Nonholonomic Mobile System Control By Combining EEG-based BCI with ANFIS

W. Yu 1 H. Feng Y. Feng K. Madani 2 C. Sabourin 2
2 SYNAPSE
LISSI - Laboratoire Images, Signaux et Systèmes Intelligents
Abstract : Motor imagery EEG-based BCI has advantages in the assistance of human control of peripheral devices, such as the mobile robot or wheelchair, because the subject is not exposed to any stimulation and suffers no risk of fatigue. However, the intensive training necessary to recognize the numerous classes of data makes it hard to control these nonholonomic mobile systems accurately and effectively. This paper proposes a new approach which combines motor imagery EEG with the Adaptive Neural Fuzzy Inference System. This approach fuses the intelligence of humans based on motor imagery EEG with the precise capabilities of a mobile system based on ANFIS. This approach realizes a multi-level control, which makes the nonholonomic mobile system highly controllably without stopping or relying on sensor information. Also, because the ANFIS controller can be trained while performing the control task, control accuracy and efficiency is increased for the user. Experimental results of the nonholonomic mobile robot verify the effectiveness of this approach.
Type de document :
Article dans une revue
Bio-Medical Materials and Engineering, IOS Press, 2016, pp.1125-1133. 〈10.3233/BME-151409〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01568404
Contributeur : Lab Lissi <>
Soumis le : mardi 25 juillet 2017 - 11:43:04
Dernière modification le : vendredi 15 février 2019 - 09:55:15

Lien texte intégral

Identifiants

Collections

Citation

W. Yu, H. Feng, Y. Feng, K. Madani, C. Sabourin. Nonholonomic Mobile System Control By Combining EEG-based BCI with ANFIS. Bio-Medical Materials and Engineering, IOS Press, 2016, pp.1125-1133. 〈10.3233/BME-151409〉. 〈hal-01568404〉

Partager

Métriques

Consultations de la notice

58