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Abstract: The objective of this work is to use a multi-core embedded platform as computing architectures for neural applications 

relevant to neuromorphic engineering: e.g. robotics, artificial and spiking neural networks. Recently it has been shown how 

spike-timing-dependent plasticity (STDP) can play a key role in pattern recognition. In particular multiple repeating 

arbitrary spatiotemporal spike patterns hidden in spike trains can be robustly detected and learned by multiple neurons equipped 

with spike-timing-dependent plasticity listening to the incoming spike trains. This paper presents an implementation on a 

biological time scale of STDP algorithm to localize a repeating spatio-temporal spike patterns on a multi-core embedded platform. 
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1 INTRODUCTION 

In the last years, a few hardware-based Spiking Neural 

Networks (SNN) systems were developed and the 

description of those pioneer platforms have gained 

remarkable attention [1-2]. On account of their parallel and 

distributed structures, spiking neuronal networks can 

simulate neuronal activities, potentially realizing an 

extremely large-scale network comparable to that of the 

human brain in future. Neuromorphic engineering aims to 

design SNN which will be used in Neuroscience for 

simulating the brain signal processing.   

A second approach in the neuromorphic community 

concerns neuromimetic systems [3], which mimic more 

precisely the activity of biological cells and could replace the 

living part [4]. A neuromorphic system facilitates the 

building of a hybrid network incorporating both silicon and 

biological neurons. In recent times, the term neuromorphic 

has been used to describe analog, digital, mixed-mode 

analog/digital VLSI, and software systems that implement 

biologically realistic neural network models, from the 

electrophysiology of one single neuron to network plasticity 

rules. The analog circuit implementation consumes low 

power (down to nanowatts) per silicon neuron. However, is 

required to solve the problems induced by fabrication 

mismatch and temperature dependence to construct a large-

scale network [5]. On the other hand, digital circuit 

implementation solves this limitation because it is far less 

sensitive to these factors, though power consumption tends 

to be higher than the analog circuit implementations. It is 

observed that the choice between analog and digital neural 

networks is application dependent. The architecture of SNN 

platforms will finally be a compromise between the 

computational cost and the model complexity which also 

constraints the achievable network size [6].  

Different approaches to simulate spiking neural networks 

are to use either analog/digital VLSI or general purpose 

computing architectures [7] like clusters of CPUs or GPUs. 

While software tools can be configured for different types of 

models, hardware-based SNNs are dedicated to a given type 

of model. 

A promising approach, that is a good trade-off, is the use 

of mixed hardware/software platform as the Parallella board 

by Adapteva [8]. This platform is designed for developing 

and implementing high performance, parallel processing 

applications developed to take advantage of the on-board 

Zynq programmable Soc and the Epiphany chip. The 

Epiphany 16-core chips consist of a scalable array of simple 

RISC processors programmable in C/C++ connected 

together with a fast on-chip network within a single shared 

memory architecture. The advantage of this mixed 

hardware/software platform  is the presence of FPGA that 

offers a significant speedup over software designs, as well as 

size, weight, and power efficiencies.  

The objective of this work is to use the Parallella board 

as computing architectures for neural applications relevant to 

neuromorphic engineering: e.g. robotics, artificial and 

spiking neural networks.  



In particular; we present an implementation of the spike-

timing-dependent plasticity (STDP) algorithm to localize a 

repeating spatio-temporal spike patterns hidden in spike 

trains on the Parallella board. This implementation have been 

realized for computation purposes taking into account 

biological time scale.  

 

2 MATERIAL AND METHODS  

In neuroscience, synaptic plasticity is the ability of the 

connection, or synapse, between two neurons to change in 

strength or efficacy in response to either use or disuse of 

transmission at preexisting synapses. Since memories are 

postulated to be represented by vastly interconnected 

networks of synapses in the brain, synaptic plasticity is one 

of the important neurochemical foundations of learning and 

memory. Spike-timing-dependent plasticity is a biological 

process that adjusts the strength of connections between 

neurons in the brain. The process adjusts the connection 

strengths based on the relative timing of a particular neuron's 

output and input action potentials (or spikes).  

Recently it has been shown how STDP could play a key 

role by detecting repeating patterns and generating selective 

response to them. The concept of STDP has been shown to 

be a proven learning algorithm for forward-connected 

artificial neural network in pattern recognition.  

 In particular in the work presented by Masquelier [9-10], 

it has been shown that multiple repeating arbitrary 

spatiotemporal spike patterns hidden in spike trains can be 

robustly detected and learned by multiple neurons equipped 

with spike-timing-dependent plasticity (STDP) listening to 

the incoming spike trains (Fig. 1). The neurons become 

selective to successive coincidences of the patterns.  

 

 

Fig. 1. Architecture of a neuronal network listening       

incoming spike trains with hidden patterns 

 

In this work we will use the models presented in the work 

of Masquelier [10].  Furthermore, in the implementation on 

the multi-core embedded platform we will take into account 

biological time scale. 

2.1 Neuron model 

Specifically, for the neuron model, Gerstner's spike 

response mode (SRM) [11] is used. This model represents an 

alternative formulation to the integrate-and-fire model. 

Instead of defining the evolution of the neuron’s membrane 

potential by a differential equation, SRM uses a kernel-based 

method to model the effect of spikes on the membrane 

potential (1). 

At any time, the membrane potential is 
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where the wji are the excitatory synaptic weights, 

between 0 and 1 (arbitrary units). Variation of synaptic 

weight wji from neuron j (pres-synaptic) to neuron i (post-

synaptic), as function of the interval Δt = ti-tj. When a post-

synaptic spike arises after a pre-synaptic spike (Δt > 0), the 

connection is reinforced (long-term potentiation (LTP),  

ΔWji > 0), whereas in the opposite case it is weakened (long-

term depression (LTD)). The change of the synapse plotted 

as a function of the relative timing of pre- and postsynaptic 

action potentials is called the STDP function or learning 

window and arise between synapse types. In the equation (1) 

each presynaptic spike j, with arrival time tj, is supposed to 

add to the membrane potential an excitatory postsynaptic 

potential (EPSP) of the form: 
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where τm is the membrane time constant (here 10ms), τs 

is the synapse time constant (here 2.5ms), and  is the 

Heaviside step function and K is a multiplicative constant 

chosen so that the maximum value of the kernel is 1. 

In the equation (1) the last emitted postsynaptic spike i 

has an effect on the membrane potential modeled as follows: 
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   where T is the threshold of the neuron (here 550, 

arbitrary units) and K1 = 2, K2 = 4 are constants. Furthermore 

in the equation (1), when a neuron fires at time tk, it sends to 

the others an inhibitory postsynaptic potential (IPSP) of the 

form: 

 

)tt(T)tt( kk                          (4) 

 

ε, η, and μ kernels were rounded to zero when, 

respectively, t − tj , t − ti , and t − tk were greater than 7τm. 

 

2.2 Spike-Timing-Dependent Plasticity rule 

STDP rules are the most common form of learning used 

in SNN. The dynamics of a SNN and the formation of its 

connectivity are governed by synaptic plasticity. Plasticity 

rules formulate the modifications which occur in the synaptic 

transmission efficacy, driven by correlations in the firing 

activity of pre- and postsynaptic neurons. At the network 

level, spikes are generally processed as events, and the 

synaptic weight wji (connection from neuron j to neuron i) 

varies over time, according to the learning rules. As done in 

the work of Masquelier [10] we used an additive exponential 

update rule of the form (5) for the implementation on a multi-

core embedded platform. 
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where a+ = 0.03125 and a− = 0.85 · a+, τ+ = 16.8ms and τ− = 

33.7ms. We implemented a restricted learning window 

respectively of [ti − 7 · τ+, ti] for LTP and [ti , ti + 7 · τ−] for 

LTD.  

2.3 Computing Architecture  

SNNs fall into the third generation of neural network 

models, increasing the level of realism in a neural simulation. 

The idea is that neurons in the SNN do not fire at each 

propagation cycle (as happens with typical multi-layer 

perceptron networks), but rather, only fire when a membrane 

potential reaches a specific value. When 

a neuron fires, it generates a signal that travels to other 

neurons which, in turn, increase or decrease their potentials 

in accordance with this signal. Computational neuroscience 

commonly relies on software-based processing tools 

(NEURON, NEST, PCSIM, Brian, etc.).  

As mentioned in the introduction, neuromorphic engineering 

is a new interdisciplinary field that takes inspiration from 

biology, physics, mathematics, computer science and 

engineering to design analog, digital, and mixed-mode 

analog/digital VLSI and software systems to mimic neuro-

biological architectures present in the nervous system. 

Some of these platforms are dedicated to the simulation 

of SNNs, and take into account the timing of input signals by 

precisely computing the neurons’ asynchronous spikes. 

While software tools can be configured for different types of 

models [12], hardware-based SNNs are dedicated to a given 

type of model.  

In this work we use the Parallella board a mixed 

hardware/software platform by Adapteva [8] to investigate 

the capability of simulating a STDP algorithm to localize a 

repeating spatio-temporal spike patterns on a biological time 

scale.  

The Parallella board comes with either a 16 core or a 64 

core Epiphany chip (here we used the 16 core version), it 

contains a Zynq SOC (FPGA + ARM A9) and an Epiphany 

coprocessor which are connected through the eLink interface 

and AXI bus (Fig. 2). It can be connected through a Gigabit 

Ethernet port. It also contains a µHDMI port as well as 2 

µUSB ports and a µSD slot. 

 

 

Fig. 2. Parallella High Level Architecture. This figure was 

taken from Parallella reference manual [8] 

 

The presence of the FPGA offers a significant speedup 

over software designs, as well as size, weight, and power 

efficiencies. In the provided bitstreams, the FPGA is 

configured to drive the HDMI, GPIO pins and the host-side 

eLink communication between the ARM and Epiphany chip. 

A single epiphany core, is computationally similar to the 

ARM. Both are 32-bit RISC cores capable of efficient 

floating-point and discrete operations.  



The ARM is capable of running a full Operating System, 

such as Linux and can interface with the external world via 

the FPGA.  

Furthermore, we make use of the Epiphany Software 

Development Kit (eSDK) that is a software development 

environment targeting the Epiphany multicore architecture. 

The eSDK is based on standard development tools including 

an optimizing C-compiler, functional simulator, debugger, 

and multicore integrated development environment (IDE). 

Its drawback is its limitation of connected cores at 4096, 

which limits the capabilities in terms of simulating a sizable 

part of the human brain.  

 

3 NETWORK ARCHITECTURE 

3.1 SNN execution architecture on the Parallella platform 

The spike pattern recognition algorithm was 

implemented on a shared memory multi-core embedded 

platform, with single program, multiple data (SPMD) as a 

technique employed to achieve parallelism. Tasks are split 

up and run simultaneously on multiple processors (here 16 

core) with different input lines in order to obtain results 

faster.  

The implementation was realized in C language using the 

eSDK and compiler provided by Adapteva. We compiled the 

code with gcc for the ARM and with egcc, a modified 

compiler, for the Epiphany chip. To evaluate the speedup of 

the multi-core platform, the algorithm was implemented both 

on a single core ARM and on the Epiphany coprocessor 

mediated by the ARM host. 

In particular, the algorithm was evaluated for 2048 inputs 

spike trains (128 inputs per core), with two hidden patterns 

integrated in parallel by five downstream SRM neurons, 

through excitatory synapses governed by STDP. Lateral 

inhibitory connections are set up between the SRM neurons, 

so that as a neuron fires, it sends an inhibitory postsynaptic 

potential (IPSP) of the form presented in the equation (4) to 

its neighbors. 

This implementation have been realized for computation 

purposes taking into account biological time scale. The 

inputs spike trains were generated for a simulation time of 

500 seconds and stored in the shared memory. Anyway, the 

platform provide an FPGA that can be configured to drive 

GPIO pins for data transfer. 

As mentioned before, our interest is in the systems with 

a biological time scale. Thus, we choose a computation time 

of 1 millisecond, and then our architecture has to compute 

the value of all parameters within that time. The epiphany 

has very limited external IO capabilities.  

In fact, any spike train data into or out from the 

coprocessor needs to be mediated by the ARM host, final 

results are all controlled by applications running on the ARM.  

3.2 Data generating process for the network 

In neuroscience, the words firing and spiking commonly 

refer to action potentials generated by a neuron. Simulating 

input spike trains like the ones in the raster plot as shown in 

Fig. 3 requires only one piece of information: the firing rate 

of the neuron. As used in the work of Masquelier [10] we 

generated spikes independently using a Poisson process with 

a variable instantaneous firing rate that varies randomly 

between 0 and 90 Hz. The maximal rate change was chosen 

so that the neuron could go from 0 to 90 Hz in 50 ms.  

Finally a part the spike trains, defined as the ‘pattern’ to 

be repeated, was replaced for half input lines into sections of 

50ms. We randomly pick one of these sections and copy the 

corresponding spikes. As shown in Fig. 3, we generate two 

different hidden patterns (red circles, green circles) that 

repeat at random intervals within stochastic Poissonian 

activity (blue circles).  

 

 

Fig. 3. Spatiotemporal spike patterns. In consequence of 

space constraints, we show only the first 300 input (out of 

2048) 
 

4 RESULTS 

The spike pattern recognition algorithm was simulated 

for 500 seconds on the host ARM. We explored a situation 

that focuses on the recognition of two previously unknown 

patterns integrated in parallel by five downstream SRM 

neurons, through excitatory synapses governed by STDP and 

lateral inhibitory connections.  

As found in the work of Masquelier [10] we found that 

the same neuron cannot become selective to two distinct 

patterns and inhibition encourages the neurons to distribute 

themselves across all the patterns. The simulation time of 

about 13 minutes shows that real-time simulation cannot be 

reach with only one ARM core.  



Pursuant to our goal of implementing the algorithm in the 

biological time scale we run the simulation using the 16 

cores Epiphany chip. In this example patterns 1 and 2 were 

learned by four neurons, and one neurons stopped firing after 

too many spikes had generated outside the patterns (they did 

not learn any pattern). Fig. 4 shows a typical result. Here we 

plotted the membrane potential as a function of simulation 

time, at the end of the simulation. After about 80 pattern 

presentations and 600 spikes’ generation, selectivity to the 

pattern is emerging: gradually the neuron almost stops 

spiking outside the pattern, while it does spike most of the 

time when the pattern is present. As shown in Fig. 4 neuron 

1 and neuron 2 become selective to the pattern 1 and 2 

respectively. The measured postsynaptic spike latency is 

about 5ms and there are no false alarms after the 676th spike 

that is for the last 400s of simulation. The maximum speedup 

measured on the platform was 14 times. 

 

Fig. 4. The membrane potential is plotted as a function of 

time for the neuron 1 and 2. Neuron 3 and 4 (not shown 

here) become selective to the pattern 1 and 2 respectively. 

The neuron 5 did not learn any pattern 
 

5 CONCLUSION 

In the present work we presented an implementation on 

the Parallella board of STDP algorithm to localize a 

repeating spatio-temporal spike patterns hidden in spike 

trains. This implementation have been realized taking into 

account biological time scale using the 16 cores Epiphany 

chip. The Parallella board provides a large number of cores 

that are able to perform floating point operations, which 

makes it suitable for neural applications relevant to 

neuromorphic engineering as for example pattern 

recognition. The maximum speedup measured in this work 

shows how real-time simulation can be reached for “small 

neural network” using Epiphany coprocessor mediated by 

the ARM host. This calculation was four times faster than 

the biological real-time. We plan to use this hardware and 

software platform to improve the hybrid technique, also 

called “dynamic-clamp” that consists of connecting artificial 

and biological ‘in vivo’ or/and ‘in vitro’ neurons to study the 

function of neuronal circuits using microelectrode arrays. 
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