
HAL Id: hal-01567627
https://hal.science/hal-01567627

Submitted on 12 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and checking robustness of communicating
autonomous vehicles

Johan Arcile, Raymond Devillers, Hanna Klaudel, Witold Klaudel, Bożena
Woźna-Szcześniak

To cite this version:
Johan Arcile, Raymond Devillers, Hanna Klaudel, Witold Klaudel, Bożena Woźna-Szcześniak. Model-
ing and checking robustness of communicating autonomous vehicles. 14th International Symposium on
Distributed Computing and Artificial Intelligence (DCAI 2017), Jun 2017, Porto, Portugal. pp.173–
180, �10.1007/978-3-319-62410-5_21�. �hal-01567627�

https://hal.science/hal-01567627
https://hal.archives-ouvertes.fr


Modeling and checking robustness of communicating
autonomous vehicles

Johan Arcile1, Raymond Devillers2, Hanna Klaudel1,
Witold Klaudel3, and Bożena Woźna-Szcześniak4

1 IBISC, University of Evry, 23 bd de France, 91037 Evry, France,
{johan.arcile,hanna.klaudel}@ibisc.univ-evry.fr

2 ULB, Bruxelles, Belgium, rdevil@ulb.ac.be
3 Renault SA, 1 av. du Golf, 78084 Guyancourt, France, witold.klaudel@renault.com

4 IMCS, Jan Długosz University in Czȩstochowa. Al. Armii Krajowej 13/15, 42-200
Czȩstochowa, Poland b.wozna@ajd.czest.pl

Abstract This paper presents a method for the validation of communicating
autonomous vehicles (CAVs) systems. The approach focuses on the formal mod-
eling of CAVs by means of timed automata, to allow the formal analysis through
model-checkers of the vehicle behavior, including their fault tolerance due to
various kinds of injected faults. We also present our case studies results, based on
implementations of our CAVs’ model in UPPAAL.

Keywords: Timed Automata, Model-Checking, Communicating Vehicles

1 Introduction

Autonomous vehicles are rational and sophisticated entities (agents) that, as the term
already suggests, act autonomously (having different informations and/or diverging in-
terests) across open and distributed environments. A communicating autonomous vehi-
cles (CAVs) system is both a multi–agent system [6] and a real-time system [2]. More
precisely, a CAV system is a network of vehicles that communicate to fulfill a mission
as fast as possible while complying to the code rules and avoiding conflicts. Moreover,
its correctness also depends on respecting a set of time constraints.

The CAVs systems have the potential to substantially affect safety, congestion, en-
ergy consumption, and, ultimately, will likely reduce crashes and pollution. Thus, the
reliability of CAVs systems is a key concern of policymakers [3]. It is therefore appeal-
ing to formally verify the core CAVs behaviors in order to be confident in the integration
of autonomous vehicles into the road traffic.

Formal modeling and verification of CAVs systems require not only the definition
of both the vehicle states and the road (the environment) but also a specification of
interactions between vehicles and an expressive property language. The resulting model
of a CAVs system should be accurate enough to capture spatial and time aspects of the
original system and also should provide a formal basis for verification of properties
like effectiveness of overtakings, the resulting arrival order, and the impossibility of



2 Johan Arcile et al.

collisions (safety). The property language should be easy and appropriate for expressing
the needed properties and applying automatic verification techniques for them.

Model checking [4] is a widely used automatic method for system verification. It
provides algorithmic means for determining whether an abstract model – representing
a hardware or software project (e.g., a CAVs system) – satisfies a formal specification
expressed as a temporal logic formula. Moreover, if the property does not hold, the
method identifies a counterexample execution that shows the source of the problem.

The main objective of this paper is to present our ongoing work on formal modeling
and model checking of a communicating autonomous vehicles (CAVs) system, focusing
in particular on the robustness of the decision policy. The modeling formalism that we
use in our approach to specify the behavior of CAVs is a network of Timed Automata [2]
with the synchronous semantics. We have chosen this formalism, because it is the most
well-established model for the specification and verification of distributed real-time
system design. Moreover, the automata formalism is a standard supported by several
verification tools, e.g., the model checker UPPAAL [5].

The timed automata formalism allows us to create a clear and concise abstract model
of the considered CAVs system. The formalism allows for assessing a vehicle decision
policy robustness through a fault injection, and allows for applying model checking
algorithms, in particular the algorithms designed for timed properties expressed in the
temporal logic TCTL [1]. To the best of our knowledge, this is the first application of
model checking to validate CAVs systems.

2 Modeling

The systems we consider are composed of several lanes forming a portion of a motor-
way on which several vehicles can move in the same direction, each one realizing some
goal (mission). Each vehicle is defined by constants such as its length or breaking ca-
pacities. The vehicles are provided with various perception sensors allowing to observe
the behavior of their neighbors. They are also able to communicate informations, which
are not always directly observable such as their intention of lane change, which may be
available immediately or after some delay. A vehicle behavior consists in performing,
at its own frequency:
– a computation allowing to make a decision on the immediate action to be performed

(i.e., execution of the controller algorithm) followed by
– the communication of its intention (and possibly when the maneuver could start if not

immediately) to all vehicles around (at least to those, which are capable to receive
this information).

Received information coming from the other vehicles is stored in the vehicle’s database
and used when running the controller algorithm. The controller algorithm computes
predictions of trajectories of the neighbors allowing in turn to compute the instructions
for itself in terms of acceleration or lane change, all this of course has to be done safely
and obeying traffic laws.



Modeling and checking robustness of communicating autonomous vehicles 3

On this basis, we build an abstract but realistic enough model in timed automata
that may be analyzable with various temporal logic queries in a reasonable5 time.

In our framework, we consider a road section composed of one or more unidirec-
tional lanes the vehicles move on, and we store at any time the coordinates (position)
of each vehicle on it. The current position (x,y) (as well as the initial one) is expressed
as the distance from the beginning of the road section (x) and from the road border
(y). Due to verification purposes requiring discrete values domains, these distances are
expressed using discrete values, but precise enough to satisfactorily model the vehicle
progression on the road. As a consequence, the position of a vehicle is a point on a
two-dimensional orthogonal grid on which the longitudinal and lateral gaps between
adjacent points may be different.

A vehicle’s mission is defined as a sequence of positions the vehicle has to visit.
More precisely, we consider a sequence of sets of positions to be reached, with the
requirement to reach at least one position of each set. Possible maneuvers a vehicle
may launch in order to fulfill its mission are: keeping/changing lane and accelerat-
ing/decelerating or keeping its speed.

Each vehicle state is described by a record containing its position (the vehicle’s
center), its current speed, its direction (to the left, to the right or no change), and its
acceleration (taken from a given range of possibilities, negative, positive and null). Its
behavior is modeled by a timed automaton in the form of a loop which sets at some
frequency the vehicle’s acceleration and current direction. These indications are the
result of the vehicle’s controller algorithm, which can be different for each vehicle.

The vehicles’ movements are modeled by another timed automaton, the environ-
ment, which computes and updates at every sample period all vehicles speeds and pos-
itions, according to the indications given by the vehicle’s controllers.

Figure 1. A two lanes road section discretized in abscissa with a granularity Granx and in ordinate
with Grany. A vehicle (dashed rectangle) is centered in (4,2) and its predicted timed trajectory
(6,2);(8,2);(10,3);(12,4);(15,5);(18,5);(21,5) for seven next time periods is shown by grey
dots.

For our experiments, we developped a controller in a way that the goal of a vehicle
is to reach positions of its mission as fast as possible while complying to the code
rules and avoiding conflicts with other vehicles. To do so, the vehicle computes timed

5 a few minutes, or hours for very complex systems and queries (but recall this is the time needed
to analyze models off-line, not the time for a vehicle to react on the road)



4 Johan Arcile et al.

trajectories of its neighbors from their positions, speeds and intentions, and chooses its
own trajectory regarding to their.

Vehicle’s predicted trajectories are represented using well chosen timed abstrac-
tions. In order to optimize the state space, the trajectories are never stored but they may
be computed on demand from the information about vehicles, which has to be as com-
pact as possible. Thus, the timed trajectories are represented as sequences of positions
the vehicle will reach at some dates up to some time horizon (typically 10 s), as shown
in Fig. 1.

3 Discussion on modeling choices and parameters

Our objective is to obtain a realistic modeling of a communicating autonomous vehicles
system that allows their model checking in a reasonable time. Since the available tools
that are able to formally verify such systems can only handle integer data structures,
we have to propose a satisfactory discretization for the various physical quantities de-
scribing the vehicle behaviors. Moreover, the complexity of the verification procedures
rapidly increases with the range of these integer variables, while the accuracy of the
models requests an adequate granularity.

Our discrete representation of a vehicle’s state will thus be encoded with the fol-
lowing discrete variables: its (longitudinal and lateral) positions x and y, its forward
speed v with the corresponding forward acceleration a, and the direction of the vehicle
D ∈ {−1,0,1}, corresponding respectively to a lateral move to the right, no change and
to the left. With the exception of D, we will denote by Grana, Granv, Granx, Grany the
granularity of these quantities, i.e., the gap between two consecutive values (this allows
to normalize the data as integers), and by N (with the corresponding subscripts) the size
of the needed data structure, called a range.

The updates of the forward speed and position values after a period are expressed by
the usual formulas. In order to adapt the data structures to the verification constraints,
we want to make the system parametric depending on the value of the time period,
called the sample, i.e., the period with which the system is observed. Thus, to describe
the system let us consider the following parameters and constants:

– S is the sample period, expressed in seconds (written as s);
– L is the length and R is the width of the road segment, in meters (written as m);
– Vmin is the min and Vmax is the max value of (longitudinal) speed expressed in meters

per second (written as m/s);
– Amin is the min and Amax is the max value of acceleration expressed in meters per

second squared (written as m/s/s);
– Grana is the granularity of the acceleration expressed in meters per second squared;
– W is the maximal value of the lateral speed expressed in meters per second.

This yields the acceleration range Na = 1+(Amax−Amin)/Grana; we assume that
0 is one of the possible accelerations, and that Amax/Grana as well as Amin/Grana are
integers. The acceleration is then expressed as a = A ·Grana, longitudinal speed as
v=V ·Granv, longitudinal position as x=X ·Granx, and lateral position as y=Y ·Grany,
where A, V , X , Y are integers.

Now, we are able to compute the granularities and ranges for the longitudinal and
lateral positions and speeds, as well as give their normalized updates:



Modeling and checking robustness of communicating autonomous vehicles 5

– For longitudinal speed, the update after one sample is v′ = v+ a · S. For a given
granularity Granv, this lead to V ′ = V +(A ·S ·Grana)/Granv (in normalized vari-
ables). We choose a granularity Granv = Grana ·S (which does not introduce new
losses) leading to a normalized speed update V ′ = V +A. The resulting range is
Nv = 1+(Vmax−Vmin)/(Grana ·S), using a ceiling function if the division does not
provide an integer.

– For the longitudinal position, the update after one sample is x′ = x + v · S+ a ·
S2/2. For a given granularity Gx this leads to X ′ = X +((V ·S ·Granv)+(A ·S2/2 ·
Grana))/Gx = X +(2V +A)(Grana ·S2/2)/Gx (in normalized variables). In order
to avoid losses, we should choose the granularity Gx = Grana ·S2/2. However this
granularity will usually be too small (for instance, if Grana = 1 and S = 10−1,
we get a granularity of 5 mm), leading to a huge range. In order to avoid a state
space explosion, we shall thus approximate x with a precision of Granx = p ·Gx,
with an adequate parameter p. Hence, the normalized update of x becomes X ′ =
X+(2V +A)/p (rounded) and the corresponding range is Nx = L/Granx. In order to
choose a suitable p, we may observe that Granx is the maximal longitudinal loss of
precision we may face during a sample. Hence, we may introduce the (normalized,
maximal) loss of precision6 during one second Normx = Granx/S = p ·Granv/2.
Normx may be fixed independently from the constants of the program and we get
the corresponding Granx = Normx ·S and p = 2 ·Normx/Granv.

– For the lateral position update after one sample we have y′ = y+W ·S ·D, leading
to a granularity Grany = W · S and the range Ny = R/Grany. In the normalized
variables, this becomes Y ′ = Y +D.
The size E of the state space per vehicle, due to the data structure, is obtained by

multiplying all the above variable ranges, while it becomes En for n vehicles. Fortu-
nately, the formal tools do not necessarily construct the whole state space to analyze
such systems. Of course, the complexity of the verification procedures also depends on
the number of clocks used in the model and on the number of time zones they gener-
ate, as well as on the degree of non determinism present in the specification and the
difficulty to solve the queries.

4 Experiments with the model

We illustrate our approach on a scenario implying three vehicles evolving on a three-
lane highway section of L= 500 m long and R= 10.5 large. One of the lanes is a junc-
tion lane, which starts at the beginning of the section, joins the right lane after 200 m
and ends 200 m later. The constraints defining the velocity of the vehicles are Vmin = 0
m/s and Vmax = 40 m/s (= 144 km/h); Amin =−5 m/s/s and Amax = 3 m/s/s, and W = 1
m/s. We fix Grana = 1 m/s/s and the environment sample S= 0.1 s (10 Hz). Such an S
allows to monitor the system’s behavior in a satisfactory way and such a Grana yields a
sufficient number of acceleration choices for the vehicle’s controllers.

With such parameters and the granularity guaranteeing no further loss of informa-
tion, i.e., Gx = 0.005 m, the complexity of the data structure per vehicle is of the order

6 Actually two times the loss of precision thanks to rounding.



6 Johan Arcile et al.

of 1011 and it becomes (1011)3 for our 3 cars scenario, which is problematic for the
verification tools. We then fix a reasonable normalized accuracy Normx = 1 and get
p = 2 ·q/Granv = 20. Therefore, the granularity on x becomes Granx = p ·Gx = 0.1 m
and this approximation allows to divide the state space by p3 = 8000 while not signi-
ficantly impacting the behavior of the model.

Query\Variant Base case B-slowed C-slowed C-moved
Exists B overtakes A T F T T

Always B overtakes A F F F F

ExistsC overtakes A T T F T

AlwaysC overtakes A T T F F

Exists B overtakes C F F T T

Always B overtakes C F F T T

Figure 2. Top: initial situation of the Base Case (BC) with xA = 50, xB = 0, xC = 20, vA = 20,
vB = 35 and vC = 30; B-slowed is BC with vB = 30, C-slowed is BC with vC = 25 and C-moved
is BC with xC = 15; bottom: queries and results.

We aim at studying the vehicle’s controllers decisions (working at a period of 0.11 s)
and their impact on each others. The vehicles A, B and C are initially positioned as
shown in Figure 2 (top). They are assumed to have initially a null acceleration and their
mission is to reach the right lane at the end of the road.

For a number of initial situations, we consider a series of properties – expressed
as CTL formulae [4] – to check the effectiveness of overtakings, the resulting arrival
order, and of course the possibility of collisions. The table in the bottom of Figure 2
gathers the results of the model checking for the base case defined above and a few of
its variants.

For the Base Case, we can observe that it is possible that B overtakes A, which is
slower, but this does not happen in every possible path. We can also observe that C
always overtakes A but is not overtaken by B, meaning that C always arrives first. For
B-slowed, the only difference with the Base Case is that B can no longer overtake A,
independently of the order in which the vehicles take their decisions. For C-slowed, we
can see that C now never overtakes A and is always overtaken by B, which means that
C always lets the two other go before changing lane. For C-moved, we can see that the
only difference with C-slowed is that C always waits for B to go first but then there are
some paths where it goes before A and some where it doesn’t. To explain this behavior,
a hypothesis could be that C always waits for B, and when A is overtaken by B, C also
overtakes A. We can check this with another query (B overtakes A)→ (C overtakes A),
which is indeed true. Finally, there is no path in any scenario that allows collision.



Modeling and checking robustness of communicating autonomous vehicles 7

Despite the high number of states, UPPAAL handles most of the queries in less than
10 seconds on an office laptop. Unfortunately, in some cases such as for example C-
slowed, some queries needed to explore a large part of the state space and took more
than 4 minutes, meaning that the approximation on the position was necessary.

5 Experiments with the model after fault injection

The scenarios analyzed in section 4 were assumed to take place in a perfect envir-
onment, where each vehicle had a perfect knowledge of the other vehicles, thanks to
its sensors and the communication devices, with no loss of informations (but the ba-
sic discretization). It resulted in behaviors that were always safe (i.e., the controllers
always made safe choices). Here, we address the assessment of robustness of the sys-
tem by injecting various kinds of faults. Concretely, we will degrade the environment
by modifying the knowledge of some vehicles, representing either defective sensors or
communication problems, such as for example a larger latency. We shall thus consider
the same properties as before on the following degraded versions of the base case:

– Var-Null: the other vehicles’ acceleration is interpreted as 0;
– V-Up: the other vehicles’ speed is multiplied by 3/2;
– V-Down: the other vehicles’ speed is multiplied by 2/3;
– X-Up: the other vehicles’ longitudinal position is increased by 2 m;
– X-Down1: the other vehicles’ longitudinal position is decreased by 5 m;
– X-Down2: the other vehicles’ longitudinal position is decreased by 10 m.

Those faults impact the trajectory that each vehicle computes in order to represent the
behavior of its neighbors. Table 1 gathers the model checking results for those versions.

Query\Variant Var-Null V-Up V-Down X-Up X-Down1 X-Down2
Exists B overtakes A F T F F T T

Always B overtakes A F F F F F T

ExistsC overtakes A T T T T T T

AlwaysC overtakes A T T T T T T

Exists B overtakes C F T F F F F

Always B overtakes C F F F F F F

Exists collision F T F T F T

Table 1. Meaning of the queries with the corresponding results for each kind of fault.

For Var-Null, where each vehicle is unable to know the value of the other vehicles
acceleration, and V-Down, where they use a speed value lower than the reality, we
observe that B does not succeed in overtaking A anymore, but there is no collision. X-
Up shows the same behavior for B, but a collision is then possible. The trace given by
the model checker shows that B crashes with A while trying to overtake it. For V-Up,
where the speed value of any other vehicle is increased, we observe that B sometimes
overtakes C, and a collision is also possible. The trace given by the model checker
shows that B crashes with A without even trying to change lane: considering a false
speed value, the controller decides that there is no need to change lane, until it becomes
too late to prevent the collision. Finally, X-Down1, where the vehicles’ sensors use a



8 Johan Arcile et al.

longitudinal position decreased by 5 meters shows a behavior identical to the base case,
while X-Down2, where the estimated positions are decreased by 10 meters, shows that
B always overtakes A but a collision may happen. The trace shows that the problem
occurs at the junction, between C and the vehicle on the right lane. Indeed, when the
vehicles on each side of the junction are actually side by side, they perceive each other
10 m behind and so decide they have enough room to pass, which leads to a collision.

Based on these results, we can say that, in this particular situation, the cases that
often cause problems to our controller are those where the speed or position estimated
values of the other vehicles are increased in such a way that the vehicle underestimates
how close to collision it is. Of course, doing these checks for a single initial situation
does not allow us to determine a general trend about the robustness of our controller.
However, applying the same process on various situations, one might be able to evaluate
the level of faults a given controller can handle without leading to a collision.

6 Conclusion

We proposed an efficient formal modeling of a complex real time multi-agent system
in order to obtain guarantees of its good functioning and robustness. The inherent size
of the system made it impossible to address the problem in a direct and naive way, but
a suitable discretization and approximation allowed to use model checking exhaustive
techniques while limiting the state explosion.

We illustrated the usage of such a modeling to assess the performances of decision
making of autonomous communicating vehicles. To do so we implemented controllers
and checked their properties, first when evolving in a somehow perfect environment
and then in a modified faulty environment. The obtained results show the differences
and limits of the considered decision policy, pointing out vulnerabilities. The developed
framework is parametric and may easily be adapted to study various kinds of scenarios
with a fixed a priori precision. It allows to check a large range of properties, including
of course the absence of collisions.

In the future, we plan to extend this approach to cooperative vehicles in order to as-
sess various cooperation strategies in order to improve the safety and increase the fluid-
ity of the traffic, such as negociations between vehicles. Also, implementing obstacles
and human controlled vehicles would be interesting in our approach to quantify de-
cision policy robustness. These extensions would certainly require further abstractions
and better exploit system’s symmetries.

References

1. R. Alur, C. Courcoubetis, and D. Dill. Model checking in dense real-time. Information and
Computation, 104(1):2–34, 1993.

2. R. Alur and D. Dill. Automata for modelling real-time systems. In Proceedings of the Inter-
national Colloquium on Automata, Languages and Programming (ICALP’90), volume 443 of
LNCS, pages 322–335. Springer-Verlag, 1990.

3. James M. Anderson, Nidhi Kalra, Karlyn Stanley, Paul Sorensen, Constantine Samaras, and
Oluwatobi Oluwatola. Autonomous Vehicle Technology. A Guide for Policymakers. Research
Reports. RAND Corporation, 2016. ISBN: 978-0-8330-8398-2.



Modeling and checking robustness of communicating autonomous vehicles 9

4. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
5. Uppaal. http://www.uppaal.org/, 2016.
6. M. Wooldridge. An introduction to multi-agent systems - Second Edition. John Wiley & Sons,

2009.


