techniques (ART) give the possibility to easily take into account this prior knowledge by adding a regularization term to the data matching term. By this way, while the first developed ART, like SIRT [6] or SART [7], simply try to match the data, many recent advanced ART try to find a tradeoff between matching the data and minimization of, for instance, total variation [8] or l_0-norm [9] of the volume to reconstruct. In order to work well and to find the best tradeoff, the most performing methods require to fit parameters, which can be very tedious because the influence of each of these parameters on the result is not always fully understandable. To overcome this difficulty, Bayesian framework is a good way to simultaneously introduce prior information in the reconstruction algorithm and define parameters of which the fitting is simple thanks to their very clear role.

In this framework, we have chosen to develop a Bayesian reconstruction method for NDT in industry using a Gauss-Markov-Potts (GMP) prior model, which has been successfully applied in microwave imaging [10] and image restoration [11]. Thanks to this model, our algorithm is able to reconstruct an industrial part containing several compact regions corresponding to different materials. The innovation of our method is that the segmentation jointly retrieved by our method with the reconstruction can be useful to see defects in the controlled object. In this paper, after having briefly presented the models, we present the results of our method on real 3D phantom, and we compare it to a standard FDK reconstruction and Total Variation (TV) regularization. The goal of this paper is to show the actual efficiency of using Gauss-Markov-Potts prior model on real 3D data: the reconstruction obtained by our method has more constrained regions than FDK and TV. In [12], the details of the algorithm and some discussion about the choice of the estimators can be found.

2 Prior models

2.1 Forward model

We denote by g the projections, and by f the object to be reconstructed. The linearized discretized forward model for the projections accounting for the noise is:

$$g = Hf + \epsilon$$ (1)

with $$\epsilon_i \sim \mathcal{N}(0, \upsilon_i), \forall i \in \{1, \ldots, M\}.$$ (2)

The variances υ_i are unknowns and are modeled as following an Inverse-Gamma distribution

$$\upsilon_i \sim \mathcal{IG}(\alpha_{\upsilon}, \beta_{\upsilon}), \forall i \in \{1, \ldots, M\}$$ (3)

where α_{υ} and β_{υ} are fixed parameters.

2.2 Gauss-Markov-Potts prior model

We now present the model for the controlled object f itself. This object is composed of several materials mapped in several compact and more or less homogeneous regions. We label each voxel j depending on the material to which the voxel belongs. This leads to introduce a hidden discrete field define by $: z_j = k$ if voxel j composes material k, $k \in \{1, \ldots, K\}$, with K the total number of materials. The material, or label or class, z_j of a voxel depends on the ones of its neighbours $i \in \mathcal{N}(j)$: that is why we assign markovian model for z, which is a Potts model
where α and γ_0 are fixed parameters. Potts coefficient γ_0 fits the compactness of the regions. There exists a critical value γ_c above which regions are compact, as illustrated in figure 1. This critical value has been exactly computed in 2D for Ising field ($K = 2$) [13]. Given its label $z_j = k$, voxel j has a gray level f_j distributed around a mean m_k with a variance σ_k

$$f_j \sim \mathcal{N}(m_k, \sigma_k) \quad \text{if} \quad z_j = k.$$
(5)

The means m and variances σ of the classes are unknown and have the following priors

$$m_k \sim \mathcal{N}(m_0, \sigma_0), \forall k \in \{1, \ldots, K\}$$
(6)

and

$$\sigma_k \sim IG(\alpha_0, \beta_0), \forall k \in \{1, \ldots, K\}$$
(7)

where m_0, σ_0, α_0 and β_0 are fixed parameters.

3 Joint Maximization A Posteriori (JMAP) algorithm

After having built our prior models, the reconstruction algorithm consists in estimating each unknown f, z, v, m and σ by maximizing their joint posterior probability

$$(f, z, v, m, \sigma) = \arg \max_{(f, z, v, m, \sigma)} \{p(f, z, v, m, \sigma | g; M)\}$$

thanks to the approximate maximization iterative algorithm

given

$$(f^{(t)}), (z^{(t)}), (v^{(t)}), (m^{(t)}) = \arg \max_{(f, z, v, m)} \{p(f, z, v, m | g; M)\}$$

$$p(f^{(t)}), (z^{(t)}), (v^{(t)}), (m^{(t)}) = \arg \max_{(f, z, v, m)} \{p(f, z, v, m | g; M)\}$$

$$p(f^{(t)}), (z^{(t)}), (v^{(t)}), (m^{(t)}) = \arg \max_{(f, z, v, m)} \{p(f, z, v, m | g; M)\}$$

$$p(f^{(t)}), (z^{(t)}), (v^{(t)}), (m^{(t)}) = \arg \max_{(f, z, v, m)} \{p(f, z, v, m | g; M)\}$$

where t denotes the iteration t. This algorithm is a type of variational bayesian approximation [14] which is a local optimization. By applying Bayes rule

$$p(f, z, v, m | g; M) \propto p(g | f, v, m) p(f | z, m, v) p(v | \alpha_0, \beta_0) p(z | \gamma_0) p(m | \gamma_0, \beta_0)$$

(10)

each step of the algorithm can be performed, as we have detailed in [12]. Thanks to this method, we see that an estimation of the object f and the labels z, i.e. a segmentation of the object, are retrieved. This is a great advantage, because there is only one source of uncertainties in the control process, while, when applying many other methods, the reconstruction algorithm and the post-reconstruction segmentation algorithm are two different sources of uncertainties.

4 Results on real 3D IQI data

The considered volume is a real 3D IQI phantom [15], discretized in $512 \times 512 \times 256$ voxels. The data are 300 projections of size 512×512 pixels. The number of materials in the volume to reconstruct is $K = 4$. We apply our method and compare it with FDK [3] and Total Variation (TV) minimization reconstruction methods. Concerning TV, it is implemented by following the algorithm proposed in [16], based on Bregman iteration [17].

4.1 Initialization

To apply JMAP algorithm described in section 3, an initial volume and an initial segmentation are required. As initial volume, because we have many projections, we use FDK reconstruction, shown in figure 2. Next, we need a segmentation of this initial volume as initial segmentation. This segmentation is obtained by a non-uniform thresholding of FDK reconstruction.

To determine the thresholds, we estimate the histogram of the initial volume. Then, we apply the peak-picking algorithm explained in [18] and originally developed for non-parametric clustering [19]. For each bin, we seek the nearest peak in its neighbourhood: this peak is called the parent-bin of the current bin, which is so called a child-bin of this peak. Each parent-bin and its children are seen as a class, i.e. the voxels in the children-bins of parent-bin k are assigned the initial class k. Because we know the number of classes ($K = 4$), each parent-bin is assigned as the child-bin of a higher parent-bin in its neighbourhood until there are only $K = 4$ parents-bins. This gives the segmentation shown in figure 3, used as initial segmentation by JMAP algorithm.

4.2 Results and comparison with FDK

Table 1 summarizes the values of most of the parameters we fixed to perform the joint reconstruction and segmentation of IQI data. The controlled volume is composed of 3 materials and air: that is why we fix $K = 4$. The other parameters are fixed according to a strategy we propose in [12]. Thanks to the clear Bayesian prior model, tuning the parameters of JMAP is straightforward, while it is more tedious for TV.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>α_{o_0}</th>
<th>α_0</th>
<th>β_0</th>
<th>γ_0</th>
<th>v_0</th>
<th>β_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed values</td>
<td>2.1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Table 1: Reconstruction parameters for 3D IQI data

Next, we run JMAP algorithm and we obtain the reconstruction and the segmentation shown in figures 6 and 7 respectively. When comparing FDK, TV and JMAP reconstructions in figures 2, 4 and 6 respectively, we can see the external circle surrounding the object in FDK reconstruction is completely erased by JMAP algorithm. Moreover, the JMAP reconstruction is more constrained than the FDK and TV reconstructions, especially for the white region in the top of the object. This better contrast is still emphasized when in figure 8, we plot the profiles of the little holes in the bottom of the object: the profile of JMAP reconstruction is sharper than the one of FDK reconstruction.

To deepen the comparison, we have defined three reconstruction quality indicators. The first focuses on the compactness of...
the classes and is defined as:

\[C_{\text{comp}} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{N_k} \sum_{j \in \mathcal{R}_k} \frac{1}{N_j} \sum_{i \in V(j)} \delta(k - z_i) \]

(11)

where \(\mathcal{R}_k = \{ j | z_j = k \} \). The second measures the distinguishability of the classes on the contours:

\[d_{\text{ist}} = 1 - \frac{1}{K} \sum_{k=1}^{K} \frac{1}{N_k} \sum_{j \in \mathcal{R}_k} (d_{\text{ist}})_j \]

with, if \(z_j = k \):

\[(d_{\text{ist}})_j = \begin{cases} \frac{\sum_{i \in V(j)} \exp\left(-\left(f_j - f_i \right)^2 \right)(1 - \delta(k - z_i))}{\sum_{i \in V(j)} (1 - \delta(k - z_i))} & \text{if } j \text{ is on a contour} \\ 0 & \text{otherwise} \end{cases} \]

(13)

The third indicator which quantifies how homogeneous the classes are:

\[h_{\text{omo}} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{N_k} \sum_{j \in \mathcal{R}_k} (h_{\text{omo}})_j \]

with, if \(z_j = k \):

\[(h_{\text{omo}})_j = \frac{\sum_{i \in V(j)} \exp\left(-\left(f_j - f_i \right)^2 \right) \delta(k - z_i)}{\sum_{i \in V(j)} \delta(k - z_i)} \]

(15)

if \(\sum_{i \in V(j)} \delta(k - z_i) \neq 0 \). Otherwise, \((h_{\text{omo}})_j = 0\).

In this way, we have three reconstruction quality indicators which respectively measure compactness, distinguishability and homogeneity of the classes in the reconstruction. These indicators are designed such that the higher they are, the better the reconstruction is. One shall notice they need a segmentation of the reconstruction to be applied. In table 2, we compute them on the joint reconstruction and segmentation retrieved by JMAP, on the initial reconstruction by FDK in figure 2 and the initial segmentation of this reconstruction in figure 3, and on TV reconstruction and its posterior segmentation in figure 5, obtained thanks to a Gauss-Markov-Potts prior model proposed in [20]. Because the labels of each of the three reconstruction are very similar, \(C_{\text{comp}} \) is almost the same for the three methods. Concerning \(d_{\text{ist}} \) and \(h_{\text{omo}} \) achieves the highest values, which confirms that our method outperforms FDK and TV.

<table>
<thead>
<tr>
<th>Indicator</th>
<th>(C_{\text{comp}})</th>
<th>(d_{\text{ist}})</th>
<th>(h_{\text{omo}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDK</td>
<td>94.4 %</td>
<td>78.4 %</td>
<td>78.3 %</td>
</tr>
<tr>
<td>TV</td>
<td>94.5 %</td>
<td>77.5 %</td>
<td>77.5 %</td>
</tr>
<tr>
<td>JMAP</td>
<td>94.3 %</td>
<td>79.0 %</td>
<td>78.8 %</td>
</tr>
</tbody>
</table>

Table 2: Comparison of FDK, TV and JMAP using reconstruction quality indicators

5 Conclusion and perspectives

In this paper, we have presented results on real 3D phantom of a reconstruction method which has achieved high compactness, distinguishability and homogeneity of the classes obtained by the segmentation performed jointly with the algorithm. Thanks to clear prior models, the parameters of the algorithm have been proved easy to fit. The method has shown better results than both FDK and TV reconstructions. An important future work would be to propose a massively parallelized version of the algorithm on GPU.

References

Figure 2: FDK reconstruction (bottom and top)

Figure 3: Segmentation of FDK reconstruction (bottom and top)

Figure 4: Reconstruction obtained by TV (bottom and top)

Figure 5: Segmentation of TV reconstruction (bottom and top)

Figure 6: Reconstruction obtained by JMAP (bottom and top)

Figure 7: Segmentation obtained by JMAP (bottom and top)

Figure 8: Profiles of holes for FDK (a), TV (b) and JMAP (c) reconstructions