Recommendation of Short-Term Activity Sequences During Distributed Events

Laboratoire d'InfoRmatique en Image et Systèmes d'information

Diana Nurbakova, Léa Laporte, Sylvie Calabretto, Jérôme Gensel
Agenda

- Scenario
- Research Questions
- Uncertainty

Problem Statement & State-of-the-Art
- General Overview
- Personalised Scores of Activity
- Behavioural Pattern Mining
- Itinerary Construction

Our Approach: ANASTASIA
- Dataset
- Evaluation Protocol
- Results
- Conclusion

General Context
- Problem Statement
- State-of-the-Art

Evaluation & Conclusion
General Context
Scenario
Scenario
Research Questions

How can we **predict** and **maximise users’ satisfaction** with undertaken sequence of activities, given their past experience?

How can we **tackle the uncertain users’ preferences and evaluate the users’ interest for an activity happening in future**, given little information about it?

How can we **retrieve users’ behavioural patterns** from historical data?

How can we **organise activities into a sequence that maximizes users’ satisfaction** while taking into account spatio-temporal constraints and sequential nature of activities?
Research Questions

How can we *predict* and *maximise users’ satisfaction* with undertaken sequence of activities, given their past experience?

How can we *tackle the uncertain users’ preferences* and *evaluate the users’ interest for an activity* happening in future, given little information about it?

How can we *retrieve users’ behavioural patterns* from historical data?

How can we *organise activities into a sequence that maximizes users’ satisfaction* while taking into account spatio-temporal constraints and sequential nature of activities?
Research Questions

How can we predict and maximise users’ satisfaction with undertaken sequence of activities, given their past experience?

How can we tackle the uncertain users’ preferences and evaluate the users’ interest for an activity happening in future, given little information about it?

How can we retrieve users’ behavioural patterns from historical data?

How can we organise activities into a sequence that maximizes users’ satisfaction while taking into account spatio-temporal constraints and sequential nature of activities?
How can we predict and maximise users’ satisfaction with undertaken sequence of activities, given their past experience?

How can we tackle the uncertain users’ preferences and evaluate the users’ interest for an activity happening in future, given little information about it?

How can we retrieve users’ behavioural patterns from historical data?

How can we organise activities into a sequence that maximizes users’ satisfaction while taking into account spatio-temporal constraints and sequential nature of activities?
Uncertainty

Data
Model
Parameters
Assumption

LIRiS
Problem Statement & State-of-the-Art
Problem Statement: STAS

What We Have

- Set of Activities, $\mathcal{A} = \{a_i\}_{i=1}^{N}$:
 $a = \langle l, t, \delta, c, d \rangle$
 $l = (x, y, z)$ – location
 $t = (t_s, t_e)$ – time window (start & end)
 $\delta = (t_e - t_s)$ – duration
 $c = (c_1, c_2, ..., c_k)$ – vector of categories
 d – textual description

- Set of Users, $U = \{u_j\}_{j=1}^{M}$

- Users’ History, \mathcal{M}:
 $\mathcal{M}_{i,j} = \begin{cases} 1, & j^{th} \text{ user joined } i^{th} \text{ activity} \\ 0, & \text{otherwise} \end{cases}$

What We Want

- Activity Sequence (itinerary), $\xi(u) = (a(1) \rightarrow \cdots \rightarrow a(s) \rightarrow \cdots \rightarrow a(s+k))$, $1 \leq s \leq s + k \leq N$

- Activity availability constraint:
 $t_s(a(i)) \leq \text{start}(a(i)) \leq t_e(a(i))$
 $\text{start}(a(i)) = \max\{\text{start}(a(i-1)) + \delta(a(i-1)) + \text{time}(a(i-1), a(i)), t_s(a(i))\}$

- Time budget constraint:
 $\sum_{a(i) \in \xi(u)} \text{time}(a(i-1), a(i)) + \delta(a(i)) \leq T_{max}$

- User’s Satisfaction:
 - w.r.t. activity $r(a, u)$, $r: \mathcal{A} \rightarrow \mathbb{R}^+$
 - w.r.t. itinerary $\rho(\xi, u)$, $\rho: \Xi \rightarrow \mathbb{R}^+$

- Find: $\forall u \in U$, $\xi(u)$: max $\rho(\xi, u)$
State of the Art

STAS – recommendation of **Spatio-Temporal Activity Sequences**
Event Rec – Event Recommendation

POI Rec – Point-of-Interest Recommendation
Trip Rec – Trip Recommendation
OR – Scheduling in Operational Research

- **Limited Availability**
- **Travel Time**
- **Unique Visit**
- **Sequence of Items**
- **Future Oriented**
- **Unique Unit**
ANASTASIA: A Novel Approach for Spatio-Temporal Activity Sequence and Itinerary recommendation
ANASTASIA: Overview

Spatio-Temporal Activities

- Category-based Score
- Content-based Score
- Temporal Score
 * Adaptation of [2]
- 2 Calculation Strategies
 - All-at-Once
 - Day-after-Day

Personalised Scores of Activities

Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Users</td>
<td>23</td>
</tr>
<tr>
<td>Number of Activities</td>
<td>595</td>
</tr>
<tr>
<td>Number of Days</td>
<td>7</td>
</tr>
<tr>
<td>Number of DCL Categories</td>
<td>10</td>
</tr>
<tr>
<td>Number of No DCL Categories</td>
<td>42</td>
</tr>
<tr>
<td>Number of Locations</td>
<td>47</td>
</tr>
</tbody>
</table>
ANASTASIA: Overview

- Sequence Mining
- Activity-Activity Transition Modelling
- Category-Category Transition Modelling
- Estimation of Transition Probabilities
 Adaptation of [4]

Behavioural Pattern Mining

- Category-based Score
- Content-based Score
- Temporal Score
 Adaptation of [2]
- 2 Calculation Strategies
 - All-at-Once
 - Day-after-Day

Personalised Scores of Activities

Spatio-Temporal Activities

Statistics

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Users</td>
<td>23</td>
</tr>
<tr>
<td>Number of Activities</td>
<td>595</td>
</tr>
<tr>
<td>Number of Days</td>
<td>7</td>
</tr>
<tr>
<td>Number of DCL Categories</td>
<td>10</td>
</tr>
<tr>
<td>Number of No DCL Categories</td>
<td>42</td>
</tr>
<tr>
<td>Number of Locations</td>
<td>47</td>
</tr>
</tbody>
</table>
ANASTASIA: Overview

- Modelling as an instance of OPTW (Orienteering Problem with Time Windows)
- Iterated Algorithm
 * Adaptation of Iterated Local Search (ILS) algorithm [3]

Itinerary Construction

- Category-based Score
- Content-based Score
- Temporal Score
 * Adaptation of [2]
- 2 Calculation Strategies
 - All-at-Once
 - Day-after-Day

Personalised Scores of Activities

Behavioural Pattern Mining

- Sequence Mining
- Activity-Activity Transition Modelling
- Category-Category Transition Modelling
- Estimation of Transition Probabilities
 * Adaptation of [4]

Spatio-Temporal Activities

Statistics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Users</td>
<td>23</td>
</tr>
<tr>
<td>Number of Activities</td>
<td>595</td>
</tr>
<tr>
<td>Number of Days</td>
<td>7</td>
</tr>
<tr>
<td>Number of DCL Categories</td>
<td>10</td>
</tr>
<tr>
<td>Number of No DCL Categories</td>
<td>42</td>
</tr>
<tr>
<td>Number of Locations</td>
<td>47</td>
</tr>
</tbody>
</table>
ANASTASIA: Personalised Score of Activity

similarity w.r.t. categories of user’s past activities:

\[
\hat{r}_{cat}(a_i, u) = \sum_{c_j \in C_a} \frac{|A_{u,c_j}| \cdot w_a}{|A_u|}
\]

- \(|A_{u,c_j}|\) - the number of activities performed by user \(u\) that belong to category \(c_j\): \(A_{u,c_j} = \{a_l\}\) \(a_l \in c_j\)
- \(A_u\) - the set of activities performed by user \(u\)
- \(w_a = \frac{1}{|c_a|}\) - weight coefficient

Category-based Score
ANASTASIA: Personalised Score of Activity

Simularity w.r.t. categories of user’s past activities:

\[\hat{r}_{\text{cat}}(a_i, u) = \sum_{c_j \in \mathcal{C}_a} \frac{|A_{u,c_j}| \cdot w_a}{|A_u|} \]

- \(|A_{u,c_j}| \) - the number of activities performed by user \(u \) that belong to category \(c_j \): \(A_{u,c_j} = \{a_l\}: a_l \in c_j \)
- \(A_u \) - the set of activities performed by user \(u \)
- \(w_a = \frac{1}{|c_a|} \) - weight coefficient

Textual simularity w.r.t. descriptions of past activities:

\[\hat{r}_{\text{text}}(a_i, u) = \alpha_u \cdot \cos(U_{\text{pos}}, \tilde{e}) - \beta_u \cdot \cos(U_{\text{neg}}, \tilde{e}) \]

- \(U_{\text{pos}} \) - user’s positive profile composed of TF-IDF vectors of performed past activities
- \(U_{\text{neg}} \) - user’s negative profile composed of TF-IDF vectors of not performed past activities
- \(\tilde{e} \) - TF-IDF vector of activity \(a_i \)
- \(\cos(\cdot, \cdot) \) – cosinus similarity
ANASTASIA: Personalised Score of Activity

Category-based Score

\[
\hat{r}_{cat}(a_i, u) = \frac{\sum_{c_j \in C_a} |A_{u,c_j}| \cdot w_a}{|A_u|}
\]

- \(A_{u,c_j}\) - the number of activities performed by user \(u\) that belong to category \(c_j\) : \(A_{u,c_j} = \{a_l\}: a_l \in c_j\)
- \(A_u\) - the set of activities performed by user \(u\)
- \(w_a = \frac{1}{|c_a|}\) - weight coefficient

Content-based Score

\[
\hat{r}_{text}(a_i, u) = \alpha_u \cdot \cos(U_{pos}, \vec{e}) - \beta_u \cdot \cos(U_{neg}, \vec{e})
\]

- \(U_{pos}\) - user’s positive profile composed of TF-IDF vectors of performed past activities
- \(U_{neg}\) - user’s negative profile composed of TF-IDF vectors of not performed past activities
- \(\vec{e}\) - TF-IDF vector of activity \(a_i\)
- \(\cos(\cdot, \cdot)\) – cosinus similarity

Temporal Score

\[
\hat{r}_{time}(a_i, u) = \begin{cases}
1, & \text{if } t_a \cap t_u \\
0.5, & \text{if } t_a \cap \{t_u - 1 \cup t_u + 1\} \\
0.1, & \text{otherwise}
\end{cases}
\]

- \(t_a\) - \(1 \times 96\)-dimensional binary vector corresponding to time slots of activity \(a\)
- \(t_u\) - \(1 \times 96\)-dimensional binary vector corresponding to time slots of user’s past activities
- \(t_u \pm 1\) – preceding or next time slot
ANASTASIA: Personalised Score of Activity

similarity w.r.t. categories of user’s past activities:

\[\hat{r}_{\text{cat}}(a_i, u) = \sum_{c_j \in C_u} \frac{|A_{u,c_j}| \cdot w_a}{|A_u|} \]

- \(|A_{u,c_j}| \): the number of activities performed by user \(u \) that belong to category \(c_j : A_{u,c_j} = \{ a_l : a_l \in c_j \} \)
- \(A_u \): the set of activities performed by user \(u \)
- \(w_a = \frac{1}{|C_u|} \): weight coefficient

Option 1:

\[r_{\text{hyb}}(a_i, u) = (\gamma_u \cdot \hat{r}_{\text{cat}}(a_i, u) + \delta_u \cdot \hat{r}_{\text{text}}(a_i, u)) \cdot \hat{r}_{\text{time}}(a_i, u) \]

Option 2:

\[r_{\log}(a_i, u) = \frac{1}{1 + e^{-(\eta_0 + \eta_1 x)}} \]

- \(\hat{r}_{\text{cat}} \): category-based score
- \(\hat{r}_{\text{text}} \): content-based score
- \(\hat{r}_{\text{time}} \): temporal score
- \(x = (\hat{r}_{\text{cat}}, \hat{r}_{\text{text}}, \hat{r}_{\text{time}}) \)

textual similarity w.r.t. descriptions of past activities:

\[\hat{r}_{\text{text}}(a_i, u) = \alpha_u \cdot \cos(U_{pos}, \vec{e}) - \beta_u \cdot \cos(U_{neg}, \vec{e}) \]

- \(U_{pos} \): user’s positive profile composed of TF-IDF vectors of performed past activities
- \(U_{neg} \): user’s negative profile composed of TF-IDF vectors of not performed past activities
- \(\vec{e} \): TF-IDF vector of activity \(a_i \)
- \(\cos(\cdot, \cdot) \): cosinus similarity

temporal similarity w.r.t. time slots of user’s past activities:

\[\hat{r}_{\text{time}}(a_i, u) = \begin{cases} 1, & \text{if } t_a \cap t_u \\ 0.5, & \text{if } t_a \cap \{t_u - 1 \cup t_u + 1\} \\ 0.1, & \text{otherwise} \end{cases} \]

- \(t_a \): 1 × 96-dimensional binary vector corresponding to time slots of activity \(a \)
- \(t_u \): 1 × 96-dimensional binary vector corresponding to time slots of user’s past activities
- \(t_u \pm 1 \): preceding or next time slot
ANASTASIA: Personalised Score of Activity

Strategy 1: All-at-Once
- Iterated calculation of scores

Strategy 2: Day-after-Day
- Iterated enrichment of history data with estimations from the previous step

Input: User’s Attendance Matrix \mathcal{M}, New activities $NewEvent$;

Output: Activities scores \mathcal{R};

Initialisation $\mathcal{M}^{(0)} \leftarrow \mathcal{M}$;

for $i \leftarrow PastDays$ to $DayNum$ do

- Calculate $\mathcal{R}^{(i)}(NewEvent^{(i)}, \mathcal{M}^{(i)})$;
- $\mathcal{M}^{(i)} \leftarrow \mathcal{M}^{(i)} \cup \mathcal{R}^{(i)}$;
- $i \leftarrow i + 1$

end
ANASTASIA: Behavioural Pattern Mining

Crafts: Door Hangers → Pictionary Challenge → Singles’ Lunch → Goofy → The Comedy and Hypnosis of Ricky Kalmon

Sequence Extraction
ANASTASIA: Behavioural Pattern Mining

*Adaptation of L2TG (LORE [4])

Sequence Extraction

Crafts: Door Hangers → Pictionary Challenge → Singles' Lunch → Goofy → The Comedy and Hypnosis of Ricky Kalmon

Construction of Activity-Activity Transition Graph
ANASTASIA: Behavioural Pattern Mining

*Adaptation of L2TG (LORE [4])

Construction of Activity-Activity Transition Graph

Construction of Category-Category Transition Graph

Crafts: Door Hangers → Pictionary Challenge → Singles’ Lunch → Goofy → The Comedy and Hypnosis of Ricky Kalmon

<table>
<thead>
<tr>
<th>Activities sub-sequence</th>
<th>Categories sub-sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Crafts: Door Hangers → Pictionary Challenge → Singles’ Lunch → Goofy → The Comedy and Hypnosis of Ricky Kalmon}</td>
<td>{Fun for All Ages → Fun for All Ages → Adults → Characters → Fun for All Ages}</td>
</tr>
</tbody>
</table>
ANASTASIA: Behavioural Pattern Mining

- **Construction of Activity-Activity Transition Graph**
- **Construction of Category-Category Transition Graph**

Adaptation of L2TG (LORE [4])

<table>
<thead>
<tr>
<th>Activities sub-sequence</th>
<th>Categories sub-sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>{Crafts: Door Hangers → Pictionary Challenge → Singles' Lunch → Goofy → The Comedy and Hypnosis of Ricky Kalmon}</td>
<td>{Fun for All Ages → Fun for All Ages → Adults → Characters → Fun for All Ages}</td>
</tr>
</tbody>
</table>
ANASTASIA: Behavioural Pattern Mining

*Adaptation of L2TG (LORE [4])

Construction of Activity-Activity Transition Graph

Construction of Category-Category Transition Graph

Crafts: Door Hangers → Pictionary Challenge → Singles’ Lunch → Goofy → The Comedy and Hypnosis of Ricky Kalmon

Sequence Extraction

Estimation of Transition Probability

\[
P_T(\text{Fun for All Ages} \rightarrow \text{Fun for All Ages}) = \frac{1}{2}
\]

\[
P_T(\text{Fun for All Ages} \rightarrow \text{Adults}) = 1
\]

\[
P_T(\text{Adults} \rightarrow \text{Characters}) = 1
\]

\[
P_T(\text{Characters} \rightarrow \text{Fun for All Ages}) = \frac{1}{2}
\]

Activities sub-sequence	Categories sub-sequence
\{Crafts : Door Hangers → Pictionary Challenge → Singles’ Lunch → Goofy → The Comedy and Hypnosis of Ricky Kalmon\} | \{Fun for All Ages → Fun for All Ages → Adults → Characters → Fun for All Ages\}
ANASTASIA: Itinerary Construction

Id : Activity : Location : Start – End : Duration : Score : Wait : MaxShift

- **A1** : Character Meet & Greet Ticket Distribution : Port Adventures Desk : 11h30 – 15h00 : 10 min : 5 : 0 : 1h20
- **A2** : Walking Ship Tour : Preludes : 13h00 – 13h30 : 30 min : 5 : 1h20 : 0
- **A9** : Mandatory Life Boat Drill : Assembly Station : 16h00 – 16h30 : 30 min : 5 : 2h30 : 0
- **A10** : Sailing Away : Deck Stage : 16h30 – 17h15 : 45 min : 5 : 0 : 0

Id : Activity : Shift : Ratio :

\[\text{Ratio}_{\text{NEW}} = \frac{(S+P_T)^2}{\text{Shift}} \]

- **A3** : Poolside Jams with Cruise Staff DJ : 0h45 : 0,089 : \(\frac{(2+3)^2}{45} = 1,027\) max!
- **A4** : Spa Open House : 1h30 : 0,044 : \(\frac{(2+0)^2}{90} = 0\)
- **A6** : Acupuncture Demonstration : 2h00 : 0,033 : \(\frac{(2+0)^2}{120} = 0\)
- **A7** : Disney Vacation Club: Members Celebration : 1h45 : 0,01 = \(\frac{(1+3)^2}{105} = 0,004\)
- **A8** : Spa Raffle : 2h00 : 0,033 : \(\frac{(2+0)^2}{120} = 0\)

Search for the best vertex to insert

Modification of ILS [3]
Evaluation
Evaluation: Dataset

<table>
<thead>
<tr>
<th>Dataset Statistics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of users</td>
<td>23</td>
</tr>
<tr>
<td>Number of activities in overall program</td>
<td>595</td>
</tr>
<tr>
<td>Number of days</td>
<td>7</td>
</tr>
<tr>
<td>Number of DCL categories</td>
<td>10</td>
</tr>
<tr>
<td>Number of No DCL categories</td>
<td>42</td>
</tr>
<tr>
<td>Number of locations</td>
<td>47</td>
</tr>
</tbody>
</table>
Evaluation: Protocol

Dataset
- Created dataset based on Disney’s 7 nights cruise
- Split: users history, test set

2 stepped Evaluation
- Rating accuracy of estimated scores
- Evaluation of generated sequences

Rating Accuracy
- Mean Absolute Error, $MAE = \sqrt{\frac{1}{|T|} \sum_{(u,i) \in T} |\hat{r}_{ui} - r_{ui}|}$
- Root Mean Squared Error, $RMSE = \sqrt{\frac{1}{|T|} \sum_{(u,i) \in T} (\hat{r}_{ui} - r_{ui})^2}$
- Precision at rank k, $P@k$
- Area under the Curve, AUC

Sequence Evaluation
- Comparison of Recommended Sequence with Ground Truth (proportion of matches)
- Ground Truth – sequence of activities tagged by users with “Going”
Evaluation: Results
Evaluation: Results

Improvement of ILS_TP over ILS in term of similarity to Ground Truth, %
Hybrid scores of activities are considered

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategy 1</td>
<td>6.1</td>
<td>3.4</td>
<td>6.5</td>
<td>6.2</td>
<td>9.9</td>
<td>11.3</td>
<td>7.4</td>
</tr>
<tr>
<td>Strategy 2</td>
<td>25.0</td>
<td>10.3</td>
<td>4.4</td>
<td>13.5</td>
<td>14.3</td>
<td>11.3</td>
<td>13.5</td>
</tr>
</tbody>
</table>
Conclusion

- Formulation of STAS problem
- ANASTASIA, an integrated framework to solve STAS:
 - textual influence
 - categorical influence
 - temporal influence
 - sequential influence
- User study and the Dataset of spatio-temporal activities
Conclusion

- Formulation of STAS problem
- ANASTASIA, an integrated framework to solve STAS:
 - textual influence
 - categorical influence
 - temporal influence
 - sequential influence
- User study and the Dataset of spatio-temporal activities

Future work:
- New types of influence to explore (demographics, psychology, group of users)
- New types of constraints to take into account (e.g. multiple time windows, multiple locations of the same activity)
- Crowdsourced dataset
- Crowdsourced evaluation
The End
References

Evaluation: Results

- MAE w.r.t. num of history days
- RMSE w.r.t. num of history days
- Precision w.r.t. num of history days
- AUC w.r.t. num of history days

Legend:
- CB_pos
- CB_pos_2
- Cat
- Cat_2
- Time
- Time_2
- LinC
- LinC_2
- LogR
- LogR_2
Need for Dataset

Evaluation: Dataset

<table>
<thead>
<tr>
<th>Type</th>
<th>Characteristic</th>
<th>MC-TOP-MTW</th>
<th>Other OP-based with TW</th>
<th>Other OP-based</th>
<th>TREC CS 2013</th>
<th>TREC CS 2014</th>
<th>TREC CS 2015</th>
<th>TripBuilder Dataset</th>
<th>Yelp</th>
<th>Foursquare_1</th>
<th>Foursquare_2</th>
<th>Flickr</th>
<th>Twitter</th>
<th>Meetup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point</td>
<td>Time windows</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Coordinates</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Service Time</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Categories</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Price</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Point Additional Attributes</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Description</td>
<td>✓</td>
</tr>
<tr>
<td>Tour</td>
<td>Time budget</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Starting/Ending Point</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Tour Additional Attributes</td>
<td></td>
</tr>
<tr>
<td>User</td>
<td>User’s personal data</td>
<td>✓</td>
</tr>
<tr>
<td>User-Point</td>
<td>Historical Data</td>
<td>✓</td>
</tr>
<tr>
<td>User-User</td>
<td>Social links</td>
<td>✓</td>
</tr>
</tbody>
</table>