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ABSTRACT :  10 

The paper presents a stochastic Seasonal Functional Heteroscedastic Auto-Regressive model 11 

developed to simulate daily (minimum, maximum or mean) temperature time series coherent with 12 

observed time series and designed to reliably reproduce extreme values through a careful study of 13 

the extremes and their bounded character. The model is first validated using different daily 14 

minimum and maximum weather-station time series over Eurasia and the United-States in 15 

different climatic regions. It is shown that the model is able to produce coherent results both for 16 

the bulk of the distribution and for its extremes and especially that it can produce higher or lower 17 

extreme values than observed. Then a possible use in the climate change context is tested. It 18 

consists in fitting the model over the first part of a long temperature time series and in using it to 19 

simulate a large number of possible trajectories for the second part when temperature has 20 

increased. Two approaches have been tested to do so, one based on a simple mean change in mean 21 

and variance and the other in considering the full seasonalities and trends estimated over the 22 

observed second part of the time series. Both approaches have been found to give good results as 23 

well for the bulk as for the extremes of the temperature distribution over the second part of the 24 

period. However, the second approach allows taking interannual variability changes into account, 25 

which leads to more realistic results when this occurs. These results give confidence in the 26 

possibility of using this tool as a statistical downscaling tool reliably reproducing temperature 27 

extremes.  28 

Keywords : daily temperature, stochastic modeling, extremes 29 

1. Introduction 30 

Weather generators are commonly used in environmental or financial studies as a 31 

way to simulate key properties of observed meteorological records and then 32 

produce long series of daily weather parameters. Two main approaches can be 33 

found in those developments: weather generators are either based on randomly 34 
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pooling out analog days in a database of past observations, or on statistically 1 

generating the desired variables with a stochastic model whose parameters are 2 

estimated on a database of past observations. The advantage of the first approach 3 

is a better reproduction of the observed distribution, but the main drawback is that 4 

it cannot reproduce non observed values. Although the second approach is based 5 

on parametric or semi-parametric definitions of the distributions, its main 6 

advantage is its ability to produce physically realistic unobserved situations. This 7 

second approach is preferred here as the focus is on extreme events. Most efforts 8 

in weather generator developments have been devoted to precipitation (see Wilks 9 

& Wilby 1999 for a review). Precipitation is namely a crucial parameter in many 10 

environmental studies and its representation is complicated by its intermittent 11 

nature. Here again, different approaches can be found. Cowpertwait et al. (2007) 12 

propose a model of storm cells whose occurrence follows a Poisson process and 13 

during which rain cells occur as a secondary Poisson process. Other generators are 14 

based on different daily states, from the simple dry and wet days to more 15 

sophisticated weather type definitions, possibly introduced as a hidden state 16 

variable using Hidden Markov Models (Ailliot et al. 2008; Sansom & Thompson 17 

2010). Then, following Richardson (1981), weather generators are developed to 18 

represent simultaneously precipitation and other variables like temperature (daily 19 

minimum and maximum), solar radiation or wind, for use in agricultural studies 20 

essentially. Such models are increasingly used to downscale global climate model 21 

results in impact studies (Wilks 1992, Semenov & Barrow 1997, Wilks &Wilby 22 

1999, Hansen 2002, Kysely & Dubrovsky 2005, Semenov 2008) because they 23 

allow taking variability change into account. The interest in extremes further 24 

motivates the use of such models; however they generally must be improved to 25 

adequately reproduce extreme events (Furrer & Katz 2008). Semenov (2008) 26 

showed that if precipitation extremes are reasonably well represented by a 27 

Richardson type generator (called LARS-WG) temperature extremes are generally 28 

not, because the normality assumption used for the residuals is not universally 29 

true. Even with the use of weather types and skewed normal distributions 30 

(WACS-Gen), Flecher et al. (2010) recognize having difficulties in reproducing 31 

extreme events.  32 

Stochastic temperature models are also used in the framework of weather 33 

derivatives. Weather derivative products provide protections against “weather 34 
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risk”, that is against the unpredictable component of weather fluctuations, called 1 

“weather surprises,” or “weather noise.”  This thus necessitates some knowledge 2 

on this “weather noise” over space and time, which motivated the development of 3 

stochastic models (Campbell & Diebold 2005, Mraoua & Bari 2007, Benth & 4 

Saltyte-Benth 2011). 5 

Extreme events are important for industrial adaptation, for installations design as 6 

well as for their running. Our goal is then to propose a temperature generator able 7 

to correctly reproduce temperature extremes. The general principle of such 8 

stochastic models, whatever their usage, consists in modeling the temperature 9 

(daily maximum or minimum or mean) as the summation of a deterministic part 10 

and a stochastic process, designed to represent the random fluctuations around the 11 

mean:  12 

 X(t) = (t) + tZ(t), where (t) and (t) are deterministic and Z(t) stochastic. 13 

(t) contains at least a seasonal component, and usually also a trend component. 14 

(t) is most often 1. The stochastic part generally presents an autoregressive 15 

structure, more or less sophisticated: from an AR1 (first order autoregressive) to a 16 

GARCH (General Autoregressive Conditional Heteroscedastic). 17 

For the proposed model, our basic idea comes from a preliminary analysis of the 18 

correlations and especially from the shape of the conditional variance of Z(t) 19 

when Z(t-1) is fixed. In particular, this conditional variance drastically decreases 20 

outside of a bounded interval. This leads to the use of a FARCH (Functional 21 

AutoRegressive conditional Heteroscedastic) model, the simplest one able to take 22 

this behavior into account. FARCH processes are the first order Euler scheme 23 

approximation of the discrete Markov chain given by the sequence of discrete 24 

observations of a diffusion. Furthermore, the coefficients (drift and diffusion) of 25 

the diffusion are those of the FARCH process. Thus we are led to consider 26 

temperature as a continuous time process with continuous trajectories. If X(t) can 27 

be assumed as Markovian then the continuous time process is a diffusion. The 28 

Markovian property can be tested. This mathematical justification is coherent with 29 

the physical interpretation of the heat equation as a diffusion of the thermal 30 

energy but also with more general considerations on non linearity and 31 

stochasticity which can be found in Sura (2012). The building of the model is 32 

based on discrete temperature observations at a given time interval, for instance 33 

every day, and the diffusive property has to be translated in this restrictive 34 



4 

framework.  The obtained SFHAR (Seasonal Functional Heteroscedastic 1 

AutoRegressive) model, with careful treatment of the extreme upper and lower 2 

bounds, is described in details in Dacunha-Castelle et al. (2013) and briefly 3 

reviewed in the appendix. The present paper focuses on the validation of the 4 

model for different climates in Eurasia and in the United-States and proposes a 5 

possible application in the climate change context. The model is calibrated on 6 

temperature time series starting in 1950 for the United States and Eurasia. It 7 

simulates the residuals after accounting for seasonalities and trends in mean and 8 

variance.  9 

After a brief description of the model and the presentation of the used temperature 10 

time series in section 2, section 3 is devoted to the validation of the model for 11 

different climates. Then, in section 4, the model is calibrated on the first part of 12 

the observed time series, and then, different strategies are tested and validated to 13 

simulate the second part, warmer in average than the first one. Discussion and 14 

perspectives are proposed in section 5. 15 

2. Model and observations 16 

In the following, X(t) is the observed temperature time series (either daily 17 

minimum or daily maximum temperature), m(t) its mean trend, Sm(t) the 18 

seasonality of the mean, s
2
(t) its variance trend, Sv(t) the seasonality of the 19 

variance and Z(t) the modeled residual time series. 20 

2.1 Brief description of the model 21 

2.1.1 Pre-processing 22 

As stated before, the model is designed to simulate the residuals Z(t) from a 23 

temperature time series X(t) after accounting for seasonalities (Sm(t) and Sv(t)) 24 

and trends (m(t) and s(t)) in mean and standard deviation. The first step is then to 25 

identify and remove these deterministic parts from X(t) to obtain Z(t). This is 26 

done through the following succession of steps: 27 

1) Estimation of  the seasonality of X(t): 𝑆 𝑚(𝑡) 28 

2) Estimation of the trend 𝑚 (t) from the time series (𝑋 𝑡 − 𝑆 𝑚 (𝑡)) 29 

3) Estimation of the seasonality of the variance from  𝑋 𝑡 − 𝑆 𝑚 (𝑡) −30 

𝑚 (𝑡) 
2
: 𝑆 𝑣

2(𝑡) 31 
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4) Estimation of the trend 𝑠 2(t) from the time series  𝑋 𝑡 − 𝑆 𝑚 𝑡 −1 

𝑚  𝑡  2/𝑆 𝑣(𝑡) 2 

5) Finally, 
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Quantities over headed by a hat correspond to estimations. The identification of 4 

seasonality is based on the fitting of a trigonometric function of the form: 5 
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, and the number p of trigonometric terms is 6 

chosen through an Akaike criterion. This parametric identification has been 7 

compared to the non parametric STL method (Seasonal Trends decomposition, 8 

Cleveland et al. 1990) and both approaches have been found very similar.  9 

The trend identification is conducted in a non parametric way by using the 10 

LOESS technique (Local regression, Stone 1977). The LOESS estimator is 11 

obtained by locally fitting a d
th

 degree polynomial to the data via weighted least 12 

squares. Throughout this work, the local linear fit is used, which means d = 1. 13 

This method implies the choice of a smoothing parameter, which controls the 14 

balance between goodness of fit to the data and smoothness of the regression 15 

function. The smoothing parameter is obtained through an automated selection. 16 

This selection is difficult here as the data are correlated, non stationary and 17 

heteroscedastic. The modified partitioned cross-validation technique proposed in 18 

Hoang (2010) is used. It is based on the classical partitioned cross-validation 19 

technique of  Marron (1987): the observations are partitioned into g subgroups by 20 

taking every g
th

 observations, for example the first subgroup consists of the 21 

observations 1,1 + g,1 + 2g,..., the second subgroup consists of the observations 22 

2,2+g,2+2g,.... The observations in each subgroup are then independent for high 23 

g. Chu & Marron (1991) define the optimal asymptotic bandwidth for Partitioned 24 

Cross-Validation in the case of constant variance as 5/1

0 ghhPCV  , with h0 25 

estimated as the minimiser of 



g

k

kg hCV
g

hPCV
1

,0 )(
1

)( (CV0,k is the ordinary 26 

Cross-Validation score for the k-th group). This approach has been modified to 27 

take heterocedasticity into account. Then, the optimal g corresponds to the 28 

minimum of a more complicated expression (Hoang 2010) and in practice, it is 29 

preferred to estimate hMPCV (the optimal bandwidth of the Modified Partitioned 30 

Cross Validation) for different values of g and to retain the values of g for which 31 
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hMPCV is not too bad (that is not too close to zero and not higher than 0.7). For 1 

each g the trends m and s are estimated by LOESS with bandwidth g

MPCVĥ  to 2 

obtain an estimator of the expression to minimize. The value of g corresponding 3 

to the minimum value is retained, giving the corresponding optimal bandwidth 4 

hMPCV.  5 

The order of estimation of seasonality and trend is not important, it has been 6 

checked that estimating trends then seasonality leads to similar results for Z(t). 7 

The procedure is illustrated in figure 1.  8 

Careful studies of Z(t) have shown that although seasonality has been removed 9 

from the mean and variance, some seasonality remains in the higher order 10 

moments like skewness and kurotsis of Z(t) and in its autocorrelations. However, 11 

no significant remaining trends could have been found in high order moments, 12 

autocorrelations or extremes of Z(t). 13 

2.1.2 Model for Z(t) 14 

The proposed model is described in detail in Dacunha-Castelle et al. (2013) and 15 

summarized in the appendix. The first step is to estimate the extremes of Z(t). The 16 

upper and lower bounds r1 and r2, together with the corresponding shape 17 

parameters 1 and 2 are estimated by fitting a GEV distribution to the minima 18 

and the maxima of Z(t) respectively. The extremes of Z(t) do not show any clear 19 

seasonality and the fitting is done with 73-day blocks (5 blocks per year). 20 

Sensitivity tests on the choice of block length showed that the results do not 21 

significantly differ. The shape parameter is negative, thus the distributions are 22 

bounded. However, if it is too close to 0, the simulation may be problematic. If 23 

this happens, it is advised to slightly change the block length in order to get a 24 

better estimate of this parameter.  25 

Then the proposed model is justified. It consists of a modification of a Seasonal 26 

Functional Heteroscedastic AutoRegressive model of the form: 27 

 ttZtatbZtZ ))1(,()1()(  , t being a normal distribution with 0 28 

mean and unit variance, and: 29 
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, p1 being chosen by an Akaike 30 

criterion, because seasonality remains in the autocorrelation, and a is estimated as 31 

a degree 5 trigonometric polynomial: 32 
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p2  chosen by an Akaike criterion,  r1 and r2 being respectively the lower and upper 3 

bound of the extreme value distributions of Z(t) and 1 and 2 the corresponding 4 

shape parameters. The form of a and the constraints are given by the extreme 5 

value theory of the continuous time process (Davis 1982). In practice, the 6 

autoregressive part of Z(t) is first estimated, then a is estimated from 7 

2))1(ˆ)((  tZbtZ  by maximum likelihood with constraints. 8 

Once the parameters have been estimated, as many sequences of Z(t) as desired 9 

can be simulated with the model. A sequence consists of a certain number of years 10 

and each day t, Z(t) is computed from Z(t-1). The initial value is randomly 11 

selected from the observed residuals. A condition is added to insure that each Z(t) 12 

remains inside the limit bounds r1 and r2: if the simulated value at time t exceeds 13 

the upper bound or is lower than the lower bound, it is disregarded and another 14 

value for Z(t) is computed from Z(t-1). This is equivalent to a modified model 15 

where the distribution of t is a truncated normal distribution whose truncation 16 

depends on the value of Z(t-1) (its values are 
𝑟1−𝑏Z(t−1)

𝑎(Z t−1 )
 and 

𝑟2−𝑏Z t−1 

𝑎(Z t−1 )
). Thus the 17 

obtained simulated residuals are bounded. 18 

Then a simulation of the initial temperature time series is obtained by re-19 

introducing the estimated deterministic parts   𝑆 𝑚(𝑡), 𝑚  𝑡 , 𝑆 𝑣(𝑡) 𝑎𝑛𝑑 𝑠 (𝑡). As an 20 

indication, 100 simulations of a 60-year daily time series need around 7mn of 21 

computing time on a standard laptop. 22 

Compared to most generators found in the literature, our model differs in its 23 

bounded property and in the careful retrieval of the smoothing parameter to 24 

compute the non parametric trends in both mean and variance to obtain the then 25 

simulated residuals. The main consequence is thus that the simulated time series’ 26 

length is at most that of the observed one used to determine the trends. But as 27 

many equivalent time series as desired can be computed, giving a similarly rich 28 

sample. The optimal smoothing parameter is linked to interannual variability, 29 

which allows an indirect consideration of this property of temperature time series 30 
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besides daily variance. Furthermore, the auto-correlations are fully seasonal and 1 

the behavior of the extremes is carefully introduced in the volatility (or lag 0 auto-2 

correlation) coefficients a(t). This is expected to really improve the ability of the 3 

model at reproducing extremes, which will be examined in this paper. 4 

2.2 Observed time series 5 

The validation of the model is conducted for different climates in Eurasia and in 6 

the United-States. For Eurasia, weather station time series of daily minimum 7 

temperature (TN) and daily maximum temperature (TX) are obtained from the 8 

ECA&D project database. The project gives indications of homogeneity through 9 

the results of different break identification techniques (Klein Tank et al. 2002). 10 

First, the series which could be considered as homogenous (stated as “useful” in 11 

the database) over the period1950-2009 have been selected for both TN and TX. 12 

Then, only the time series with less than 5% missing data are kept, leading to 106 13 

series for TX and 120 for TN (many TX series, mostly in Russia, have missing 14 

values from 2007 onward whereas the corresponding TN ones have missing 15 

values only in 2009). 16 

For the United States, weather station TX and TN time series are obtained from 17 

the Global Historical Climatology Network – Daily Database (GHCN daily) 18 

(Menne et al. 2011). A similar selection procedure left us with 86 series for TX 19 

and 85 for TN. 20 

Among these time series, 4 weather stations corresponding to different climates, 21 

in terms of mean annual temperature, have been chosen for each continent, as 22 

listed in table 1. As stated before, the weather station of Olekminsk in Russia 23 

cannot be considered for TX as it exhibits too many missing values. No other 24 

station with a similar climate to that of Olekminsk is available for TX. 25 

3. Validation 26 

For each of the 7 (for TX) or 8 (for TN) temperature time series, the parameters of 27 

the model are fitted over the whole period length. Then, 100 simulations of the 28 

model are computed for each location and the results are compared to the 29 

observed time series both for the representation of the bulk of the distribution and 30 

of its warm and cold extremes. 31 
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3.1 Bulk of the distribution 1 

Table 2 and 3 summarize the comparison of the mean, variance, skewness and 2 

kurtosis of the distributions of each temperature time series obtained from the 3 

observations and from the 100 model simulations (mean value and 95% 4 

confidence interval). The results show that these different moments of the 5 

observed distribution of daily maximum or minimum temperature are correctly 6 

reproduced by the stochastic simulations, although the higher moments are 7 

sometimes less accurately reproduced. This good result may be linked to the 8 

domination of the annual cycle, thus the seasonal distributions have been 9 

compared too. Figure 2 shows the Q-Q plots of observed and simulated winter and 10 

summer distributions of TN in Olekminsk and TX in Death Valley. Similar results 11 

for the other stations confirm that the model reasonably reproduces the seasonal 12 

temperature distributions. 13 

Figure 3 shows that the mean annual cycle, as well as that of the standard 14 

deviation, is faithfully represented. Figure 3 is for TN in Berlin and TX in 15 

Jacksonville, but similar results are found for each individual time series. 16 

Kolmogorov-Smirnov tests have been applied to compare the distributions 17 

obtained for each day of the year between observations on the one hand and 18 

simulations on the other hand, and they show that the distributions can be 19 

considered as similar with a 95% confidence level. The proposed stochastic model 20 

is thus able to correctly reproduce the bulk of the daily minimum or maximum 21 

temperature distributions for different climates. 22 

3.2 Extremes 23 

The model is constructed for a bounded variable and the simulations are made in 24 

such a way that each simulated value remains inside the estimated bounds of the 25 

residuals. Thus first, the Generalized Extreme Value (GEV) distribution 26 

parameters for the simulated residuals are compared to those of the observed ones, 27 

both for the lowest and the highest extremes. Figure 4 shows the distributions for 28 

each parameter (location , scale  and shape obtained from the 100 29 

simulations for the highest (warm) extremes (upper panels) and the lowest (cold) 30 

extremes (lower panel) together with the same parameters obtained from the 31 

observed residuals (red line) for TN in Berlin and TX in Death Valley. The results 32 

show, and this is true for the other temperatures and locations too, that the shape 33 
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parameter is generally better reproduced in the simulations than the location and 1 

scale parameters. It can be mathematically proven that the proposed stochastic 2 

model is able to produce the correct shape parameter when a truncated normal 3 

distribution is used for t. 4 

Then table 4 compares the 50-year Return Levels (RL) of the maxima of TX and 5 

the minima of TN for the different locations over the whole observation period. 6 

The estimation is made by fitting a GEV to the block maxima of summer TX or 7 

winter TN (Coles 2001) with the maximum likelihood method and considering the 8 

choice of 2 blocks per season as a reasonable bias / variance compromise. The 9 

estimation is conducted as if the extremes would not present trends over the entire 10 

period, which is of course wrong, but it simplifies the computations and is 11 

sufficient to give a first view of the representation of the extremes by the proposed 12 

model. For each of the 100 simulations, the 50-year RL is computed. The given 13 

confidence interval is obtained as the 2.5
th

 and 97.5
th

 percentiles of the 14 

distribution of the 100 RLs, whereas for the observations the confidence interval 15 

is the 95% one given by the delta-method (that is based on the asymptotic 16 

normality of the maximum likelihood estimators). Generally, the simulations give 17 

higher warm RLs and lower cold RLs than observed, but the confidence intervals 18 

obtained from the observations generally show some overlapping with the 2.5
th

 19 

and 97.5
th

 percentiles of the distribution obtained from the simulations (except for 20 

TX in Glasgow and TN in Petropavslosk). The fact that the model produces 21 

higher (or lower for cold temperature) extremes than observed is not surprising 22 

because the simulations produce 100 possible realities, among which higher or 23 

lower extremes could have been observed. This thus shows that the model is not 24 

only able to produce extremes, but also to produce more extreme extremes than 25 

observed, which is interesting. 26 

Finally, the ability of the model to produce heat or cold waves has been 27 

investigated. Cold waves are defined as periods of consecutive days with daily 28 

minimum temperature lower than the 2
nd

 percentile and heat waves as periods of 29 

consecutive days with daily maximum temperature above the 98
th

 percentile. The 30 

number of consecutive days varies between 1 and 15 days, the last class 31 

corresponding to the few episodes with more than 15 days, if any. Thus for each 32 

location the 2
nd

 and 98
th

 percentiles of the observed time series are computed and 33 

the distribution of episodes in the observed time series is compared to the 34 
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minimum, maximum and mean frequencies of such a distribution in the 100 1 

simulations. Figure 5 shows the results for cold waves in Petropavslovsk and heat 2 

waves in Charleston. Even though the stochastic model tends to overestimate the 3 

proportion of 1-day cold excursions compared to the observations, it is still able to 4 

produce longer episodes in a reasonable proportion, even the longest ones. This 5 

tendency to overestimate the frequency of 1-day events is less systematic for heat 6 

waves.  7 

4. Possible use in the climate change context 8 

The previous section has shown that the proposed stochastic model, when fitted 9 

on a temperature time series, is able to correctly reproduce the bulk of the 10 

distribution as well as the extremes of the studied time series. This is an 11 

interesting result as far as the model allows reliable simulations of a high number 12 

of possible temperature evolutions at a given location giving access to potential 13 

unobserved but still possible levels. In the climate change context, it could also be 14 

very interesting to produce possible temperature evolutions for the future, given 15 

that climate is warming. General or regional climate models are designed to allow 16 

such projections for the different climatic variables, but their ability to represent 17 

extreme values for a precise location is still questionable. Thus different 18 

downscaling techniques, from simple bias corrections to full dynamical 19 

downscaling with limited area models, are explored (Maraun et al. 2010). The aim 20 

here is to check whether the proposed stochastic model can be used as a statistical 21 

downscaling tool giving reliable indications on temperature extremes. 22 

4.1 Simulation procedure 23 

To do so, among the previously used temperature time series, two have been 24 

selected as showing an identifiable break in the evolution of mean temperature, 25 

splitting the time series in two sub-series of roughly similar length. Break is 26 

identified using the Mudelsee (2009) method which consists in selecting the date 27 

for which the standard deviation of the residuals resulting from the two-phase 28 

regression model is the minimum, after having considered all dates (except the 29 

first and last 5 ones, to avoid edge effects) as potential break points. This simple 30 

technique is used because the identification of the break is not the ultimate goal of 31 

the work but is only made for the sake of illustration. More general regression 32 
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techniques exist, such as the segmented regression proposed by Muggeo (2003). 1 

Such a break is identified in year 1980 for TN in Berlin and in year 1985 for TX 2 

in Death Valley for both the mean and variance evolutions. 3 

Then, each time series is split into two shorter time series: 1950-1980 and 1981-4 

2009 for TN in Berlin and 1962-1985 and 1986-2009 for TX in Death Valley. For 5 

both sub series, the residuals Z(t), after removing trends and seasonalities in mean 6 

and variance, are estimated. The parameters of the stochastic model defined to 7 

simulate Z(t) are fitted over the first sub-series in each case. Then, the 8 

reconstruction of the desired temperature time series for each period necessitates 9 

that trends and seasonalities are added to the simulated residuals. Two ways are 10 

compared to compute the desired temperature time series over the second (and 11 

warmer) sub period: 12 

1) Average mean and variance changes are added to the trends computed 13 

from the first sub period: if m1 is the mean over the first period, s1 the 14 

standard deviation, and m2 and s2 the same quantities for the second 15 

period: 𝑋2 𝑡 =  𝑆 𝑚1
(𝑡) + 𝑚 1 𝑡 +  𝑚2 − 𝑚1 + 𝑆 𝑣1

(𝑡) ∗ 𝑠 1 𝑡 ∗
𝑠2

𝑠1
∗16 

𝑍(𝑡), where 𝑆 𝑚1
(𝑡), 𝑚 1 𝑡 , 𝑆 𝑣1

(𝑡) 𝑎𝑛𝑑 𝑠 1 𝑡  are the seasonalities and 17 

trends estimated over the first sub period. Table 5 summarizes the 18 

means and variances of each sub series. 19 

2) Seasonalities and trends are those computed over the second sub 20 

period: 𝑋2 𝑡 =  𝑆 𝑚2
(𝑡) + 𝑚 2 𝑡 + 𝑆 𝑣2

(𝑡) ∗ 𝑠 2 𝑡 ∗ 𝑍(𝑡) where 21 

𝑆 𝑚2
(𝑡), 𝑚 2 𝑡 , 𝑆 𝑣2

(𝑡) 𝑎𝑛𝑑 𝑠 2 𝑡  are the seasonalities and trends 22 

estimated over the second sub period. 23 

In the first way, interannual variability, included in the smoothing parameter of 24 

the non parametric trends, remains that of the first period, whereas the second 25 

approach allows taking interannual variability of the second period into account. 26 

4.2 Results 27 

4.2.1 Bulk of the distribution 28 

As previously, the first comparisons aim at validating the reproduction of the 29 

main characteristics of the bulk of the distribution. Table 6 gives the observed and 30 

simulated mean and variance obtained for the second period in winter and in 31 

summer with each of the used approach for each location and variable. As 32 
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expected, approach 2, which takes trends and seasonalities of the second period 1 

into account, gives better results, but the results given by the first approach are 2 

close to the observations too. Figure 6 gives a better view of the entire 3 

distribution: it presents, for different percentiles (from the very low 1% to the very 4 

high 99% through the median), the distribution of such percentiles obtained from 5 

the 100 simulations in black and the values obtained from the observations in red. 6 

It shows that for all percentiles, the observed estimates fall inside the distributions 7 

of the simulated estimates, whatever the approach taken for the simulations. This 8 

thus validates the two approaches to compute the distribution of temperature for a 9 

future period when mean and variance have changed. 10 

4.2.2 Extremes 11 

Let us now look at the extremes, in terms of 50-year return levels and of heat or 12 

cold waves. Table 7 gives the obtained 50-year return levels for period 2, again in 13 

considering the series as stationary, and estimated from the observations and from 14 

each type of simulation. As in the previous section, the 95% confidence interval 15 

for the observations is computed with the delta-method while for the simulations, 16 

the 2.5
th

 and 97.5
th

 percentiles of the distribution of the estimated 100 50-year RLs 17 

are taken. The results show that for Berlin, approach 2 gives slightly better results 18 

than approach 1 whereas for Death Valley this is not the case. This can be 19 

explained by the fact that the smoothing parameter computed to estimate the mean 20 

and variance trends is the same for both periods for Death Valley (0.08) whereas 21 

for Berlin it changes from 0.32 in the first period to 0.08 in the second one. Thus, 22 

in Berlin, interannual variability for daily minimum temperature is higher in the 23 

second period, and taking this into account logically improves the simulations. 24 

Figure 7 shows the distributions of cold waves in Berlin and heat waves in Death 25 

Valley according to each simulation procedure in the same way as figure 5 in the 26 

previous section. Here, both approaches give similarly good results. 27 

5 Conclusion and perspectives  28 

In this paper, a stochastic Seasonal Functional Heteroscedastic Auto-Regressive 29 

model for daily temperature has been presented and validated for different 30 

climates in Eurasia and in the United States. 31 
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First, it has been shown that when fitted over a long temperature series (daily 1 

minimum or maximum) and used to simulate a large number of equivalent 2 

trajectories, the model is able to correctly reproduce both the bulk and the 3 

extremes of the observed distribution. In particular, it is able to produce higher or 4 

lower extremes than observed. 5 

Then, for two temperature time series for which a break in the evolution of both 6 

mean and variance could have been identified around the middle of the period, the 7 

model has been constructed over the first part of the period and used to reproduce 8 

the second part. As the model simulates the residuals after accounting for trends 9 

and seasonalities in mean and variance, the reconstruction of the observed 10 

variable for any period consists in re-introducing this information on trends and 11 

seasonalities. Two approaches have been tested: firstly taking global mean and 12 

variance changes between both periods into account (like in the so-called “delta 13 

method”) and secondly introducing the real trends and seasonalities computed 14 

over the second period. The second approach allows taking interannual changes 15 

into account if any occurs. This is the case for the daily minimum temperature 16 

time series in Berlin and then, this last approach improves the results. Both 17 

approaches however give equivalently good results, both in terms of bulk of the 18 

distribution as in terms of extremes. 19 

This sounds encouraging in the perspective of using this tool as a downscaling 20 

technique suitable to deal with temperature extremes. The second approach 21 

particularly, opens the possibility of taking possible interannual variability 22 

changes into account. We can imagine for example that the model is fitted over an 23 

observed temperature time series representative of a location of interest and then, 24 

future temperatures for this location can be obtained by introducing the 25 

seasonalities and trends estimated over a corresponding, suitably corrected, grid 26 

point time series produced by different climate models with different scenarios. 27 

Present results show that this technique is able to give reliable information for the 28 

temperature extremes, for highest or lowest values as well as episodes. However, 29 

further studies will be devoted to hot and cold episodes. Although the model is 30 

able to produce long cold or heat waves, it should be able to produce more of such 31 

events among 100 simulations. Here the autocorrelation coefficient has been 32 

considered periodic, but it is suspected that it may increase once a certain high or 33 

low threshold is crossed. This will be further investigated. In a broader 34 
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perspective, the model could be part of a more general weather generator in 1 

addition with a rainfall generator for example. 2 

 3 

Appendix: model description 4 

Before choosing a model for the reduced process Z(t), after removal of trends and 5 

seasonalities in mean and variance, its correlations and conditional variance have 6 

been analyzed. The non parametric analysis of the conditional variance of Z(t) 7 

given Z(t-1) shows a particular behavior: linear in the core of the distribution, 8 

close to zero for very high and low values of Z(t-1), the conditional mean being 9 

close to a linear function. The first idea is thus to choose a FARCH model with 10 

finite bounds for the distribution. The application of the extreme theory is not 11 

justified at this step (because a mathematical theory does not exist for these 12 

processes) but it gives, once done, a negative shape parameter (< 0) that suggests 13 

a bounded distribution.  14 

The idea is then to choose a modified FARCH model 15 

ttZatZbtZ ))1(())1(()(  where t is a truncated Gaussian noise whose 16 

bounds depend on the value of Z(t-1). The second step is then to represent the 17 

temperature as a continuous time process (with continuous trajectories). The 18 

FARCH processes are the first order Euler scheme approximation of the discrete 19 

Markov chain M, where M(t) is the observation at time t of the continuous 20 

diffusion given by: ( ) ( , ( )) ( , ( )) ( )dY t b t Y t a t Y t dW t  where b is the drift, 21 

a the diffusion coefficient and W(t) a Brownian motion. The estimation of the 22 

coefficients of such a continuous stationary diffusion is commonly done using its 23 

first order Euler scheme Z, thus a FARCH process with the same functional 24 

coefficients. Technically this situation is very informative in relation with the 25 

extremes theory. From the geometric ergodicity of the diffusion, the extreme 26 

parameters and the bounds of the continuous time process can be estimated using 27 

only the chain M. Z is from now considered as an approximation of M. Now we 28 

use the continuous process as a tool. The extremes coefficients and thus the 29 

bounds r1 and r2 are estimated by fitting a GEV distribution to the maxima of the 30 

reduced series here modeled as M(t). The support of M(t), say (r1,r2), is bounded 31 

so that r1 and r2 are inaccessible boundary points for Y. At the boundary, we have: 32 

1. a and b are defined and continuous on [r1,r2] 33 

2. 0)()( 21 rbrb  34 
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Under hypotheses 1. and 2. and < 0, we prove in Dacunha-Castelle et al. (2013) 1 

the following theorem: 2 

If the distribution of the maximum of the diffusion Y is in the domain of attraction 3 

of a GEV distribution with < 0 then the marginal distribution is common to the 4 

chain  M and to Y and so they are in the same domain of max attraction. 5 

 We have the following behavior of a as x  r2:  6 

a
2
(x) = -2b(r2)’(r2 - x) + o( r2 - x)  where  

1




  7 

This information is then plugged-in as constraints in the likelihood of the Euler 8 

scheme to estimate coefficients a and b with bound constraints.  9 
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second period (1981-2009 for Berlin, 1986-2009 for Death Valley) according to 22 
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with 95% confidence interval in brackets) 24 

 25 

Table 7: 50-year Return Levels (RLs) of winter cold TN in Berlin and summer 26 

warm TX in Death Valley estimated from observed and simulated time series for 27 
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List of figures 35 

Figure 1: illustration of the derivation of the residuals from an observed daily 36 

temperature time series. The upper panel shows the original time series (top), its 37 

seasonality (middle) and trend (bottom) on the left and the time series of variance 38 

(top), its seasonality (middle) and trend (bottom) on the right, and the lower panel 39 

shows the obtained time series of residuals. 40 

 41 

Figure 2: Q-Q plots of the summer and winter distributions for daily minimum 42 

temperature in Olekminsk (left panel) and daily maximum temperature in Death 43 

Valley (right panel). The solid line materializes the diagonal; the dots are for the 44 

mean simulation and the dashed lines for the 95% confidence interval of the 45 

simulations 46 

 47 

Figure 3: observed (red) and simulated (black: mean –solid line- and 95% 48 

confidence interval –dashed line-) mean annual cycle and daily standard deviation 49 
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annual cycle for daily minimum temperature in Berlin (top panel) and daily 1 

maximum temperature in Jacksonville (bottom panel) 2 

 3 

Figure 4: distributions of the parameters of the Generalized Extreme Value (GEV) 4 

distribution fitted to the 100 simulations of the residuals (black): warm extremes 5 

(top panels: location µ, scale  and shape  from left to right) and cold extremes 6 

(bottom panels, same disposition) with their 2.5
th

 and 97.5
th

 percentiles (black 7 

dotted lines) and value of the same parameters obtained from the observations 8 

(red line). The top panels are for daily minimum temperature in Berlin and the 9 

bottom ones for daily maximum temperature in Death Valley. 10 

 11 

Figure 5: frequencies of the 1- to more than 15-day long cold waves in 12 

Petropavlovsk (top panel) and 1- to more than15-day long heat waves in 13 

Charleston (bottom panel). A cold wave is obtained as consecutive days with 14 

daily minimum temperature lower than the 2
nd

 percentile of the observations and 15 

heat waves as consecutive days with daily maximum temperature higher than the 16 

98
th

 percentile of the observations. The mean frequencies obtained from the 17 

simulations are represented by a solid black line, with the minimum and 18 

maximum frequencies in dotted black lines and the observed frequencies are 19 

represented by solid red lines. 20 

 21 

Figure 6: distributions of the 1
st
, 10

th
, 50

th
, 60

th
, 90

th
 and 99

th
 percentiles of the 100 22 

simulated temperature distributions estimated for daily minimum temperature in 23 

Berlin (top panels) over the second period (1981-2009) with the first approach 24 

(left panel) and the second approach (right panel), together with the estimation of 25 

the same percentiles from the observations over the same period (red line). The 26 

bottom panel is similar but for daily maximum temperature in Death Valley over 27 

period 1986-2009. 28 

 29 

Figure 7: frequencies of the 1- to more than 15-day long cold waves in Berlin (top 30 

2 panels) and 1- to more than 15-day long heat waves in Death Valley (bottom 2 31 

panels). The definitions of cold and heat waves are the same as in figure 5. The 32 

mean frequencies obtained from the simulations are represented by a solid black 33 

line, with the minimum and maximum frequencies in dotted black lines and the 34 

observed frequencies are represented by solid red lines. For each location, the top 35 

panel corresponds to the first simulation approach and the bottom one to the 36 

second one. 37 

  38 
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Tables 1 

Table 1 2 

Weather station Daily minimum temperature 

TN 

Daily maximum temperature 

TX 

 period Mean annual 

mean (°C) 

period Mean annual 

mean (°C) 

Biarritz 1956-2009 10.1 1956-2009 17.7 

Berlin 1950-2009 5.1 1950-2009 13.4 

Petropavlovsk 1950-2009 -3.3 1950-2009 6.9 

Olekminsk 1950-2009 -11.3 - - 

Death Valley 1962-2009 17.0 1962-2009 32.8 

Charleston 1950-2009 15.4 1950-2009 23.0 

Jacksonville 1950-2009 5.2 1950-2009 17.5 

Glasgow 1950-2009 -0.7 1950-2009 12.5 

 3 

Table 2 4 

 Daily maximum temperature TX 

 mean variance skewness kurtosis 

 obs sim obs sim obs sim obs sim 

Berlin 13.4 13.4 
[13.3;13.5] 

84.1 83.2 
[80.1;85.9] 

-0.03 -0.02 
[-0.06;0.02] 

-0.78 -0.79 
[-0.85;-0.72] 

Biarritz 17.7 17.7 

[17.6;17.8] 
37.1 37.2 

[35.9;38.7] 
0.07 0.05 

[-0.01;0.10] 
-0.06 -0.23 

[-0.33;-0.10] 

Petropavlovsk 6.9 6.9 
[6.7;7.1] 

237.8 238.2 
[233.6;243.9] 

 

-0.18 -0.16 
[-0.18;-0.13] 

-1.03 -1.08 
[-1.11;-1.05] 

Olekminsk - - - - - - - - 

Death Valley 32.8 32.8 

[32.6;32.9] 
112.2 112.2 

[109.5;114.8] 

 

-0.08 -0.07 
[-0.10;-0.04] 

-1.19 -1.17 

[-1.21;-1.11] 

Jacksonville 17.5 17.4 
[17.3;17.6] 

137.1 136.3 
[133.2;139.7] 

-0.43 -0.39 
[-0.41;-0.36] 

-0.82 -0.87 
[-0.91;-0.82] 

Glasgow 12.5 12.5 

[12.2;12.7] 
204.3 202.8 

[196.6;208.7] 
-0.38 -0.33 

[-0.37;-0.30] 
-0.59 -0.63 

[-0.69;-0.58] 
 

Charleston 23.0 23.0 

[22.9;23.1] 
50.9 50.7 

[49.6;52.0] 
-0.46 -0.41 

[-0.44;-0.39] 
-0.48 -0.57 

[-0.63;-0.51] 

 5 

Table 3 6 

 Daily minimum temperature TN 

 mean variance skewness kurtosis 

 obs sim obs sim obs sim obs sim 

Berlin 5.1 5.1 

[5.0;5.2] 
49.1 48.5 

[46.4;50.9] 
-0.36 -0.33 

[-0.39;-0.26] 
-0.21 -0.28 

[-0.48;-0.06] 

Biarritz 10.1 10.1 

[10.0;10.2] 
30.2 30.1 

[29.1;31.1] 
-0.35 -0.35 

[-0.40;-0.31] 
-0.30 -0.31 

[-0.41;-0.21] 

Petropavlovsk -3.3 -3.3 

[-3.4;-3.1] 
196.6 196.7 

[191.4;202.9] 
-0.41 -0.39 

[-0.42;-0.37] 
-0.85 -0.87 

[-0.91;-0.81] 

Olekminsk -11.4 -11.3 
[-11.5;-11.1] 

335.4 334.9 
[325.6;344.7] 

-0.30 -0.29 
[-0.31;-0.27] 

-1.14 -1.13 

[-1.17;-1.09] 

Death Valley 16.9 16.9 

[16.8;17.0] 
102.9 102.7 

[101.3;104.3] 
0.02 0.03 

[0.00;0.05] 
-1.13 -1.11 

[-1.14;-1.09] 
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Jacksonville 5.2 5.2 

[5.0;5.3] 
110.0 109.7 

[106.3;113.9] 
-0.33 -0.31 

[-0.35;-0.27] 
-0.58 -0.62 

[-0.71;-0.53] 

Glasgow -0.7 -0.7 

[-0.9;-0.5] 
147.1 146.9 

[141.1;152.0] 
-0.58 -0.54 

[-0.58;-0.50] 
-0.25 -0.30 

[-0.40;-0.19] 

Charleston 15.4 15.4 

[15.3;15.5] 
60.0 60.0 

[58.6;61.6] 
-0.40 -0.37 

[-0.40;-0.34] 
-0.86 -0.90 

[-0.94;-0.85] 

 1 

Table 4 2 

 TX TN 

 observations simulations observations simulations 
Berlin 38.2 [37.1;39.2] 39.8 [38.8;41.0] -23.4 [-25.5;-21.0] -26.5 [-31.5;-22.9] 

Biarritz 39.6 [38.8;40.4] 41.0 [39.0;43.5] -9.4 [-12.2;-6.6] -11.0 [-12.6;-9.7] 

Petropavlovsk 38.5 [37.6;39.5] 41.5 [39.3;44.8] -43.7 [-45.2;-42.1] -48.7 [-52.5;-45.3] 

Olekminsk - - -56.3 [-57.8;-54.8] -58.8 [-61.4;-56.2] 

Death Valley 54.3 [53.5;55.1] 55.2 [54.3;56.1] -6.4 [-7.5;-5.3] -7.4 [-8.8;-6.0] 

Jacksonville 41.8 [40.3;43.3] 43.1 [41.5;44.5] -29.5 [-31.3;-27.7] -33.8 [-38.5;-30.6] 

Glasgow 42.0 [41.1;42.8] 45.5 [44.3;46.9] -42.9 [-44.4;-41.4] -46.9 [-50.4;-44.0] 

Charleston 39.5 [38.6;40.4] 40.3 [39.5;41.2] -11.3 [-13.7;-9.0] -8.8 [-10.0;-7.5] 

 3 

Table 5 4 

 m1 (°C) m2 (°C) s1 (°C) s2 (°C) 

TN Berlin 4.7 5.5 7.0 6.9 

TX Death 

Valley 

32.3 33.2 10.4 10.7 

 5 

 6 

Table 6 7 

 winter summer 

 mean variance mean variance 

 obs sim1 sim2 obs sim1 sim2 obs sim1 sim2 obs sim1 sim2 

TN 

Berlin 

-1.7 -2.0 

[-2.7;  
-1.4] 

 

-1.8 

[-2.5; 
-1.2] 

25.0 25.2 

[20.8; 
29.8] 

 

23.2 

[18.9; 
28.4] 

13.1 13.2 

[12.9; 
13.4] 

13.0 

[12.8; 
13.2] 

8.7 8.2 

[7.5; 
8.9] 

9.1 

[8.2; 
9.9] 

TX 

Death 

Valley 

20.2 20.7 

[20.4; 
21.1] 

20.2 

[19.9; 
20.6] 

18.7 18.2 

[15.5; 
20.8] 

18.4 

[15.9; 
21.2] 

45.7 45.4 

[45.1; 
45.8] 

45.7 

[45.3; 
46.0] 

15.0 13.6 

[11.7; 
16.1] 

14.5 

[12.6; 
17.1] 
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Table 7 9 

 observations simulations 1 simulations 2 

Cold extremes 

Berlin 

-21.6 [-24.7;-18.5] -28.2 [-37.3;-22.3] -26.7 [-37.5;-21.5] 

Warm extremes 

Death Valley 

53.2 [52.2;54.1] 54.3 [53.2;55.6] 55.1 [54.1;56.2] 
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Figures 1 

Figure1 2 

Seasonality and trends of the mean Seasonality and trends of the variance 

  

Obtained residuals 

 

 3 

  4 
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Figure 2 1 

 2 

OLEKMINSK 

daily minimum temperature TN 

DEATH VALLEY 

daily maximum temperature TX 
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Figure 3 1 

BERLIN: daily minimum temperature TN 

  

JACKSONVILLE: daily maximum temperature TX 

  

observations 

simulations 
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Figure 4 1 

BERLIN: daily minimum temperature TN 

 

 

DEATH VALLEY: daily maximum temperature TX 

 

 

observations 

simulations 

 2 

  3 

Warm extremes 

Cold extremes 

Warm extremes 

Cold extremes 

µ  

µ  

µ  

µ  
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Figure 5 1 

PETROPAVLOVSK: cold waves distribution 

 

CHARLESTON: heat waves distribution 

 

observations 

simulations 
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Figure 6 1 

BERLIN: daily minimum temperature TN 

 

 

 

 

DEATH VALLEY: daily maximum temperature TX 

 

 

 

 

observations 

simulations 
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1% 10% 50% 

60% 90% 99% 

1% 10% 50% 

60% 90% 99% 

1% 10% 50% 

60% 90% 99% 

1% 10% 50% 
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Figure 7 1 

BERLIN: cold waves distribution 

 

DEATH VALLEY: heat waves distribution 

 

observations 

simulations 

 2 


