R. Azarderakhsh, B. Koziel, A. Jalali, M. M. Kermani, and D. Jao, NEON-SIDH: Efficient implementation of supersingular isogeny Diffe-Hellman key-exchange protocol on ARM. Cryptology ePrint Archive, Report, vol.2016669, p.669, 2016.

I. F. Blake, G. Seroussi, and N. P. Smart, Advances in Elliptic Curve Cryptography, 2004.
DOI : 10.1017/CBO9780511546570

J. Blömer, R. Gomes-da-silva, P. Günther, J. Krämer, and J. Seifert, A Practical Second-Order Fault Attack against a Real-World Pairing Implementation, 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography, pp.123-136, 2014.
DOI : 10.1109/FDTC.2014.22

R. Bröker, Constructing supersingular elliptic curves, Journal of Combinatorics and Number Theory, vol.1, pp.269-273, 2009.

D. Charles, E. Goren, and K. Lauter, Cryptographic hash functions from expander graphs. Cryptology ePrint Archive, Report, vol.021, p.21, 2006.
DOI : 10.1007/s00145-007-9002-x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.189.3009

C. Costello, P. Longa, and M. Naehrig, Efficient Algorithms for Supersingular Isogeny Diffie-Hellman, Advances in Cryptology -CRYPTO 2016. Proceedings, Part I, pp.572-601, 2016.
DOI : 10.1049/el:19991230

D. Feo, L. Jao, D. Plût, and J. , Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies, J. Mathematical Cryptology, vol.8, issue.3, pp.209-247, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00652846

T. Espitau, P. A. Fouque, B. Gérard, and M. Tibouchi, Loop-abort faults on latticebased Fiat-Shamir and hash-and-sign signatures. Cryptology ePrint Archive, Report, vol.2016449, p.449, 2016.

E. Fujisaki and T. Okamoto, Secure integration of asymmetric and symmetric encryption schemes, Advances in Cryptology -CRYPTO '99. Proceedings. pp, pp.537-554, 1999.
DOI : 10.1007/3-540-48405-1_34

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.5980

S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, On the Security of Supersingular Isogeny Cryptosystems, Advances in Cryptology -ASIACRYPT 2016. Proceedings , Part I, pp.63-91, 2016.
DOI : 10.1007/BFb0091027

S. D. Galbraith, C. Petit, and J. Silva, Signature schemes based on supersingular isogeny problems, Cryptology ePrint Archive Report, vol.20161154, 1154.
DOI : 10.1007/978-3-662-53887-6_3

D. Jao and L. De-feo, Towards Quantum-Resistant Cryptosystems from Supersingular Elliptic Curve Isogenies, Post-Quantum Cryptography -4th International Workshop, PQCrypto 2011. Proceedings. pp, pp.19-34, 2011.
DOI : 10.1007/11533719_44

URL : https://hal.archives-ouvertes.fr/hal-00652846

D. Jao and V. Soukharev, Isogeny-Based Quantum-Resistant Undeniable Signatures, Post-Quantum Cryptography -6th International Workshop, PQCrypto 2014. Proceedings. pp, pp.160-179, 2014.
DOI : 10.1007/978-3-319-11659-4_10

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.149

D. Kirkwood, B. C. Lackey, J. Mcvey, M. Motley, J. A. Solinas et al., Failure is not an option: Standardization issues for post-quantum key agreement on the security of supersingular isogeny cryptosystems, Post-Quantum World, 2015.

B. Koziel, R. Azarderakhsh, M. M. Kermani, and D. Jao, Post-Quantum Cryptography on FPGA Based on Isogenies on Elliptic Curves, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.64, issue.1, p.672, 2016.
DOI : 10.1109/TCSI.2016.2611561

M. Security and C. , available from https, 2016.

D. Page and F. Vercauteren, A Fault Attack on Pairing-Based Cryptography, IEEE Transactions on Computers, vol.55, issue.9, pp.1075-1080, 2006.
DOI : 10.1109/TC.2006.134

C. Peikert, Lattice Cryptography for the Internet, Post-Quantum Cryptography -6th International Workshop, PQCrypto 2014. Proceedings. pp, pp.197-219, 2014.
DOI : 10.1007/978-3-319-11659-4_12

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.455.9719

P. W. Shor, Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer, SIAM Journal on Computing, vol.26, issue.5, pp.1484-1509, 1997.
DOI : 10.1137/S0097539795293172

URL : http://arxiv.org/pdf/quant-ph/9508027

J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol.106, 2009.

X. Sun, H. Tian, and Y. Wang, Toward Quantum-Resistant Strong Designated Verifier Signature from Isogenies, 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, pp.292-296, 2012.
DOI : 10.1109/iNCoS.2012.70

J. Tate, Endomorphisms of abelian varieties over finite fields, Inventiones Mathematicae, vol.1, issue.No. 6, pp.134-144, 1966.
DOI : 10.1007/BF01404549

J. Vélu, Isogénies entre courbes elliptiques Comptes Rendus de l'Académie des Sciences de Paris 273, pp.238-241, 1971.

A. When and P. , The implementation proposed by [6,16] uses a pair of points P and Q in E[ k ] that does not generate the full group E[ k ], in order to achieve better compression . The point P is chosen to be a point of order k , and Q is set as the image of P by the distortion map (x, y) ? (?x, iy) (where i 2 = ?1) They prove that because of this construction