Generalized Johnson homomorphisms for extended N-series

Abstract : The Johnson filtration of the mapping class group of a compact, oriented surface is the descending series consisting of the kernels of the actions on the nilpotent quotients of the fundamental group of the surface. Each term of the Johnson filtration admits a Johnson homomorphism, whose kernel is the next term in the filtration. In this paper, we consider a general situation where a group acts on a group with a filtration called an "extended N-series". We develop a theory of Johnson homomorphisms in this general setting, including many known variants of the original Johnson homomorphisms as well as several new variants.
Type de document :
Article dans une revue
Journal of Algebra, Elsevier, 2018, 510, pp.205-258
Liste complète des métadonnées
Contributeur : Gwénaël Massuyeau <>
Soumis le : mardi 25 juillet 2017 - 09:18:53
Dernière modification le : jeudi 9 août 2018 - 15:46:26

Lien texte intégral


  • HAL Id : hal-01568278, version 1
  • ARXIV : 1707.07428



Kazuo Habiro, Gwénaël Massuyeau. Generalized Johnson homomorphisms for extended N-series. Journal of Algebra, Elsevier, 2018, 510, pp.205-258. 〈hal-01568278〉



Consultations de la notice