Méthode de Mahler en caractéristique non nulle : un analogue du Théorème de Ku. Nishioka

Abstract : In 1990, Ku. Nishioka proved a fundamental theorem for Mahler's method, which is the analog of the Siegel-Shidlovskii theorem for Mahler functions. In this article, we establish a version of the theorem of Ku. Nishioka which is also valid for Mahler systems over function fields of positive characteristic. We follow the approach introduced by Denis in 1999 in a particular case. It is based on an algebraic independence criterion from Philippon. The main motivation of this work is built on the following remarkable fact discovered by Denis. Over function fields of positive characteristic, analogs of periods such as \pi or the values at integer points of the Zeta Riemann function can be obtained as values of Mahler functions at algebraic points.
Document type :
Preprints, Working Papers, ...
Liste complète des métadonnées

Cited literature [14 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01568564
Contributor : Gwladys Fernandes <>
Submitted on : Friday, December 15, 2017 - 5:59:26 PM
Last modification on : Friday, March 8, 2019 - 9:38:03 AM

Files

nishioka_en_car_p_texmaker.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01568564, version 5
  • ARXIV : 1707.08033

Citation

Gwladys Fernandes. Méthode de Mahler en caractéristique non nulle : un analogue du Théorème de Ku. Nishioka. 2017. ⟨hal-01568564v5⟩

Share

Metrics

Record views

196

Files downloads

301