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Counting for some convergent groups

July 26, 2017

Marc Peigné (1), Samuel Tapie (2) & Pierre Vidotto (3)

Abstract. We present examples of geometrically finite manifolds with pinched negative curvature, whose
geodesic flow has infinite non-ergodic Bowen-Margulis measure and whose Poincaré series converges at
the critical exponent δΓ. We obtain an explicit asymptotic for their orbital growth function. Namely, for
any α ∈]1, 2[ and any slowly varying function L : R → (0,+∞), we construct N -dimensional Hadamard
manifolds (X, g) of negative and pinched curvature, whose group of oriented isometries admits convergent
geometrically finite subgroups Γ such that, as R → +∞,

NΓ(R) := # {γ ∈ Γ ; d(o, γ · o) ≤ R} ∼ CΓ
L(R)

Rα
eδΓR,

for some constant CΓ > 0.

AMS classification : 53C20, 37C35

1 Introduction

We fix N ≥ 2 and consider a N -dimensional Hadamard manifold X of negative, pinched curvature
−B2 ≤ KX ≤ −A2 < 0. Without loss of generality, we may assume A ≤ 1 ≤ B. Let Γ be a Kleinian
group of X , i.e. a discrete, torsionless group of isometries of X , with quotient X̄ = Γ\X .

This paper is concerned with the fine asymptotic properties of the orbital function :

vΓ(x,y;R) := ♯{γ ∈ Γ/d(x, γ · y) ≤ R}

for x,y ∈ X , which has been the subject of many investigations since Margulis’ [10] (see also Roblin’s
book [14]). First, a simple invariant is its exponential growth rate

δΓ = lim sup
R→∞

1

R
log(vΓ(x,y;R)).

The exponent δΓ coincides also with the exponent of convergence of the Poincaré series associated with
Γ :

PΓ(x,y, s) :=
∑

γ∈Γ

e−sd(x,γ·y), x,y ∈ X.

Thus, it is called the Poincaré exponent of Γ δΓ. It coincides with the topological entropy of the geodesic
flow (φt)t∈R on the unit tangent bundle of X̄, restricted to its non-wandering set. It equals also the
Hausdorff dimension of the radial limit set Λ(Γ)rad of Γ with respect to some natural metric on the
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boundary at infinity ∂X of X . Recall that any orbit Γ · x accumulates on a closed subset Λ(Γ) of the
geometric boundary ∂X of X , called the limit set of Γ; this set contains 1, 2 or infinitely many points
and one says that Γ is non elementary when ΛΓ is infinite. A point x ∈ ΛΓ is said to be radial when it is
approached by orbit points in some M -neighborhood of any given ray issued from x, for some M > 0).

The group Γ is said to be convergent if PΓ(x,y, δΓ) < ∞, and divergent otherwise. Divergence can
also be understood in terms of dynamics as, by Hopf-Tsuju-Sullivan theorem, it is equivalent to ergodicity
and total conservativity of the geodesic flow with respect to the Bowen-Margulis measure mΓ on the non
wandering set of (φt)t∈R in the unit tangent bundle T 1X̄ (see again [14] for a complete account and a
definition of mΓ and for a proof of this equivalence).

The more general statement concerning the asymptotic behavior of vΓ(x,y;R) is due to Th. Roblin:
if Γ is a non elementary, discrete subgroup of isometries of X with non-arithmetic length spectrum4, then
δΓ is a true limit and it holds, as R → +∞,

(i) if ‖mΓ|| = ∞ then vΓ(x,y;R) = o(eδΓR),

(ii) if ‖mΓ‖ < ∞, then vΓ(x,y;R) ∼ ||µx||.||µy||
δΓ‖mΓ||

eδΓR,

where (µx)x∈X denotes the family of Patterson δΓ-conformal densities of Γ, and mΓ the Bowen-Margulis
measure on T 1X̄. Let us emphasize that in the second case, the group Γ is always divergent while in the
first one it can be convergent.

In this paper, we aim to investigate, for a particular class of groups Γ, the asymptotic behavior of the
function vΓ(x,y;R) when Γ is convergent. As far as we know, the only precise asymptotic for the orbital
function of convergent groups holds for groups Γ which are normal subgroups Γ � Γ0 of a co-compact
group Γ0 for which the quotient Γ0/Γ is isometric up to a finite factor to the lattice Zk for some k ≥ 3 [13].
The corresponding quotient manifold has infinite Bowen-Margulis measure; in fact, mΓ is invariant under
the action of the group of isometries of X̄ which contains subgroups ≃ Zk.

The finiteness of mΓ is not easy to establish excepted in the case of geometrically finite groups where
there exists a precise criteria. Recall that Γ (or the quotient manifold X̄) is said to be geometrically finite
if its limit set Λ(Γ) decomposes in the radial limit set and the Γ-orbit of finitely many bounded parabolic
points x1, . . . , xℓ, fixed respectively by some parabolic subgroups Pi, 1 ≤ i ≤ ℓ, acting co-compactly on
∂X \ {xi}; for a complete description of geometrical finiteness in variable negative curvature see [4].
Finite-volume manifolds X̄ (possibly non compact) are particular cases of geometrically finite manifolds;
in contrast, the manifolds considered in [13] are not geometrically finite.

For geometrically finite groups, the orbital functions vPi
of the parabolic subgroups Pi, 1 ≤ i ≤ ℓ,

contain the relevant information about the metric inside the cusps, which in turn may imply mΓ to be
finite or infinite. On the one hand, it is proved in [6] that the divergence of the parabolic subgroups P ⊂ Γ
implies δP < δΓ, which in turn yields that Γ is divergent and ‖mΓ|| < ∞. On the other hand there exist
geometrically finite groups with parabolic subgroups P satisfying δP = δΓ: we call such groups exotic
and say that the parabolic subgroup P (or the corresponding cusps C) is dominant when δP = δΓ. Let
us emphasize that dominant parabolic subgroups of exotic geometrically finite groups Γ are necessarily
convergent. However, the group Γ itself may as well be convergent or divergent; we refer to [6] and [12]
for explicit constructions of such groups.

In this paper, we consider a Schottky product Γ of elementary subgroups Γ1, . . . ,Γp+q, of isometries
of X (see §3 for the definition) with p + q ≥ 3. Such a group is geometrically finite. We assume
that Γ is convergent; thus, by [6], it is exotic and possesses factors (say Γ1, . . . ,Γp, p ≥ 1) which are
dominant parabolic subgroups of Γ. We assume that, up to the dominant factor eδΓR, the orbital functions
vΓj

(x,y, ·) of these groups satisfy some asymptotic condition of polynomial decay at infinity. More
precisely we have the

Theorem 1.1 Fix p, q ∈ N such that p ≥ 1, p + q ≥ 2 and let Γ be a Schottky product of elementary
subgroups Γ1,Γ2 . . . ,Γp+q of isometries of a pinched negatively curved manifold X. Assume that the
metric g on X satisfies the following assumptions.

H1. The group Γ is convergent with Poincaré exponent δΓ = δ.

4It means that the set L(X̄) = {ℓ(γ) ; γ ∈ Γ} of lengths of closed geodesics of X̄ = Γ\X is not contained in a discrete
subgroup of R
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H2. There exist α ∈]1, 2[, a slowly varying function L (5) and strictly positive constants c1, . . . , cp
such that, for any 1 ≤ j ≤ p and ∆ > 0,

lim
R→+∞

Rα

L(R)

∑

γ∈Γj

R≤d(o,γ·o)<R+∆

e−δd(o,γ·o) = cj∆. (1)

H3. For any p+ 1 ≤ j ≤ p+ q and ∆ > 0,

lim
R→+∞

Rα

L(R)

∑

γ∈Γj

R≤d(o,γ·o)<R+∆

e−δd(o,γ·o) = 0.

Then, there exists a constant CΓ > 0 such that, as R → +∞,

♯{γ ∈ Γ | d(o, γ · o) ≤ R} ∼ CΓ
L(R)

Rα
eδR.

The importance of the convergence hypothesis H1 in the previous theorem is illustrated by the fol-
lowing result, previous work of one of the authors.

Theorem 1.2 ( [15], Theorem C) Let Γ be a Schottky product of p + q ≥ 2 elementary subgroups
Γ1,Γ2 . . . ,Γp+q of isometries of a pinched negatively curved manifold X. Assume that p ≥ 1 and

• Γ is divergent and δΓ = δ,
• Hypotheses H2, H3 hold.

Then, there exists CΓ > 0 such that, as R → +∞,

♯{γ ∈ Γ | d(o, γ · o) ≤ R} ∼ CΓ
eδR

R2−αL(R)
.

The difference with the equivalent of Theorem 1.1 may surprise, since it is possible to vary smoothly
the Riemannian metric gα,L from a divergent to a convergent case, preserving hypotheses H2 and H3,
cf [12]. Nevertheless, the proof of our Theorem 1.1 will illustrate the reasons of this difference. For groups
Γ = Γ1 ∗ ... ∗ Γp+q satisfying H2 and H3, the counting estimate only depends on elements of the form
γ = a1 · · ·ak, whith ai ∈ Γ1 ∪ . . . ∪ Γp and where ai and ai+1, 1 ≤ i < k, do not belong to the same Γj .
In the divergent case (see the proof of Theorem C in [15]), the asymptotic of {γ ∈ Γ | d(o, γ · o) ≤ R}
as R → +∞ only depends on the γ = a1 · · · ak with k >> R. On the opposite, in the convergent case,
the dominant parabolic factors Γ1, . . . ,Γp are “heavy” and the asymptotic of the orbital function of Γ
comes from the γ = a1 · · · ak with k bounded independently of R; the number of such isometries γ with

d(o, γ · o) ≤ R is comparable to
L(R)

Rα
eδR. By a straightforward adaptation of Proposition 5.4, this last

estimate remains valid in the divergent case; nevertheless, the fact that Γ is divergent implies that the
contribution of these isometries is negligible.

Remark 1.3 The condition α > 1 assures that the parabolic groups Γ1, . . . ,Γp are convergent. The
additive condition α < 2 is used in Proposition 5.3 to obtain a uniform upper bound for the power
P̃ k, k ≥ 1 of some operator P̃ introduced in Section 5; the proof of this Proposition relies on a previous
work of one of the authors [15] and is not valid for greater values of α. The analogous of our Theorem
1.1 when α ≥ 2 remains open.

The article is organized as follows. In the next section, we recall some backgrounds on negatively
curved manifolds, and we construct examples of metrics for which the hypotheses of Theorem 1.1 are
satisfied. In section 3, we present Schottky groups and the coding which we use to express our geometric
problem in terms of sub-shift of finite type on a countable alphabet. In section 4, we introduce the Ruelle
operator for this sub-shift; this is the key analytical tool which is used. Eventually, section 5 is devoted
to the proof of Theorem 1.1.

5A function L(t) is said to be ”slowly varying” it is positive, measurable and L(λt)/L(t) → 1 as t → +∞ for every λ > 0.
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2 Geometry of negatively curved manifolds

2.1 Generalities

In the sequel, we fix N ≥ 2 and consider a N -dimensional complete connected Riemannian manifold X
with metric g whose sectional curvatures satisfy : −B2 ≤ KX ≤ −A2 < 0 for fixed constants A and B;
the metric g we consider in this paper be obtained by perturbation of a hyperbolic one and the curvature
equal −1 on large subsets of X , thus we assume 0 < A ≤ 1 ≤ B. We denote d the distance on X induced
by the metric g.

Let ∂X be the boundary at infinity of X and let us fix an origin o ∈ X . The family of functions
(y 7→ d(o,x)− d(x,y))

x∈X converges uniformly on compact sets to the Busemann function Bx(o, ·) for
x → x ∈ ∂X . The horoballs Hx and the horospheres ∂Hx centered at x are respectively the sup-level
sets and the level sets of the function Bx(o, ·). For any t ∈ R, we set Hx(t) := {y/Bx(o,y) ≥ t} and
∂Hx(t) := {y/Bx(o,y) = t}; the parameter t = Bx(o,y) − Bx(o,x) is the height of y with respect to x.
When no confusion is possible, we omit the index x ∈ ∂X denoting the center of the horoball. Recall
that the Busemann function satisfies the fundamental cocycle relation: for any x ∈ ∂X and any x,y, z
in X

Bx(x, z) = Bx(x,y) +Bx(y, z).

The Gromov product between x, y ∈ ∂X ∼= ∂X , x 6= y, is defined as

(x|y)o =
Bx(o, z) + By(o, z)

2

where z is any point on the geodesic (x, y) joining x to y. By [3]), the expression

D(x, y) = e−A(x|y)o

defines a distance on ∂X satisfying the following property: for any γ ∈ Γ

D(γ · x, γ · y) = e−
A
2 Bx(γ

−1·o,o)e−
A
2 By(γ

−1·o,o)D(x, y).

In other words, the isometry γ acts on (∂X,D) as a conformal transformation with coefficient of confor-

mality |γ′(x)|o = e−ABx(γ
−1·o,o) at x and satisfies the following equality

D(γ · x, γ · y) =
√

|γ′(x)|o|γ′(y)|oD(x, y). (2)

The function x 7→ Bx(γ
−1 · o,o) plays a central role to describe the action of the isometry γ on the

boundary at infinity ∂X . From now on, we denote it b(γ, ·) and notice that it satisfies the following
“cocycle property”: for any isometries γ1, γ2 of X and any x ∈ ∂X

b(γ1γ2, x) = b(γ1, γ2 · x) + b(γ2, x). (3)

In order to describe the action on ∂X of the isometries of (X, g), it is useful to control precisely the
behavior of the sequences |(γn)′(x)|o; the following fact provides a useful estimation of these quantities.

Fact 2.1 (1) For any hyperbolic isometry h with repulsive and attractive fixed point x−
h = lim

n→+∞
h−n ·o

and x+
h = lim

n→+∞
hn · o respectively, it holds

b(h±n, x) = d(o, h±n · o)− 2(x±
h |x)o + ǫx(n)

with lim
n→+∞

ǫx(n) = 0, the convergence being uniform on the compact sets of ∂X \ {x∓
h }.

(2) For any parabolic group P with fixed point xP := lim
p∈P

p→+∞

p · o, it holds

b(p, x) = d(o, p · o)− 2(xP |x)o + ǫx(p)

with lim
p∈P

p→+∞

ǫx(p) = 0, the convergence being uniform on the compact sets of ∂X \ {xP}.
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2.2 On the existence of convergent parabolic groups

In this section, we recall briefly the construction presented in [12] of convergent parabolic groups satisfying
condition (1), up to a bounded term; we refer to [12] for the details.

We consider on RN−1 × R a Riemannian metric of the form g = T 2(t)dx2 + dt2 at point x = (x, t)
where dx2 is a fixed euclidean metric on RN−1 and T : R → R∗+ is a C∞ non-increasing function. The
group of isometries of g contains the isometries of RN−1 × R fixing the last coordinate. The sectional

curvature at x = (x, t) equals Kg(t) = − T ′′(t)

T (t)
on any plane

〈 ∂

∂Xi
,
∂

∂t

〉
, 1 ≤ i ≤ N − 1, and −K2

g (t)

on any plane
〈 ∂

∂Xi
,

∂

∂Xj

〉
, 1 ≤ i < j ≤ N − 1. Note that g has negative curvature if and only if T is

convex; when T (t) = e−t, one obtains a model of the hyperbolic space of constant curvature −1.
It is convenient to consider the non-decreasing function

u :

{
R∗+ → R

s 7→ T−1(1s )
(4)

which satisfies the following implicit equation T (u(s)) =
1

s
. The hyperbolic metric with constant curvature

−1 correspond to the function u(s) = log s. This function u is of interest since it gives precise estimates (up
a bounded term) of the distance between points lying on the same horosphere Ht := {(x, t) : x ∈ RN−1}
where t ∈ R is fixed. Namely, the distance between xt := (x, t) and yt := (y, t) for the metric T 2(t)dx2

induced by g on Ht is equal to T (t)‖x− y‖. Hence, this distance equals 1 when t = u(‖x− y‖) and the
union of the 3 segments [x0,xt], [xt,yt] and [yt,y0] lies at a bounded distance of the hyperbolic geodesic
joigning x0 and y0 (see [6], lemme 4) : this readily implies that d(x0,y0)− 2u(‖x− y‖) is bounded.

The “curvature” function Kg may be expressed in term of u as follows:

Kg(u(s)) := −T ′′(u(s))

T (u(s))
= −2u′(s) + su′′(s)

s2(u′(s))3
. (5)

For any α ≥ 0, let us consider the non decreasing C2-function u = uα from R∗+ to R such that

(i) uα(s) = log s if 0 < s ≤ 1 and (ii) uα(s) = log s+ α log log s if s ≥ sα

for some constant sα > 1 to be chosen in the following way. Using formula (5) and following Lemma
2.2 in [12], for any A ∈]0, 1[, one may choose sα > 1 in such a way the metric gα = T 2

uα
(t)dx2 + dt2 on

RN−1 × R has pinched negative curvature on X , bounded from above by −A2. Let us emphasize that
this metric cöıncides with the hyperbolic one on the subset RN−1 × R− and that we can enlarge this
subset shifting the metric gα along the axis {0} × R as far as we want (see [12] § 2.2).

Now, let P be a discrete group of isometries of RN−1 spanned by k linearly independent translations
p~τ1 , · · · , p~τk in RN−1. For any n = (n1, · · · , nk) ∈ Zk, we set ~n = n1~τ1 + · · · + nk~τk. The translations
p~n are also isometries of (RN , gα) and the corresponding Poincaré series of P is given by, up to finitely
many terms,

PP(s) =
∑

‖~n‖>sα,β

e−sd(o,p~n·o) =
∑

‖~n‖>sα,β

e−2su(‖~n‖)−sO(1)

=
∑

‖~n‖>sα,β

e−sO(1)

‖~n‖2s
(
log ‖~n‖

)2sα .

Thus, the Poincaré exponent of P equals k/2 and P is convergent if and only if α > 1.

Remark 2.2 We can construct other similar metrics as follows. For α > 1, β > 0, there exists sα,β > 0
and uα,β : (0,+∞) → R such that

(i) uα,β(s) = log s if 0 < s ≤ 1,
(ii) uα,β(s) = log s+ α log log s+ β log log log s if s ≥ sα,β,
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(iii) Kg(u(s)) ≤ −A.
Hence, the Poincaré series of the parabolic subgroup P with respect to the metric gα,β = T 2

uα,β
(t)2dx2+dt2

is given by, up to finitely many terms,

PP (s) =
∑

‖~n‖>sα,β

e−sd(o,p~n·o) =
∑

‖~n‖>sα,β

e−2su(‖~n‖)−sO(1)

=
∑

‖~n‖>sα,β

e−sO(1)

‖~n‖2s
(
log ‖~n‖

)2sα(
log log ‖~n‖

)2sβ .

This implies that P converges as soon as α > 1 but it is not enough to ensure that P satisfy hypothesis
(1). In the next paragraph, we present new metrics gα, close to those presented in the present section,
for which it holds

d(o, p~n · o) = 2 (log ‖~n‖+ α log log ‖~n‖) + C + ǫ(n),

where C ∈ R is a constant and lim
n→+∞

ǫ(n) = 0.

2.3 On convergent parabolic groups satisfying condition (1)

Let us fix N = 2, α > 1 and a slowly varying function L : [0,+∞[→ R
∗+. We construct in this section a

metric g = gα,L = T 2(t)dx2+dt2 on R×R such that the group spanned by the translation (x, t) 7→ (x+1, t)
satisfies our hypothesis (1). The generalization to higher dimension is immediate.

For any real t greater than some a > 0 to be chosen, let us set

T (t) = Tα,L(t) = e−t tα

L(t)
.

Without loss of generalities, we assume that L is C∞ on R+ and its derivates L(k), k ≥ 1, satisfy

L(k)(t) −→ 0 and
L′(t)

L(t)
→ 0 as t → +∞ ( [2], Section 1.3). Furthermore, for any θ > 0, there exist tθ ≥ 0

and Cθ ≥ 1 such that for any t ≥ tθ
1

Cθtθ
≤ L(t) ≤ Cθt

θ. (6)

Notice that −T ′′(t)

T (t)
= −

(
1− 2α

t
+ L′(t)

)2

+
( α
t2

+ L′′(t)
)
< 0 for t ≥ a.

We assume that 0 < A < 1 < B and, following Lemma 2.2 in [12], extend Tα,L on R as follows.

Lemma 2.3 There exists a = aα,L > 0 such that the map T = Tα,L : R → (0,+∞) defined by

• T (t) = e−t for t ≤ 0,

• T (t) = e−t tα

L(t) for t ≥ aα,L,

admits a decreasing and 2-times continuously differentiable extension on R satisfying the following in-
equalities

−B ≤ K(t) = −T ′′(t)

T (t)
≤ −A < 0.

Notice that this property holds for any t′ ≥ tα,L; for technical reasons (see Lemma 2.7), we assume
that a > 4α. A direct computation yields the following estimate for the function u = uα,L given by the
implicit equation (4).

Lemma 2.4 Let u = uα,L : (0,+∞) → R be such Tα,L(u(s)) =
1

s
for any s > 0. Then

u(s) = log s+ α log log s− logL(log s) + ǫ(s)

with ǫ(s) → 0 as s → +∞.

6



We now consider the group P spanned by the translation p of vector ~i = (1, 0) in R2; the map p is an
isometry of (R2, gα,L) which fixes the point x = ∞. By Lemma 2.4, it holds

d(o, pn · o) = 2
(
logn+ α log logn− logL(logn)

)

up to a bounded term. Hence, the group P has critical exponent 1
2 ; furthermore, it is convergent since

α > 1. (6) The following proposition ensures that P satisfies hypothesis (1); in other words, the “bounded
term” mentioned above tends to 0 as n → +∞.

Proposition 2.5 The parabolic group P = 〈p〉 on (R2, gα,L) satisfies the following property: for any
n ∈ N,

d(o, pn · o) = 2
(
log n+ α log logn− logL(logn)

)
+ ǫ(n)

with lim
n→+∞

ǫ(n) = 0. In particular, if α > 1, then P is convergent with respect to gα.

Let H = R× [0,+∞) be the upper half plane {(x, t) | t ≥ 0} and H/P the quotient cylinder endowed
with the metric gα,L = Tα,L(t)

2dx2+dt2. We do not estimate directly the distances d(o, pn ·o), since the
metric gα,L is not known explicitely for t ∈ [0, a]. Let us introduce the point a = (0, a) ∈ R

2. The union
of the three geodesic segments [o, a], [a, pn ·a)] and [pn ·a, pn ·o] is a quasi-geodesic; more precisely, since
d(o, a) = d(pn · o, pn · a) is fixed and d(a, pn · a) → +∞, the following statement holds.

Lemma 2.6 Under the previous notations,

lim
n→+∞

d(o, pn · o)− d(a, pn · a) = 2a.

Proposition 2.5 follows from the following lemma.

Lemma 2.7 Assume that a ≥ 4α. Then

d(a, pn · a) = 2(logn+ α log logn− logL(logn)− a) + ǫ(n)

with lim
n→+∞

ǫ(n) = 0.

Proof. Throughout this proof, we work on the upper half-plane R × [a,+∞[ whose points are denoted
(x, a+ t) with x ∈ R and t ≥ 0; we set

T (t) = Tα(t+ a) = e−a−t (t+ a)α

L(t+ a)
.

In these coordinates, the quotient cylinder R × [a,+∞[/P is a surface of revolution endowed with the
metric T (t)2dx2 + dt2. For any n ∈ Z, denote hn the maximal height at which the geodesic segment
σn = [a, pn · a] penetrates inside the upper half-plane R × [a,+∞[; it tends to +∞ as n → ±∞. The
relation between n, hn and dn := d(a, pn · a) may be deduced from the Clairaut’s relation ( [5], section
4.4, Example 5) :

n

2
= T (hn)

∫ hn

0

dt

T (t)
√
T 2(t)− T 2(hn)

and dn = 2

∫ hn

0

T (t)dt√
T 2(t)− T 2(hn)

.

These identities may be rewritten as

n

2
=

1

T (hn)

∫ hn

0

f2
n(s)ds√
1− f2

n(s)
and dn = 2hn + 2

∫ hn

0

( 1√
1− f2

n(s)
− 1
)
ds

where fn(s) :=
T (hn)

T (hn − s)
1[0,hn](s).

First, for any s ≥ 0, the quantity
f2
n(s)√

1− f2
n(s)

converges towards
e−2s

√
1− e−2s

as n → +∞. In order to

use the dominated convergence theorem, we need the following property.

6Notice that the group P also converges when α = 1 and
∑

n≥1

L(n)

n
< +∞; this situation is not explore here.
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Fact 2.8 There exists n0 > 0 such that for any n ≥ n0 and any s ≥ 0,

0 ≤ fn(s) ≤ f(s) := e−s/2

Proof. Assume first hn/2 ≤ s ≤ hn; taking θ = α/2 in (6) yields

0 ≤ fn(s) =

(
a+ hn

a+ hn − s

)α
L(a+ hn − s)

L(a+ hn)
e−s

≤ C2
α/2

(a+ hn)
3α/2

(a + hn − s)α/2
e−s

≤
C2

α/2

a
α/2

(a + hn)
3α/2e−s

≤
C2

α/2

a
α/2

(a + hn)
3α/2e−

hn
4 e−

s
2 ≤ e−

s
2

where the last inequality holds if hn is great enough, only depending on a and α.

Assume now 0 ≤ s ≤ hn/2; it holds
1

2
≤ a+ hn − s

a+ hn
≤ 1 and 0 ≤ s

a+hn
≤ min(12 ,

s
a
). Recall that

L′(t)/L(t) → 0 as t → +∞ and 0 ≤ 1
1−v ≤ e2v for 0 ≤ v ≤ 1

2 ; hence, for any ε > 0 and n great enough
(say n ≥ nε), there exists sn ∈ (0, s) such that

0 ≤ fn(s) =
L(a+ hn − s)

L(a+ hn)

(
1

1− s
a+hn

)α

e−s

≤
(
1− s

L′(a+ hn − sn)

L(a+ hn)

)
e−(1− 2α

a
)s

≤ (1 + ǫs)e−(1− 2α
a

)s

≤ e−(1−ε− 2α
a

)s.

Consequently, fixing ǫ > 0 in such a way 2
α

a

+ ǫ ≤ 1

2
, it yields 0 ≤ fn(s) ≤ e−s/2 for n great enough.

2

Therefore,

0 ≤ f2
n(s)√

1− f2
n(s)

≤ F (s) :=
f2(s)√
1− f2(s)

where the function F is integrable on R+. By the dominated convergence theorem, it yields

n

2
=

1 + ǫ(n)

T (hn)

∫ +∞

0

e−2s

√
1− e−2s

ds =
1 + ǫ(n)

T (hn)
.

Consequently hn = logn+ α log logn− logL(logn)− log 2− a+ ǫ(n).

Similarly lim
n→+∞

∫ hn

0

( 1√
1− f2

n(s)
− 1
)
ds =

∫ +∞

0

( 1√
1− e−2s

− 1
)
ds = log 2, which yields

dn = 2(logn+ α log logn− logL(logn)− a) + ǫ(n).

2

The Poincaré exponent of P equals 1/2 and, as R → +∞,

♯{p ∈ P | 0 ≤ d(o, p · o) < R} ∼ eR/2 L(R)

(R/2)α
.

Hence, for any ∆ > 0,

♯{p ∈ P | R ≤ d(o, p · o) < R+∆} ∼ 1

2

∫ R+∆

R

et/2
L(t)

(t/2)α
dt as R → +∞
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and

lim
R→+∞

Rα

L(R)

∑

p∈P

R≤d(o,p·o)<R+∆

e−
1
2d(o,p·o) = 2α−1∆

which is precisely Hypothesis 1.

2.4 On the existence of non elementary exotic groups

Explicit constructions of exotic groups, i.e. non-elementary groups Γ containing a parabolic P whose
Poinacré exponent equals δΓ, have been detailed in several papers; first in [6], then in [12], [7] and [15].
Let us describe them in the context of the metrics g = gα;L presented above.

For any a > 0 and t ∈ R, we write

Tα,L,a =

{
e−t if t ≤ a

e−aTα,L(t− a) if t ≥ a
,

where Tα,L is defined in the previous paragraph. As in [12], we consider the metric on R2 given by
gα,L,a = T 2

α,L,a(t)dx
2 +dt2. It is a complete smooth metric, with pinched negative curvature, and which

equals the hyperbolic one on R× (−∞, a). Note that gα,L,0 = gα,L and gα,L,+∞ is the hyperbolic metric
on H2. Note the previous subsection, for any a ∈ (0,+∞) and any τ ∈ R∗, a parabolic group of the form
P =< (x, t) 7→ (x+ τ, r) > is convergent. This allows to reproduce the construction of a non-elementary
group given in [6] and [12].

Let h be a hyperbolic isometry of H2 and p be a parabolic isometry in Schottky position with h (cf
next section for a precise definition). They generate a free group Γ =< h, p > which acts discretely
without fixed point on H2. Up to a global conjugacy, we can suppose that p is (x, t) 7→ (x+ τ, t) for some
τ ∈ R

∗. The surface S = H
2/Γ has a cusp, isometric to R/τZ × (a0,+∞) for some a0 > 0. Therefore,

we can replace in the cusp the hyperbolic metric by gα,L,a for any a ≥ a0; we also denote gα,L,a the lift
of gα,L,a to R2.

For any n ∈ Z∗, the group Γn =< hn, p > acts freely by isometries on (R2, gα,L,a). It is shown
in [6] that, for n > 0 great enough, the group Γn also converges. This provides a family of examples for
Theorem 1.1. By [12], if Γn is convergent for some a0 > 0, then there exists a∗ > a0 such that for any
a ∈ [a0, a

∗), the group Γn acting on (R2, gα,L,a) is convergent, whereas for a > a∗, it has finite Bowen-
Margulis measure and hence diverges. In some sense, the case a = a∗ is “critical”; it is proved in [12]
that Γ also diverges in this case. With additive hypotheses on the tail of the Poincaré series associated
to the factors Γj , 1 ≤ j ≤ p of Γ, P. Vidotto has obtained a precise estimate of the orbital function of Γ
in the case when its Bowen-Margulis measure is infinite [15] ; this is the analogous of Theorem 1.1, under
slightly more general assumptions.

In [7], the authors propose another approach based on a “strong” perturbation of the metric inside
the cusp. Starting from a N -dimensional finite volume hyperbolic manifold with cuspidal ends, they
modify the metric far inside one end in such a way the corresponding parabolic group is convergent with
Poincaré exponent > 1 and turns the fundamental group of the manifold into a convergent group; in
this construction, the sectional curvature of the new metric along certain planes is < −4 far inside the
modified cusp.

3 Schottky groups: generalities and coding

From now on, we fix two integers p ≥ 1 and q ≥ 0 such that ℓ := p + q ≥ 2 and consider a Schottky
group Γ generated by ℓ elementary groups Γ1, . . . ,Γℓ of isometries of X . These elementary groups are in
Schottky position, i.e. there exist disjoint closed sets Fj in ∂X such that, for any 1 ≤ j ≤ ℓ

Γ∗
j (∂X \ Fj) ⊂ Fj .

The group Γ spanned by the Γj, 1 ≤ j ≤ ℓ, is called the Schottky product of the Γj ’s and denoted
Γ = Γ1 ⋆ Γ2 ⋆ · · · ⋆ Γℓ.
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In this section, we present general properties of Γ. In particular, we do not require that conditions
H1, H2 and H3 hold; these hypotheses are only needed in the last section of this paper.

By the Klein’s tennis table criteria, Γ is the free product of the groups Γi; any element in Γ can be
uniquely written as the product

γ = a1 . . . ak

for some aj ∈ ∪Γ∗
j with the property that no two consecutive elements aj belong to the same group. The

set A = ∪Γ∗
j is called the alphabet of Γ, and a1, . . . , ak the letters of γ. The number k of letters is the

symbolic length of γ; let us denote Γ(k) the set of elements of Γ with symbolic length k. The last letter
of γ plays a special role, and the index of the group it belongs to be denoted by lγ . Applying Fact 2 one
gets

Property 3.1 There exists a constant C > 0 such that

d(o, γ.o)− C ≤ Bx(γ
−1.o,o) ≤ d(o, γ.o)

for any γ ∈ Γ = ⋆i Γi and any x ∈ ∪i6=lγFi.

This fact implies in particular the following crucial contraction property [1].

Proposition 3.2 There exist a real number r ∈]0, 1[ and C > 0 such that for any γ with symbolic length
n ≥ 1 and any x belonging to the closed set ∪i6=i(γ)Fi one has

|γ′(x)| ≤ Crn.

The following statement, proved in [1], provides a coding of the limit set Λ(Γ) but the Γ-orbits of the
fixed points of the generators.

Proposition 3.3 Denote by Σ+ the set of sequences (an)n≥1 for which each letter an belongs to the
alphabet A = ∪Γ∗

i and such that no two consecutive letters belong to the same group (these sequences are
called admissible). Fix a point x0 in ∂X \ F . Then

(a) For any a = (an)n≥1 ∈ Σ+, the sequence (a1 . . . an · x0)n≥1 converges to a point π(a) in the limit
set of Γ, independent on the choice of x0.

(b) The map π : Σ+ → Λ(Γ) is one-to-one and π(Σ+) is contained in the radial limit set of Γ.

(c) The complement of π(Σ+) in the limit set of Γ equals the Γ-orbit of the union of the limits sets
Λ(Γi)

From now on, we consider a Schottky product group Γ. Thus, up to a denumerable set of points, the
limit set of Γ coincides with π(Σ+). For any 1 ≤ i ≤ ℓ, let Λi = Λ ∩ Fi be the closure of the set of those
limit points with first letter in Γi (not to be confused with the limit set of Γi). The following description
of Λ = Λ(Γ) be useful:

a) Λ is the finite union of the sets Λi,
b) the closes sets Λi, 1 ≤ i ≤ ℓ, are pairwise disjoints,
c) each of these sets is partitioned into a countable number of subsets with disjoint closures :

Λi = ∪a∈Γ∗
i
∪j 6=i a.Λj .

Now, we enlarge the set Λ in order to take into account the finite admissible words. We fix a point
x0 /∈ ∪jFj . There exists a one-to-one correspondence between Γ · x0 and Γ; furthermore, the point

γ · x0 ∈ Fj for any γ ∈ Γ∗ with first letter in Γj . We set Σ̃+ = Σ+ ∪ Γ and notice that, by the previous

Proposition, the natural map π : Σ̃+ → Λ(Γ) ∪ Γ · x0 is one-to-one with image π(Σ+) ∪ Γ · x0. Thus we
introduce the following notations

a) Λ̃ = Λ ∪ Γ · x0;
b) Λ̃i = Λ̃ ∩ Fi for any 1 ≤ i ≤ ℓ.
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The set Λ̃ is the disjoint union of {x0} and the sets Λ̃i, 1 ≤ i ≤ ℓ; furthermore, each Λ̃i is partitioned into
a countable number of subsets with disjoint closures:

Λ̃i = ∪a∈Γ∗
i
∪j 6=i a · Λ̃j .

The cocycle b defined in (3) play a central role in the sequel. In order to calculate the distance between
two points of the orbit Γ · o, we consider an extension b̃ of this cocycle defined as follow on Λ̃: for any
γ ∈ Γ and x ∈ Λ̃,

b̃(γ, x) :=
{ b(γ, x) = Bx(γ

−1o,o) if x ∈ Λ;
d(γ−1 · o, g · o)− d(o, g · o) if x = g · x0 for some g ∈ Γ.

The cocycle equality (3) is still valid for the function b̃; furthermore, if γ ∈ Γ decomposes as γ = a1 · · · ak,
then

d(o, γ · o) = b(a1, γ2 · x0) + b(a2, γ3 · x0) + · · ·+ b(ak, x0),

where γl = al · · · ak for 2 ≤ l ≤ k.

4 On the Ruelle operators Ls, s ∈ R

In this section, we describe the main properties of the transfer operators Ls, s ∈ R, defined formally by:
for any function φ : Λ̃ → C and x ∈ Λ̃,

Lsφ(x) =
∑

γ∈Γ(1)

1x/∈Λ̃lγ
e−sb̃(γ,x)φ(γ · x) =

ℓ∑

j=1

∑

γ∈Γ∗
j

1x/∈Λ̃j
e−sb̃(γ,x)φ(γ · x).

For any 1 ≤ j ≤ ℓ, the sequence (γ · o)γ∈Γj
accumulates on the fixed point(s) of Γj . So for any x /∈ Λ̃j,

the sequence
(
b̃(γ, x)− d(o, γ.o)

)

γ∈Γj

is bounded uniformly in x /∈ Λ̃j. Therefore the quantity Ls1(x) is

well defined as soon as s ≥ δ := max{δΓj
| 1 ≤ j ≤ ℓ}. The powers of Ls, s ≥ δ, are formally given by:

for any k ≥ 1, any function φ : Λ̃ → C and any x ∈ Λ̃,

Lk
sφ(x) =

∑

γ∈Γ(k)

1x/∈Λ̃j
e−sb̃(γ,x)φ(γ · x).

It is easy to check that the operator Ls, s ≥ δ, act on (C(Λ̃), | · |∞); we denote ρs(∞) it spectral radius
on this space.

4.1 Poincaré series versus Ruelle operators

By the “ping-pong dynamic” between the subgroups Γj , 1 ≤ j ≤ ℓ, and Property 3.1, we easily check that

the difference b̃(γ, x) − d(o, γ · o) is bounded uniformly in k ≥ 0, γ ∈ Γ(k) and x /∈ Λ̃lγ . Consequently,

there exists a constant C > 0 such that, for any x ∈ Λ̃, any k ≥ 1 and any s ≥ δ,

Lk
s1(x)

c≍
∑

γ∈Γ(k)

e−sd(o,γ·o)

where A
c≍ B means A

c ≤ B ≤ cA. Hence,

PΓ(s) :=
∑

γ∈Γ

e−sd(o,γ·o) = +∞ ⇐⇒
∑

k≥0

Lk
s1(x) = +∞. (7)

In particular
δΓ = sup{s ≥ δ | ρs(∞) ≥ 1} = inf{s ≥ δ | ρs(∞) ≤ 1}. (8)

It is proved in the next paragraph that Γ is convergent if and only if ρδ(∞) < 1.
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4.2 On the spectrum of the operators Ls, s ≥ δ

In order to control the spectral radius (and the spectrum) of the transfer operators Ls, we study their
restriction to the space Lip(Λ̃) of Lipschitz functions from Λ̃ to C defined by

Lip(Λ̃) = {φ ∈ C(Λ̃); ‖φ‖ = |φ|∞ + [φ] < +∞}

where [φ] = sup
0≤i≤p

sup
x,y∈Λ̃j

x 6=y

|φ(x) − φ(y)|
D(x, y)

is the Lipschitz coefficient of φ on (∂X,D).

The space (Lip(Λ̃), ‖.‖) is a Banach space and the identity map from (Lip(Λ̃), ‖.‖) into (C(Λ̃), |.|∞)
is compact. It is proved in [1] that the operators Ls, s ≥ δ, act both on (C(Λ), | · |∞) and (Lip(Λ), ‖ · ‖);
P. Vidotto has extended in [15] this property to the Banach spaces (C(Λ̃), | · |∞) and (Lip(Λ̃), ‖ · ‖).
We denote ρs the spectral radius of Ls on Lip(Λ̃); in the following proposition, we state the spectral
properties of the Ls we need in the present paper.

Proposition 4.1 We assume ℓ = p+ q ≥ 3 (7). For any s ≥ δ,

1. ρs = ρs(∞);

2. ρs is a simple eigenvalue of Ls acting on Lip(Λ̃) and the associated eigenfunction hs is non negative
on Λ̃;

3. there exists 0 ≤ r < 1 such that the rest of the spectrum of Ls on Lip(Λ̃) is included in a disc of
radius ≤ rρs.

Sketch of the proof. We refer to [1] and [15] for the details. For any s ≥ 0 and γ in Γ∗, let ws(γ, .) be
the weight function defined on Λ(Γ) by: for any s ≥ δ and γ ∈ Γ

ws(γ, x) :=
{

e−sb̃(γ,x) if x ∈ Λ̃j , j 6= lγ ,
0 otherwise.

Observe that these functions satisfy the following cocycle relation : if γ1, γ2 ∈ A do not belong to the
same group Γj , then

ws(γ1γ2, x) = ws(γ1, γ2 · x)ws(γ2, x).

Due to this cocycle property, we may write, for any k ≥ 1, any bounded function ϕ : Λ̃ → R and any
x ∈ Λ̃

Lk
sϕ(x) =

∑

γ∈Γ(k)

ws(γ, x)ϕ(γ · x).

In [1], it is proved that the restriction of the functions ws(γ, .) to the set Λ belong to Lip(Λ) and that
for any s ≥ δ there exists C = C(s) > 0 such that, for any γ in Γ∗

‖ws(γ, .)‖ ≤ Ce−sd(o,γ.o).

In [15], Proposition 8.5, P. Vidotto has proved that the same inequality holds for the functions ws(γ, .)
on Λ̃. Thus, the operator Ls is bounded on Lip(Λ̃) when s ≥ δ.

In order to describe its spectrum on Lip(Λ̃), we first write a “contraction property” for the iterated
operators Lk

s ; indeed,

|Lk
sϕ(x)− Lk

sϕ(y)| ≤
∑

γ∈Γ(k)

|ws(γ, x)| |ϕ(γ · x)− ϕ(γ · y)|+
∑

γ∈Γ(k)

[ws(γ, .)] |ϕ|∞D(x, y).

By Proposition 3.2 and the mean value relation (2), there exist C > 0 and 0 ≤ r < 1 such that
D(γ · x, γ · y) ≤ CrkD(x, y) whenever x, y ∈ Λ̃j, j 6= lγ . This leads to the following inequality

[Lk
sϕ] ≤ rk[ϕ] +Rk|ϕ|∞ (9)

7Recall that ℓ ≥ 2 since Γ is non-elementary. When ℓ = 2, the real −ρs is also a a simple eigenvalue of Ls; a similar
statement to Proposition 4.1 holds for the restriction of Ls to each space Lip(Λ̃i), i = 1, 2 [1].
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where rk =
(
Crk

)
|Lk

s1|∞ and Rk =
∑

γ∈Γ(k)[ws(γ, .)]. Observe that

lim sup
k

r
1/k
k = r lim sup

k
|Lk

s1|1/k∞ = rρs(∞)

where ρs(∞) is the spectral radius of the positive operator Ls on C(Λ̃(Γ)). Inequality (9) is crucial in the
Ionescu-Tulcea-Marinescu theorem for quasi-compact operators. By Hennion’s work [9], it implies that
the essential spectral radius of Ls on Lip(Λ̃) is less than rρs(∞) ; in other words, any spectral value of
Ls with modulus strictly larger than rρs(∞) is an eigenvalue with finite multiplicity and is isolated in
the spectrum of Ls.

This implies in particular ρs = ρs(∞). Indeed, the inequality ρs ≥ ρs(∞) is obvious since the function
1 belongs to Lip(Λ̃). Conversely, the strict inequality would imply the existence of a function φ ∈ Lip(Λ̃)
such that Lsφ = λφ for some λ ∈ C of modulus > ρs(∞) ; this yields |λ||φ| ≤ Ls|φ| so that |λ| ≤ ρs(∞).
Contradiction.

It remains to control the value ρs in the spectrum of Ls. By the above, we know that ρs is an
eigenvalue of Ls with (at least) one associated eigenfunction hs ≥ 0. This function is strictly positive
on Λ̃: otherwise, there exist 1 ≤ j ≤ p + q and a point y0 ∈ Λ̃j such that hs(y0) = 0. The equality
Lshs(y0) = ρshs(y0) implies hs(γ · y0) = 0 for any γ ∈ Γ with last letter 6= j. The minimality of the
action of Γ on Λ and the fact that Γ · x0 accumulates on Λ implies hs = 0 on Λ̃. Contradiction.

In order to prove that ρs is a simple eigenvalue of Ls on Lip(Λ̃), we use a classical argument in
probability theory related to the ”Doob transform” of a sub-markovian transition operator. For any
s ≥ δ, we denote Ps the operator defined formally by: for any bounded Borel function φ : Λ̃ → C and
x ∈ Λ̃,

Psφ(x) =
1

ρhs(x)
L(hsφ)(x) =

1

ρhs(x)

∑

γ∈Γ(1)

e−δb̃(γ,x)h(γ · x)φ(γ · x).

The iterates of Ps are given by: P 0
s = Id and for k ≥ 1

P k
s φ(x) =

∫

X

φ(y)P k
s (x, dy) =

1

ρkshs(x)

∑

γ∈Γ(k)

e−δb(γ,x)h(γ · x)φ(γ · x).w (10)

The operator Ps acts on Lip(Λ̃) as a Markov operator, i.e. Psφ ≥ 0 if φ ≥ 0 and Ps1 = 1. It inherits
the spectral properties of Ls and is in particular quasi-compact with essential spectral radius < 1. The
spectral value 1 is an eigenvalue and it remains to prove that the associated eigenspace is C · 1. Let
f ∈ Lip(Λ̃) such that Psf = f and 1 ≤ j ≤ p+ q and y0 ∈ Λ̃j such that |f(y0)| = |f |∞. An argument
of convexity applied to the inequality P |f | ≤ |f | readily implies |f(y0)| = |f(γ · y0)| for any γ ∈ Γ with
last letter 6= j; by minimality of the action of Γ on Λ̃, it follows that the modulus of f is constant on Λ̃.
Applying again an argument of convexity, the minimality of the action of Γ on Λ̃ and the fact that Γ · x0

accumulates on Λ, one proves that f is in fact constant on Λ̃. Finally, the eigenspace of Ls associated
with ρs equals C · 1.

Similarly, using the fact that ℓ ≥ 3, we may prove that the peripherical spectrum of Ls, i.e. the eigen-
values λ with |λ| = ρs, is reduced to ρs; we refer the reader to Proposition III.4 of [1] and Proposition 8.6 of
[15]. 2

Expression (10) yields to the following.

Notations 4.2 For any s ≥ δ, any x ∈ Λ̃, any k ≥ 0 and any γ ∈ Γ(k), set

ps(γ, x) :=
1

ρks

hs(γ · x)
hs(x)

ws(γ, x). (11)

As for the ws(γ, ·), these “weight functions” are positive and satisfy the cocycle property

ps(γ1γ2, x) = ps(γ1, γ2 · x) · ps(γ2, x)

for any s ≥ δ, x ∈ Λ̃ and γ1, γ2 ∈ Γ. Let us emphasize that
∑

γ∈Γ(k)

ps(γ, x) = 1; in other words, the

operator Ps is markovian.
2
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Corollary 4.3 The group Γ is convergent if and only if ρδ < 1.

Proof. If ρδ = ρδ(∞) < 1 then ρs < 1 for any s ≥ δ, since s 7→ ρs(∞) = ρs is decreasing on [δ,+∞[.
Equality (8) implies δΓ ≤ δ and so δΓ = δ; by (7), it follows that Γ is convergent.

Assume now ρδ ≥ 1. When Γ is non exotic, it is divergent by [6]. Otherwise, δΓ = δ and since the
eigenfunction hδ is non negative on Λ̃, we have, for any k ≥ 1 and x ∈ Λ̃

Lk
δ1(x) ≍ Lk

δhδ(x) = ρkδhδ(x) ≍ ρkδ .

Consequently
∑

k≥0

Lk
δ1(x) = +∞ and the group Γ is divergent, by (7).

2

5 Counting for convergent groups

Throughout this section we assume that Γ is convergent on (X, g); by Corollary 4.3 it is equivalent to
the fact that ρδ < 1.

For any φ ∈ Lip(Λ̃), any x ∈ Λ̃ and R > 0, let us denote by M(R, φ×· )(x) the measure on R defined
by:

M(R, φ⊗ u)(x) :=
∑

γ∈Γ

e−δb̃(γ,x)φ(γ · x)u(−R + b̃(γ, x)).

It holds 0 ≤ M(R, φ⊗ u)(x) < +∞ when u has a compact support in R since the group Γ is discrete.
The orbital function of Γ may be decomposed as

NΓ(R) = eδR
∑

n≥0

M(R,1⊗ en)(x0)

with en(t) := eδt1]−(n+1),−n](t). Hence, Theorem 1.1 is a direct consequence of the following statement.

Proposition 5.1 For any positive function φ ∈ Lip(Λ̃) and any x ∈ Λ̃, there exists Cφ(x) > 0 such
that for any continuous function u : R → R with compact support,

lim
R→+∞

Rα

L(R)
M(R, φ⊗ u)(x) = Cφ(x)

∫

R

u(t)dt.

This section is devoted to the proof of Proposition 5.1. From now on, we fix a positive function φ ∈ Lip(Λ̃)
and a continuous function u : R → R+ with compact support. Let us decompose M(R, φ⊗ u)(x) as

M(R, φ⊗ u)(x) =
∑

k≥0

Mk(R, φ⊗ u)(x)

with
Mk(R, φ⊗ u)(x) :=

∑

γ∈Γ(k)

e−δb̃(γ,x)φ(γ · x)u(−R + b̃(γ, x)).

Thus, it is natural to associate to Ps, s ≥ δ, a new transition operator P̃s on Λ̃ × R, setting: for any
φ ∈ Lip(Λ̃), any Borel function v : R → R and any (x, s) ∈ Λ̃)× R,

P̃s(φ⊗ v)(x, t) =
1

ρhs(x)

∑

γ∈Γ(1)

e−sb̃(γ,x)hs(γ · x)φ(γ · x)u(t+ b̃(γ, x))

=
∑

γ∈Γ(1)

ps(γ, x)φ(γ · x)u(t+ b̃(γ, x))

Notice that P̃s is a also a Markov operator on Λ̃ × R; it commutes with the action of translations on R

and one usually says that it defines a semi-markovian random walk on Λ̃ × R. Its iterates are given by:
P̃ 0
s = Id and, for any k ≥ 1,

P̃ k
s (φ ⊗ v)(x, s) =

∑

γ∈Γ(k)

psγ, x)φ(γ · x)u(s+ b̃(γ, x)).
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From now on, to lighten notations we write P = Pδ, P̃ = P̃δ, h = hδ, p = pδ and ρ = ρδ < 1. We rewrite
the quantity Mk(R, φ⊗ u)(x) as

Mk(R, φ⊗ u)(x) = ρkh(x)P̃ k

(
φ

h
⊗ u

)
(x,−R),

so that,

M(R, φ⊗ u)(x) = h(x)
∑

k≥0

ρkP̃ k

(
φ

h
⊗ u

)
(x,−R). (12)

We first control the behavior as R → +∞ of the quantity M1(R, φ⊗ u)(x).

Proposition 5.2 For any continuous function u : R → R with compact support, there exists a constant
Cu > 0 such that, for any ϕ ∈ Lip(Λ̃), any x ∈ Λ̃ and R ≥ 1,

∣∣∣P̃ (ϕ⊗ u)(x,−R)
∣∣∣ ≤ Cu‖ϕ‖∞ × L(R)

Rα
. (13)

Furthermore,

lim
R→+∞

Rα

L(R)
P̃ (ϕ⊗ u)(x,−R) =

p∑

j=1

Cj(x)ϕ(xj)

∫

R

u(t)dt, (14)

where Cj is defined by: for 1 ≤ j ≤ p,

Cj(x) := cj
h(xj)

ρh(x)
×





e2δ(xj|x)o when x ∈ Λ\Λ̃j;

eBxj
(o,g·o)+d(o,g·o) when x = g · x0 /∈ Λ̃j ;

0 otherwise.

(15)

Proof. Let x ∈ Λ̃ be fixed and assume that the support of u is included in the interval [a, b]. For any
R ≥ −a, it holds

P̃ (ϕ⊗ u)(x,−R) =
1

ρh(x)

p+q∑

j=1

∑

γ∈Γj

e−δb̃(γx)1x/∈Λ̃j
h(γ · x)ϕ(γ · x)u(−R + b̃(γ, x)).

It follows from hypotheses H2 and H3 and Fact 2.1 that for any j = 1, ..., p+ q, there exists a constant
Kj > 0 such that for any R ≥ 1,

∑

γ∈Γj

R+a≤b̃(γ,x)≤R+b

e−δb̃(γ,x) ≤ Kj(b− a)
L(R)

Rα
.

Together with the fact that L has slow variation, this implies (13).
Now, in order to establish (14), it is sufficient to prove that for any j = 1, ..., p+ q,

lim
R→+∞

Rα

L(R)

∑

γ∈Γj

p(γ, x)ϕ(γ · x)u(−R+ b̃(γ, x)) = Cj(x)ϕ(xj)

∫

R

u(t)dt, (16)

where Cj(x) is given by (15) for 1 ≤ j ≤ p and Cj(x) = 0 for j = p+1, ..., q. By a classical approximation
argument, we may assume that u is the characteristic function of the interval [a, b]; it yields

∑

γ∈Γj

p(γ, x)ϕ(γ · x)u(−R+ b̃(γ, x)) =
1

h(x)

∑

γ∈Γj

R+a≤b̃(γ,x)≤R+b

e−δb̃(γx)1x/∈Λ̃j
h(γ · x)ϕ(γ · x).
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First, assume that x = g · x0 belongs to Γ · x0. For any j = 1, ..., p and any γ 6= Id in Γj , the sequence
(γn · o)n≥1 tends to xj as n → ±∞; it yields

b̃(γn, x)− d(o, γn · o) = d(γ−n · o, g · o)− d(γ−n · o, o)− d(o, g · o)
n→±∞−→ −Bxj

(o, g · o)− d(o, g · o).

When x ∈ Λ, Fact 2.1 yields

lim
n→±∞

b̃(γn, x)− d(o, γn · o) = −2(xj | x).

Eventually, by hypotheses H2 and H3, for any 1 ≤ j ≤ p+ q,

lim
R→+∞

Rα

L(R)

∑

γ∈Γj

R+a≤d(o,γ·o)≤R+b

p̃(γ, x) = Cj(x)|b − a|.

Hence,

lim
R→+∞

Rα

L(R)

∑

γ∈Γj

p̃(γ, x)ϕ(γ · x)u(−R+ b̃(γ, x)) = Cj(x)ϕ(xj)|b− a|.

2

Now, we extend (13) and (14) to the powers P̃ k, k ≥ 1, of the Markov operator P̃ .

Proposition 5.3 For any continuous function u : R → R+ with compact support, there exists a constant
Cu > 0 such that, for any ϕ ∈ Lip(Λ̃), any x ∈ Λ̃, any k ≥ 1 and any R ≥ 1,

∣∣∣P̃ k (ϕ⊗ u) (x,−R)
∣∣∣ ≤ Cu k2 ‖ϕ‖∞ × L(R)

Rα
. (17)

Proposition 5.4 For any continuous function u : R → R+ with compact support, any ϕ ∈ Lip(Λ̃), any
x ∈ Λ̃ and any k ≥ 1,

lim
R→+∞

Rα

L(R)
P̃ k (ϕ⊗ u) (x,−R) =

p∑

j=1

(
k−1∑

l=0

P lCj(x)P
k−1−lϕ(xj)

)∫

R

u(t)dt (18)

where, for any 1 ≤ j ≤ p, the Lipschitz functions is Cj : Λ̃ → R is given by (15).

Proposition 5.1 follows immediately from these statements and (12). Indeed, Propositions 5.3 and 5.4
and the dominated convergence theorem yield

lim
R→+∞

Rα

L(R)
M(R, φ⊗ u)(x) =


h(x)

∑

k≥1

ρk
p∑

j=1

(
k−1∑

l=0

P lCj(x)P
k−1−l

(
φ

h

)
(xj)

)
×

∫

R

u(t)dt.

2

Let us now prove Propositions 5.3 and 5.4. For the convenience of the reader, we assume that all
subgroups Γj , 1 ≤ j ≤ p+ q, are parabolic. Hence, they have a unique fixed point at infinity xj and for

any x ∈ Λ̃, it holds
lim
γ∈Γj

d(o,γ·o)→+∞

γ · x = xj .

Namely, if one of the non-influent elementary group Γj , p + 1 ≤ j ≤ p + q, was generated by some
hyperbolic isometry hj , we would have in the next proofs to distinguish between positive and negative
power of hj and this would only overcharge our notations without interest.
Proof of Proposition 5.3. We apply here overestimations given in [15], whose proofs follow the approach
developed in [8]. We set α = 1 + β with 0 < β < 1; this restriction on the values of the parameter β
is of major importance to get the following estimations. Following [15], we introduce the non negative
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sequence (ak)k≥1 defined implicitely by
aβk

L(ak)
= k for any k ≥ 1. By Propositions A.1 and A.2 in [15],

there exists a constant C1 = C1(u) > 0 such that, for any ϕ ∈ Lip(Λ̃), any x ∈ Λ̃, any k ≥ 1 and any
R ≥ 1,

• if 1 ≤ R ≤ 2ak then
∣∣∣P̃ k (ϕ⊗ u) (x,−R)

∣∣∣ ≤ C1‖ϕ‖∞ × 1

ak
;

• if R ≥ 2ak then
∣∣∣P̃ k (ϕ⊗ u) (x,−R)

∣∣∣ ≤ C1k‖ϕ‖∞ × L(R)

R1+β
.

The definition of the ak yields, for 1 ≤ R ≤ 2ak,

1

ak
= k

L(ak)

a1+β
k

≤ k

21+β
× L(R)

R1+β
× L(ak)

L(R)
.

By Potter’s lemma (see [15], lemma 3.4), it exists C2 > 0 such that
1

ak
≤ C2k

2 × L(R)

R1+β
for R ≥ 1 great

enough. We set C = max(C1, C2).
2

Proof of Proposition 5.4. We work by induction. By Proposition 5.2, convergence (18) holds for k = 1.
Now, we assume that it holds for some k ≥ 1. Let R > 0 and r ∈ [0, R/2] be fixed. Recall that

P̃ k+1 (ϕ⊗ u) (x,−R) =
∑

γ∈Γ(k+1)

p(γ, x)ϕ(γ · x)u(−R+ b̃(γ, x))

=
∑

γ∈Γ(k)

∑

β∈Γ(1)

p(γ, β · x)p(β, x)ϕ(γβ · x)u
(
−R+ b̃(γ, β · x) + b̃(β, x)

)
.

We decompose P̃ k+1 (ϕ⊗ u) (x,−R) as Ak(x, r, R) +Bk(x, r, R) + Ck(x, r, R) where

Ak(x, r, R) :=
∑

γ∈Γ(k)

∑

β∈Γ(1)

d(o,β·o)≤r

p(γ, β · x)p(β, x)ϕ(γβ · x)u
(
−R+ b̃(γ, β · x) + b̃(β, x)

)
,

Bk(x, r, R) :=
∑

γ∈Γ(k)

d(o,γ·o)≤r

∑

β∈Γ(1)

d(o,β·o)>r

p(γ, β · x)p(β, x)ϕ(γβ · x)u
(
−R+ b̃(γ, β · x) + b̃(β, x)

)

and Ck(x, r, R) :=
∑

γ∈Γ(k)

d(o,γ·o)>r

∑

β∈Γ(1)

d(o,β·o)>r

p(γ, β · x)p(β, x)ϕ(γβ · x)u
(
−R+ b̃(γ, β · x) + b̃(β, x)

)
.

Step 1. Let us first prove that

lim
R→+∞

Rα

L(R)
Ak(x, r, R) =

∑

β∈Γ(1)

d(o,β·o)≤r

p(β, x)× lim
R→+∞

Rα

L(R)
P̃ k (ϕ⊗ u) (β · x,−R). (19)

Indeed, the set of β ∈ Γ(1) such that d(o, β · o) ≤ r is finite and b̃(β, x) ≤ r for such an isometry β;
furthermore, if p(β, x) 6= 0 then R

2 ≤ R − b̃(γβ · x) ≤ R + C where C > 0 is the constant which appears
in Property 3.1. Using the induction hypothesis, it yields, for any β ∈ Γ(1) such that d(o, β · o) ≤ r,

lim
R→+∞

Rα

L(R)
p(β, x)

∑

γ∈Γ(k)

p(γ, β · x)ϕ(γβ · x)u
(
−R+ b̃(β, x) + b̃(γ, β · x)

)

= p(β, x) × lim
R→+∞

Rα

L(R)
P̃ k (ϕ⊗ u) (β · x,R).

Convergence (19) follows, summing over β. It yields

lim
r→+∞

lim
R→+∞

Rα

L(R)
Ak(x, r, R) =

p∑

j=1

(
k∑

l=1

P lCj(x)P
k−lϕ(xj)

)
×
∫

R

u(t)dt. (20)
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Step 2. We prove that there exists ǫ(r) > 0, with lim
r→+∞

ǫ(r) = 0, such that, for any k ≥ 1,

lim inf
R→+∞

Rα

L(R)
Bk(x, r, R)

ǫ(r)≃ lim sup
R→+∞

Rα

L(R)
Bk(x, r, R)

ǫ(r)≃
p∑

j=1

∑

γ∈Γ(k)

d(o,γ·o)≤r

p(γ, xj)ϕ(γ · xj)Cj(x)

∫

R

u(t)dt, (21)

where we write a
ǫ≃ b if 1 − ǫ ≤ a

b
≤ 1 + ǫ. Since each Γj has a unique fixed point, there exists a map

ǫ : (0,+∞) → (0,+∞) which tends to 0 as r → +∞, such that

p(γ, β · x)
p(γ, xj)

ǫ(r)≃ 1

for any j = 1, ..., p+ q, any β ∈ Γj with d(o, β · o) ≥ r, any x ∈ Λ̃ and any γ ∈ Γ with lγ 6= j.
The set of γ ∈ Γ(k) such that d(o, γ · o) ≤ r is a finite subset of Γ(k); furthermore, for such γ and

any β ∈ Γ(1), it holds R
2 ≤ R− b̃(γ, β · x) ≤ R+ C, as above. Therefore,

∑

γ∈Γ(k)

d(o,γ·o)≤r

∑

β∈Γ(1)

d(o,β·o)>r

p(γ, β · x)p(β, x)ϕ(γβ · x)u
(
−R+ b̃(γ, β · x) + b̃(β, x)

)

ǫ(r)≃
p+q∑

j=1

∑

γ∈Γ(k)

d(o,γ·o)≤r

p(γ, xj)ϕ(γ · xj)
∑

β∈Γj

d(o,β·o)>r

p(β, x)u
(
−R+ b̃(γ, β · x) + b̃(β, x)

)

Convergence (21) follows, using (16). In particular, letting r → +∞, it holds

lim
r→+∞

lim inf
R→+∞

Rα

L(R)
Bk(x, r, R) = lim

r→+∞
lim sup
R→+∞

Rα

L(R)
Bk(x, r, R)

=

p∑

j=1

P kϕ(xj)Cj(x)

∫

R

u(t)dt. (22)

Step 3. We prove that there exists a constant C > 0 such that, for any R ≥ 2r ≥ 1,

Ck(x, r, R) ≤ Ck2‖ϕ‖∞
L(R)

Rα

+∞∑

n=[r]

L(n)

nα
. (23)

By property 3.1, the condition u
(
−R+ b̃(γβ · x) + b̃(β, x)

)
6= 0 implies

d(o, γ · o) + d(o, β · o) = R± c and b̃(γβ · x) + b̃(β, x) = R± c (8)

for some constant c > 0 which depends on u.
We decompose Ck(x, r, R) into Ck(x, r, R) = Ck,1(x, r, R) + Ck,2(x, r, R) with

Ck,1(x, r, R) :=
∑

γ∈Γ(k)

r<d(o,γ·o)≤R/2

∑

β∈Γ(1)

d(o,β·o)>r

p(γ, β · x)p(β, x)ϕ(γβ · x)u
(
−R+ b̃(γ, β · x) + b̃(β, x)

)
.

and

Ck,2(x, r, R) :=
∑

γ∈Γ(k)

d(o,γ·o)≥R/2

∑

β∈Γ(k)

d(o,β·o)>r

p(γ, β · x)p(β, x)ϕ(γβ · x)u
(
−R+ b̃(γ, β · x) + b̃(β, x)

)
.

8the notation A = B ± c means |A−B| ≤ c.
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We control the term Ck,1(x, r, R). Assuming c ≥ 1, one may write

Ck,1(x, r, R) ≤ ‖ϕ‖∞‖u‖∞
[R/2]∑

n=[r]

∑

γ∈Γ(k)

d(o,γ·o)=n±c

∑

β∈Γ(k)

d(o,β·o)=R−n±c

p(γ, β · x)p(β, x)

≤ ‖ϕ‖∞‖u‖∞
[R/2]∑

n=[r]

∑

β∈Γ(1)

d(o,β·o)=R−n±c

p(β, x)




∑

γ∈Γ(k)

d(o,γ·o)=n±c

p(γ, β · x)


 .

Using (17), this yields, for some constant C > 0,

Ck,1(x, r, R) ≤ Ck2‖ϕ‖∞‖u‖∞
[R/2]∑

n=[r]

L(R− n)

(R− n)α
L(n)

nα

≤ C k2‖ϕ‖∞‖u‖∞
L(R)

Rα

+∞∑

n=[r]

L(n)

nα
,

where the last inequality is based on the facts that R − n ≥ R/2− 1 and L is slowly varying. The same
inequality holds for Ck,2(x, r, R), by reversing in the previous argument the role of γ and β. Hence,

lim
r→+∞

lim sup
R→+∞

Rα

L(R)
Ck(x, r, R) = 0. (24)

Proposition 5.4 follows, combining (20), (22) and (24).
2
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