Performance comparison of Bayesian iterative algorithms for three classes of sparsity enforcing priors with application in computed tomography

Abstract : The piecewise constant or homogeneous image reconstruction in the context of X-ray Computed Tomography is considered within a Bayesian approach. More precisely, the sparse transformation of such images is modelled with heavy tailed distributions expressed as Normal variance mixtures marginals. The derived iterative algorithms (via Joint Maximum A Posteriori) have identical updating expressions, except for the estimated variances. We show that the behaviour of the each algorithm is different in terms of sensibility to the model selection and reconstruction performances when applied in Computed Tomography.
Type de document :
Communication dans un congrès
2017 IEEE International Conference on Image Processing, Sep 2017, Beijing, China
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01568337
Contributeur : Li Wang <>
Soumis le : mardi 25 juillet 2017 - 10:56:38
Dernière modification le : dimanche 16 septembre 2018 - 22:06:01

Fichier

ICIP2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01568337, version 1

Citation

Mircea Dumitru, Wang Li, Nicolas Gac, Ali Mohammad-Djafari. Performance comparison of Bayesian iterative algorithms for three classes of sparsity enforcing priors with application in computed tomography. 2017 IEEE International Conference on Image Processing, Sep 2017, Beijing, China. 〈hal-01568337〉

Partager

Métriques

Consultations de la notice

232

Téléchargements de fichiers

96