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SUMMARY

This paper presents a new observer-based controller design method for Lipschitz nonlinear systems with uncertain

parameters and L2 bounded disturbance inputs. In the presence of uncertain parameters, the separation principle is

not applicable even in the case of linear time invariant systems. A state of the art review for uncertain linear systems is

first presented to describe the shortcomings and conservatism of existing results for this problem. Then a new LMI based

design technique is developed to solve the problem for both linear and Lipschitz nonlinear systems. The features of the

new technique are the use of a new matrix decomposition, the allowance of additional degrees of freedom in design

of the observer and controller feedback gains, the elimination of any need to use equality constraints, the allowance of

uncertainty in the input matrix and the encompassing of all previous results under one framework. An extensive portfolio

of numerical case studies is presented to illustrate the superiority of the developed design technique to existing results

for linear systems from literature, and to illustrate application to Lipschitz nonlinear systems.
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1. INTRODUCTION

Uncertain parameters are often encountered in many practical control applications because it is frequently

difficult to obtain exact mathematical models. This may be due to environmental noises, data errors, aging of

systems, uncertain or slowly varying parameters, etc. Many efforts have been devoted to the robust stability and

stabilization of linear systems with parameter uncertainties because the presence of uncertainties may cause

instability and bad performances on a controlled system. For a recent literature, we refer the readers to [6],

[18], [1], [10], [4]. To provide some reasons for uncertain parameters in linear time invariant models, we can

mention the following, which constitute one of the main motivation of this work: (1) variations in parameters

with varying environmental conditions (for example, the change in tire-road friction coefficient due to ice or

snow on a winter road); (2) variations in parameters over time (for example, the slow and steady change in

cornering stiffness of a tire over the life of the tire); (3) variations in parameters due to the nonlinear nature

of the model (for example, the presence of hysteresis leads to parameters that can vary continuously between

upper and lower bounds depending on both the direction and the range of motion).

In the presence of uncertain parameters, the stabilization problem becomes more difficult and involved. The

problem is complicated especially when an observer-based controller is used instead of direct static state

feedback. Often, not all of the system states are available by measurement, mainly for economical and/or

technological reasons. To overcome this problem an observer is usually added in the control loop, in order

to recover the unavailable state information [2], [7], [22], [13], [20]. This is the main motivation for which state

observer design for uncertain and/or nonlinear systems is widely investigated in the literature to develop new

techniques for different classes of nonlinear systems [5], [27], [28], [29]. For uncertain systems, the separation

principle is not applicable even in the linear time invariant case. Trying to ensure that the closed-loop system is

stable, while using an observer leads to a gain selection problem difficult from the LMI point of view. There are

considerable approaches in the literature dealing with output feedback controller design by directly using BMI

conditions [19], [17]. However, it is well known that solving a BMI is an NP-hard problem [25]. To overcome

this obstacle, some important and general dynamic output-feedback approaches have been presented in [21]

using relevant arguments and judicious mathematical tools. Nevertheless, in this paper we focus our study on

observer-based controller design, which presents some difficulties due to its particular structure. Indeed, when
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a Luenberger observer with constant gain is used, the controller design involves the presence of unavoidable

bilinear terms, contrarily to the case of dynamic Luenberger observer-based controller [24] or the general

dynamic output feedback controller [21], where congruence transformations may be used. On the other hand,

static output feedback also has this particularity and leads to an unavoidable BMI, but the use of estimated states

provides more degrees of freedom in the controller design and is enable to better estimate the states and the

output measurements in the presence of disturbances. Several papers in the literature have addressed the robust

stabilization issue via constant gain Luenberger observers for linear systems with parametric uncertainties, but

the results remain conservative. We refer the readers to [6], [18], [1], [10], [4], [15], for some recent work in

this area.

This paper deals with the problem of observer-based control design via LMIs. Thanks to a new matrix

decomposition, we first propose new and enhanced LMI conditions to solve the problem of stabilization of linear

systems with uncertain parameters. Indeed, we propose a new two-step procedure, which contains more degrees

of design freedom than the classical two-steps algorithm. We show that the proposed method encompasses the

Young’s relation based approach [15], [26] and Lien’s approach [18]. Moreover, the stability of the proposed

observer-based scheme is proved also in the presence of Lipschitz nonlinearities and disturbances by resorting to

anH∞ approach according to [27] and [16]. Analytical and simulation comparisons are provided to demonstrate

the superiority of the new LMI design methodology compared to previous results.

The present work is divided into 5 sections. The second section provides the statement of the problem and a

brief state of the art review related to different LMI design methods available in the literature to examine what

already exists in the academic literature. The third section is devoted to the new design procedure, including

the presentation of some analytical comparisons. The fourth section reports the main results with Lipschitz

nonlinearities and disturbances. Section 5 deals with the presentation of simulation examples and comparisons

to show the superiority of the proposed design methodology.Finally, The conclusion at the end sumps up all the

work.
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2. PROBLEM STATEMENT AND BACKGROUND RESULTS

2.1. Problem statement

For the simplicity of the presentation, this part of the study starts by introducing the problem formulation and

the new contributions in the linear case without disturbances. Therefore, we consider the same class of systems

investigated in [18] and [15], defined by the following set of equations:

ẋ =
(
A+ ∆A(t)

)
x+Bu (1a)

y =
(
C + ∆C(t)

)
x (1b)

where x ∈ Rn is the state vector, y ∈ Rp is the output measurement and u ∈ Rm is the control input vector.

A,B and C are constant matrices of adequate dimensions. First, we consider the following assumptions :

• the pairs (A,B) and (A,C) are respectively stabilizable and detectable;

• there exist matrices Mi, Ni, Fi(t), i = 1, 2, of appropriate dimensions so that

∆A(t) = M1F1(t)N1, ∆C(t) = M2F2(t)N2 (2)

where the unknown matrices Fi(t) satisfy the condition

FTi (t)Fi(t) ≤ I, for i = 1, 2. (3)

The observer-based controller we consider in this paper is under the form :

˙̂x = Ax̂+Bu+ L
(
y − Cx̂

)
(4a)

u = −Kx̂ (4b)

where x̂ ∈ Rn is the estimate of x, K ∈ Rm×n is the control gain, L ∈ Rn×p is the observer gain. Hence, we

can write ẋ
ė

 =


(
A−BK + ∆A(t)

)
BK(

∆A(t)− L∆C(t)
) (

A− LC
)

x
e

 (5)

where e = x− x̂ represents the estimation error.

We take the same Lyapunov function candidate as in [15],

V (x, e) =

x
e


T P 0

0 R


x
e

 = xTPx+ eTRe. (6)
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Notice that the Lyapunov function (6) is well known in the literature for this problem, especially in [18] which

is the main motivation of this paper. Indeed, the main contribution of this paper consists of developing a new

design methodology that we compare efficiently to the design methods provided in [18]. Now, after calculating

the derivative of V along the trajectories of (5), we have:

V̇ ≤ xT
[(
A−BK

)T
P + P

(
A−BK

)]
x

+ eT
[(
A− LC

)T
R+R

(
A− LC

)]
e+ 2xTPBKe

+ xT
[
(ε1 + ε2)NT

1 N1 + ε3N
T
2 N2 +

1

ε1
PM1M

T
1 P

]
x

+ eT
[

1

ε2
RM1M

T
1 R+

1

ε3
RLM2M

T
2 L

TR

]
e

=

x
e


T Σ11 PBK

(?) Σ22


x
e



(7)

where

Σ11 =

[(
A−BK

)T
P + P

(
A−BK

)]
+

[
(ε1 + ε2)NT

1 N1 + ε3N
T
2 N2 +

1

ε1
PM1M

T
1 P

] (8)

Σ22 =

[(
A− LC

)T
R+R

(
A− LC

)]
+

[
1

ε2
RM1M

T
1 R+

1

ε3
RLM2M

T
2 L

TR

] (9)

and ε1, ε2, ε3 are positive real constants (for more details, see [18], eq. (7)).

Notice that V̇ < 0, ∀

x
e

 6= 0 if the matrix inequality

Σ11 PBK

(?) Σ22

 < 0 (10)

holds. However, the matrix inequality (10) is a Bilinear Matrix Inequality (BMI), which is not exploitable

numerically to solve for P , K and L. On the other hand, linearizing the BMI (10) is a very difficult task

because of the presence of the coupling term PBK (see e.g. [3]). Many researchers in this field have attempted

to solve this problem but the resulting methods remain conservative [18], [11], [8], [6], [10]. In the following
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subsection, we recall some available results in the literature and we describe, with details, especially the results

of Lien in [18] which constitutes the main motivation of this paper.

2.2. Background results

In this subsection, some LMI methods are recalled concerning with this paper. First, the LMI results given

in [18] for asymptotic stability of the system (5) are summarized. After this, the LMI design method established

in [15] is recalled and slightly improved.

Theorem 2.1 ([18])

System (1a) is asymptotically stabilizable by (4) if there exist some positive constants ε1, ε2, ε3, a positive

definite matrix R ∈ Rn×n, and K ∈ Rm×n, L̂ ∈ Rn×p such that

X11 BK M1 0 0

(?) X22 0 RM1 L̂M2

(?) (?) −ε1I 0 0

(?) (?) (?) −ε2I 0

(?) (?) (?) (?) −ε3I


< 0 (11)

where

X11 = AT +A−KTBT −BK + (ε1 + ε2)NT
1 N1 + ε3N

T
2 N2

X22 = ATR+RA− L̂C − CT L̂T .

The stabilizing observer-based control gains are given by K and L = R−1L̂.

In the proof of this theorem, the author made the particular choice of P , namely P = I , in order to linearize

the BMI (10). Faced with this strong restriction, the author introduced a new matrix P̂ satisfying the condition

PB = P̂B. Such a matrix is necessarily invertible. By putting K̂ = P̂K in (10), he obtained the following

synthesis conditions :

Theorem 2.2 ([18])

System (1a) is asymptotically stabilizable by (4) if there exist some positive constants ε1, ε2, ε3, two positive 
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definite matrices P,R ∈ Rn×n, and matrices K̂ ∈ Rm×n, L̂ ∈ Rn×p, P̂ ∈ Rm×m such that

Y11 BK̂ PM1 0 0

(?) Y22 0 RM1 L̂M2

(?) (?) −ε1I 0 0

(?) (?) (?) −ε2I 0

(?) (?) (?) (?) −ε3I


< 0 (12)

PB = BP̂ (13)

where

Y11 = ATP + PA− K̂TBT −BK̂ + (ε1 + ε2)NT
1 N1 + ε3N

T
2 N2

Y22 = ATR+RA− L̂C − CT L̂T .

The stabilizing observer-based control gains are given by K = P̂−1K̂ and L = R−1L̂.

Notice that even if Theorem 2.2 provides less restrictive synthesis conditions than that of Theorem 2.1, it

remains quite conservative because of the presence of the equality constraint (13).

In the next theorem, we recall the new design methodology presented firstly in [14]. Notice that this theorem

can be found also in [26] as a corrected version of [15]. This method proposes a novel manner to overcome the

obstacle of the coupling PBK without any equality constraint.

Theorem 2.3 ([26])

System (1a) is asymptotically stabilizable by (4) if for fixed scalars ε2 > 0, ε3 > 0 and ε4 > 0, there exist two

positive definite matrices Z ∈ Rn×n, R ∈ Rn×n, two matrices K̂ ∈ Rn×m, L̂ ∈ Rp×n, and a scalar ε1 > 0 so

that the following LMI condition (14) is feasible:H11 H12

(?) −diag
{

1
ε4
Z, ε4Z, ε1I, ε2I, 1

ε2
, ε3I, 1

ε3
I
}
 < 0 (14)

with

H11 = diag
{

He(ZAT − K̂BT) + ε1M1MT
1 , He(ATR− CTL̂)

}
(15)
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H12 =


BK̂T 0 ZNT

1 0 ZNT
1 0 ZNT

2

0 I 0 RM1 0 L̂TM2 0

 (16)

where He(M) = M + MT for all square matrix M. Hence, the stabilizing observer-based control gains are given

by K = K̂TZ−1 and L = R−1L̂T .

Notice that the scalar variables εi, i = 2, 3, 4 are to be fixed a priori to render linear the condition (14).

Moreover, in the goal to overcome this difficulty and to obtain maximum values of the uncertainty bounds

tolerated by (14), the bounds of the uncertainties are included in (3), which is replaced by the following:

FTi (t)Fi(t) ≤ α2
i I (17)

This formulation is often used in decentralized stabilization problem of interconnected systems. The objective

consists in optimizing the bounds of the uncertainties. Consequently, this idea leads to an LMI without a priori

choice of the scalars εi, i = 1, 2, 3.

Under these new considerations, the inequality (7) becomes:

V̇ ≤ xT
[(
A−BK

)T
P + P

(
A−BK

)]
x

+ εT
[(
A− LC

)T
R+R

(
A− LC

)]
ε+ 2xTPBKε

+ xT
[
α2

1

(
ε1 + ε2

)
NT

1 N1 + ε3α
2
2N

T
2 N2

+
1

ε1
PM1M

T
1 P

]
x

+ εT
[

1

ε2
RM1M

T
1 R+

1

ε3
RLM2M

T
2 L

TR

]
ε.

(18)

Hence, with the change of variables γ1 = 1
α2

1(ε1+ε2)
and γ2 = 1

ε3α2
2
, we obtain the following enhanced version

of Theorem 2.3.

Theorem 2.4

Assume that for a fixed scalar ε4 > 0, there exist two positive definite matrices Z ∈ Rn×n, R ∈ Rn×n, two

matrices K̂ ∈ Rn×m, L̂ ∈ Rp×n and positive scalars εi, i = 1, 2, 3, γi, i = 1, 2 so that the following convex

optimization problem holds:
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min
( 2∑
i=1

γi +

3∑
i=1

εi

)
subject to

H11 H12

(?) −diag
{

1
ε4
Z, ε4Z, ε1I, ε2I, γ1I, ε3I, γ2I

}
 < 0 (19)

H11 = diag
{

He(ZAT − K̂BT), He(ATR− CTL̂)
}

H12 =

BK̂T 0 M1 0 ZNT
1 0 ZNT

2

0 I 0 RM1 0 L̂TM2 0

 .
Then, system (1) is asymptotically stabilizable by the observer-based controller gains K = K̂TZ and L =

R−1L̂T , for all

α1 ≤
1√

γ1

(
ε1 + ε2

) and α2 ≤
1

√
γ2ε3

.

Consequently, it remains only to fix the scalar ε4 a priori in (19). To this end, the best manner is the use of

the gridding method as suggested in [15] and [14]. A linearized version of Theorem 2.4 with respect to ε4 can

be obtained by using the additional constraint

Z > αI. (20)

This allows us to get an LMI on α and β = αε4, instead of the BMI (19) on ε4 (see [15, Remark 2, Eq. (13)] for

more details). Notice also that if α1 and α2 are fixed a priori, we get Theorem 2.3 from Theorem 2.4. We need

only some Schur arrangements in (18).

3. ENHANCED LMI DESIGN PROCEDURE

This section is devoted to a new enhanced LMI design algorithm. First, we introduce a novel LMI condition,

which is more general and less conservative than that in [18]. This new design procedure is able to solve the

observer-based stabilization problem for a large class of uncertain systems. We improve the approach in [18]

by presenting a general LMI condition, where the conditions in [18] become a particular case of the general

one. Inspired by the classical two-steps algorithms for observer-based controllers design [23], a new two-steps

algorithm is presented with more degrees of freedom than the classical technique.
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3.1. Preliminaries

Since B is full column rank, there always exists a non singular matrix T so that TB =

Im
0

. Hence, using the

similarity transformation T , system (1) can be transformed under the following equivalent form:

A := TAT−1, C := CT−1, B := TB =

Im
0

 , (21a)

∆A(t) := T∆A(t)T−1, ∆C(t) := ∆C(t)T−1, (21b)

M1 := TM1, N1 := N1T
−1, M2 := M2, N2 := N2T

−1. (21c)

Thanks to these assignments, the redundancy is avoided, and then we obtain the same structure (1) with

B =

Im
0

 . (22)

Now, the matrices P and A are written in the detailed forms as follows:

A =

A11 A12

A21 A22

 , P =

P11 P12

PT12 P22

 .
Since what we propose is a generalization of the methodology in [18], let us starting from inequality (10). By

taking into account the structure (22) of B, we get

PB =

P11 P12

PT12 P22


Im

0

 =

P11

PT12

 (23)

and therefore

PBK =

P11K

PT12K

 . (24)

Hence, from (24), equality (8) becomes:

Σ11 =

ATP + PA−

P11K

PT12K

−
P11K

PT12K


T

+

[
(ε1 + ε2)NT

1 N1 + ε3N
T
2 N2 +

1

ε1
PM1M

T
1 P

]
.

(25)
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Remark 3.1

The transformation of the B matrix as in (22) is well known in the literature for the problem of static output

feedback. The novelty of our methodology lies in the manner to exploit this transformation to extract a part

of the Lyapunov matrix instead of the controller gain as usually used in the two-steps method. Thanks to this

technique, the observer-based controller gains will be computed simultaneously after solving an LMI having

more degrees of freedom than the standard two-steps algorithm (see subsection 3.3.3).

3.2. New design procedure

Since the matrix P11 is symmetric positive definite, then invertible, there always exists a matrix S ∈ Rm×(n−m)

so that

P12 = P11S. (26)

With the change of variables K̂ = P11K, L̂ = RL, and the use of Schur Lemma, we deduce that inequality (10)

is fulfilled if the following matrix inequality holds:

Γ11

 K̂

ST K̂

 PM1 0 0

(?) Γ22 0 RM1 L̂M2

(?) (?) −ε1I 0 0

(?) (?) (?) −ε2I 0

(?) (?) (?) (?) −ε3I



< 0 (27)

where

Γ11 = ATP + PA−

 K̂

ST K̂


T

−

 K̂

ST K̂

 (28)

+ (ε1 + ε2)NT
1 N1 + ε3N

T
2 N2

Γ22 = ATR+RA− L̂C − CT L̂T . (29)
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The matrix inequality (27) is not linear because of the presence of the coupling term ST K̂. To linearize it,

the two-steps design is suggested, but with a different manner than the classical two-steps algorithm where the

controller gain is computed a priori and considered as known in (27). The proposed procedure is as follows:

• put S = αS̄ and compute the matrix S̄ as a solution of the LMI resulting from the stabilization of (1a) by

a static state feedback u = −Kx;

• solve (27) with S = αS̄ by using the gridding method on α with the decision variables P11, P22, R, K̂, L̂.

Remark 3.2

Notice that the form S̄ = P−1
11 P12 is not a restriction. This form, always true and possible [3], is introduced

and used in the goal to retrieve the variable K̂. S̄ is introduced in the aim to include an additional degree

of freedom in the algorithm, namely α, (or Λ in subsection 3.4, for more relaxed version), contrarily to the

classical two-step algorithm where the control gain K is fixed in the second step without any additional degree

of freedom to improve compensation of the first step.

Now, return to the computation of the matrix S̄. With a static state feedback u = −Kx, system (1a) can be

written in the closed-loop form:

ẋ =
(
A−BK +M1F1(t)N1

)
x. (30)

System (30) is asymptotically stabilized by the Lyapunov function V (x) = xTPx if the following inequality

holds: (
A−BK

)T
P + P

(
A−BK

)
+NT

1 F
T
1 (t)MT

1 P + PM1F1(t)N1 < 0 (31)

Using, on (31), the congruence principle, the Young inequality with (3) and Schur Lemma, we conclude

that (30) is asymptotically stable if the following LMI condition is fulfilled:ZAT +AZ − K̄TBT −BK̄ + εM1M
T
1 ZNT

1

N1Z −εIn

 < 0, (32)

where K̄ = KZ andZ−1 = P =

P11 P12

PT12 P22

. The classical two-steps method is different from our new design

technique. Indeed, the standard method proceeds as in the following algorithm:
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Algorithm 1: (classical two-steps method)

1. Solve LMI (32) with the decision variables Z, K̄ and ε > 0;

2. compute K by K = P−1
11 K̄;

3. solve (27) for K = K with the decision variables P11, P12, P22, R, L̂ and εi, i = 1, 2, 3;

4. compute the observer gain as L = R−1L̂.

Nevertheless, our design algorithm works in a different manner, as summarized in the following:

Algorithm 2

1. Solve LMI (32) with the decision variables Z, K̄ and ε > 0;

2. compute S̄ by S̄ = P−1
11 P12, and put S = αS̄;

3. solve (27) with S = αS̄ by using the gridding method on α with the decision variables P11, P22, R, K̂, L̂

and εi, i = 1, 2, 3;

4. compute the observer-based controller gains as K = P−1
11 K̂ and L = R−1L̂.

3.3. Some remarks and comparisons

The first step consists in fixing the structure of the matrix S by S̄. Then, the parameter α is introduced to add a

degree of freedom for (27) and then relaxing it. To choose α, the gridding method is used. Indeed, the gridding

method in this case, consists in writing α = κ
1−κ2 , which means that

κ ∈]− 1, 1[ ⇐⇒ α ∈]−∞,+∞[.

In fact, the function:

]− 1, 1[ −→]−∞,+∞[

κ 7−→ α(κ) =
κ

1− κ2
(33)



14

is bijective (a monotone strictly increasing function) (a C1-diffeomorphism to be more precise). In addition, its

inverse function is given by

κ (α) =



1

2α

(√
4α2 + 1− 1

)
if α > 0

− 1

2α

(√
4α2 + 1− 1

)
if α < 0

0 if α = 0.

Then, we assign a uniform subdivision of the interval ]− 1, 1[ and we solve the LMI (27) for each value of this

subdivision.

3.3.1. Comparison to Lien’s method It is evident that the approach in [18] becomes a particular case of this

new procedure. Indeed, first, if LMI (11) is assumed feasible, then it is clear that the proposed LMI (27) is

also feasible for P11 = Im, P22 = In−m and α = 0. Now, assume that (12)-(13) are verified. Then, from (13) is

derived the following:

PB = BP̂ =⇒

P11

PT12

 =

P̂
0

 ,
which means that P11 = P̂ and P12 = 0. Consequently, LMI (27) is also satisfied because it is identical to (12)

for P11 = P̂ and α = 0. It should be noticed that in the case of LMI (11) or (12)-(13), the first step of

the new proposed LMI design algorithm is not required. The algorithm is reduced to one step, namely the

step (3) (LMI (27) with S = 0). On the other hand, the converse is not true. That is, if the new design algorithm

provides solutions, then the LMIs (11) and (12)-(13), do not provides automatically solutions. The following

section presents numerical examples, which show that the proposed design method provides less conservative

LMI conditions.

We point out that the approach in [18] is constrained by the Schur stability of the matrix block A22 of A. In

fact, if P12 = 0, which corresponds to S = 0 in (27), we deduce from (27) and (28) that

AT22P22 + P22A22 < 0. (34)

On the other hand, notice that this necessary condition is not needed with this new design procedure, because

the matrix S is not necessarily null.

In addition, it should be noticed that the equality constraint (13) is more strong than the Schur stability of

A22. Indeed, as demonstrated in [15, subsection 3.2], all the diagonal sub-blocks of A22 should be Schur stable.



ROBUST OBSERVER-BASED STABILIZATION OF LIPSCHITZ NONLINEAR UNCERTAIN SYSTEMS VIA LMIS 15

Indeed, let

Ai22 ∈ R(n−m−i)×(n−m−i), i = 0, . . . , n−m

P i22 ∈ R(n−m−i)×(n−m−i), i = 0, . . . , n−m

be the diagonal sub-blocks of A22 and P22, respectively, with A0
22 = A22 and P 0

22 = P22. Then, if the equality

constraint (13) is satisfied conjointly with (12), then it is necessary to have

Ai
T

22P
i
22 + P i22A

i
22 < 0, ∀ i = 0, . . . n−m. (35)

To prove (35), the following notations are introduced for all i = 0, ..., n−m:

Bi =



Im

0

...

0︸︷︷︸
ithzero


, B0 = Im,

A =

Ai11 Ai12

Ai21 Ai22

 , P =

 P i11 P i12

(P i12)T P i22

 .
Hence, from the equality constraint (13) it results

B⊥PB = B⊥BP̂ = (P i12)T = 0, ∀ i = 1, ..., n−m

where

B⊥ =

[
0m+i In−m−i

]
.

Following the results in [15, subsection 3.2], it is straightforward to show that (35) is necessary for the feasibility

of (12).

To sum up, the fact that P i12 = 0, ∀ i = 1, ..., n−m means that P22 defined in (34) is diagonal. This implies

that the equality constraint is more conservative than the condition P12 = 0.

3.3.2. About the Young’s relation based approach The difference between this new design methodology and

that based on a judicious use of Young’s inequality [15], is that the proposed approach does not need to use any

strong inequality. Indeed, the approach in [15] is useful and works successfully, but because of the uncertainties 
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it may fail for some systems, as can be shown in [26]. Consequently, as a conclusion, these two methods are

alternative, but from the feasibility point of view, both give the same results in the parameter uncertainty-free

case. In the presence of uncertainties in the state and output equations, the proposed new design is often much

more interesting. Analytically, it is difficult to show the superiority of the new design algorithm. However, both

the methods are considered alternative methods.

3.3.3. About the classical two-steps method The first advantage of our design method compared to the classical

two-steps technique is that the controller gain is not fixed a priori from (32). We have only to a priori fixe

the structure of S̄ from (32). Hence, the observer and controller gains are computed simultaneously after

solving (27). This technique allows to have more degree of freedom compared to the classical method. Indeed,

the classical two-steps algorithm consists of fixing n×m variables, while with the proposed new algorithm,

only (n−m)×m variables are fixed a priori. With the additional parameter α, which is introduced to enhance

the feasibility of (27), the new design algorithm contains m2 + 1 additional degrees of freedom.

3.4. Relaxed LMI design

As can be shown below, the proposed new algorithm has some advantages compared to the previous ones.

The introduction of the parameter α increases the degree of freedom and the chance to find solutions for (27).

Nevertheless, the proposed approach can be improved by replacing α by a diagonal multiplier matrix

Λ = diag(α1, ..., αm).

Hence, our algorithm can be reformulated as follows:

Algorithm 3

1. Solve LMI (32) with the decision variables Z, K̄ and ε > 0;

2. compute S̄ by S̄ = P−1
11 P12, and put S = ΛS̄;

3. solve (27) with S = ΛS̄ by using the gridding method on αi, i = 1, ...,m, with the decision variables

P11, P22, R, K̂, L̂ and εi, i = 1, 2, 3;

4. compute the observer-based controller gains as K = P−1
11 K̂ and L = R−1L̂.
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In this case, compared to the standard two-steps algorithm, this relaxed design contains m(m+ 1) additional

degree of freedom. Now, as mentioned above in subsection 3.3.2, this new algorithm and the Young’s relation

based approach may be viewed as two alternative methods. Indeed, analytically speaking, we cannot compare

between these two methods. The advantage of the first one is that it works in one step, while the second one

works on two-steps. Combining these two methods, we propose the following algorithm, which is the general

new procedure.

Algorithm 4: general algorithm

step 1: Solve LMI (14) by using the gridding method on εi, i = 1, 2, 3, 4, with the decision variables Z, R, K̂

and L̂, and go to step 2;

step 2: If LMI (14) is found feasible, then compute the observer-based controller gains as K = K̂TZ−1 and

L = R−1L̂T . Otherwise, go to step 3;

step 3: Solve LMI (32) with the decision variables Z, K̄ and ε > 0 and go to step 4;

step 4: compute S̄ by S̄ = P−1
11 P12, put S = ΛS̄ and go to step 5;

step 5: Solve (27) with S = ΛS̄ by using the gridding method on αi, i = 1, ...,m, with the decision variables

P11, P22, R, K̂, L̂ and εi, i = 1, 2, 3, and go to step 6;

step 6 Compute the observer-based controller gains as K = P−1
11 K̂ and L = R−1L̂.

Notice that this complete algorithm encompasses Lien’s methods and the Young inequality based approach. In

fact, we have proposed to include the Young relation based approach in this algorithm because it works in only

one step and then in the case where it provides solutions, it would be not necessary to solve Algorithm 3.

3.5. Case of Uncertainty in the Input Matrix

In this subsection, we will extend our design method by addressing uncertainty in the input matrix B. Consider

systems under the following form:

ẋ =
(
A+ ∆A(t)

)
x+

(
B + ∆B(t)

)
u (36a)

y =
(
C + ∆C(t)

)
x (36b)
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where ∆B(t) = M3F3(t)N3, with F3 satisfying inequality (3).

From seeing the coordinate transformation T defined in subsection 3.1, it is clear that allowing uncertainty

in the matrix B is non-trivial. Hence, the following extension of the state vector is proposed to accommodate

uncertainty in B.

3.5.1. Additional integrator: Introduce a new state modified control input, w. Let this state be related to the

original control input u by the following equation:

τ u̇+ u = w. (37)

Equation (37) is just a relationship in which the bandwidth of the actuator is assumed to be 1
τ .

With an extended state space vector, the new plant equations can be written so as to have no uncertainty in

the new B matrix:

ξ̇ =
(
A + ∆A

)
ξ + Buξ (38a)

y =
(
C + ∆C

)
ξ (38b)

where

A ,

− 1
τ Im 0m×n

B A

 , B ,

 Im

0n×m

 , C ,

[
0p×m C

]
,

ξ ,

u
x

 , uξ =
1

τ
w

and

∆A , M1F1N1, ∆C , M2F2N2

with

M1 =

 0 0

M3 M1

 , N1 =

N3 0

0 N1

 ,
M2 = M2, N2 =

[
0p×m N2

]
,

F1 =

F3 0

0 F1

 , F2 = F2.
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It is clear that F1 and F2 satisfy inequality (3).

Note that the new B matrix only involves the parameter τ , which can be assumed to have no uncertainty,

since it is just the bandwidth of the actuator.

Now, we consider the observer-based controller:

˙̂
ξ = Aξ̂ + Buξ + L

(
y −Cξ̂

)
(39a)

uξ = −Kξ̂ (39b)

where ξ̂ is the estimate of ξ and L,K are the observer-based controller gains to be determined so that the

estimation error

eξ = ξ − ξ̂

and ξ converge asymptotically towards zero. Hence, we have ξ̇
ėξ

 =


(
A− BK + ∆A

)
BK(

∆A− L∆C
) (

A− LC
)

 ξ
eξ

 (40)

Since (57) is exactly in the same form than (5) and the B matrix is under the form (22), then Algorithm 4 can

be applied to deduce the observer-based controller gains K and L.

According to what we speculated in the previous section, the Lien’s approach requiring the equality

constraint (13) can return solutions if A22 = A and all its diagonal sub-blocks are Schur stable. Obviously,

this strong constraint is very conservative and the drawback is that it appears in most real models and physical

applications. Nevertheless, this constraint vanishes with the application of our design methodology.

Remark 3.3

The control input u(t) will be obtained from equation (37), using the following solution to the equation:

u(t) =

∫ t

0

w(t)g(t− τ)dτ

where g(t) is the inverse Laplace transform of the transfer function G(s) = 1
τs+1 .

3.5.2. On the stabilizability and detectability of (A,B) and (A,C): Both the stabilizability and detectability

conditions on (A, B) and (A, C) are preserved under the stabilizability and detectability of (A, B) and (A, C),
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respectively. Notice by Sta and Det, the stabilizability and detectability matrices, respectively, defined by:

Sta =

(
sIn+m −A B

)
, Det =

sIn+m −A

C

 ,

where s is a complex number. We say that the pair

• (A,B) is stabilizable iff

rank(Sta) = n + m, ∀s, Re(s) ≥ 0;

• (A,C) is detectable iff

rank(Det) = n + m, ∀s, Re(s) ≥ 0.

On the other hand, we have

rank(Sta) = rank


(s+ 1

τ )Im 0 Im

−B sIn −A 0n×m


 ,

rank(Det) = rank




(s+ 1

τ )Im 0

−B sIn −A

0 C



 .

It is easy to show that

rank(Sta) = rank(Det) = n + m, ∀s, Re(s) ≥ 0.

Indeed, it is clear that

rank(Sta) =

=n:(A,B) stabilizable︷ ︸︸ ︷
rank

([
−B sIn −A

])
+rank (Im) = n+m (41)

and since τ > 0:

rank(Det) =

=n:(A,C) detectable︷ ︸︸ ︷
rank


sIn −A

C


+

m: Re(s)≥0︷ ︸︸ ︷
rank

(
(s +

1

τ
)Im
)

= n+m. (42)

It should be noticed also that the commandability condition of (A,B) is preserved thanks to the particular

structure of B. However, the observability condition can be lost. The problem of loss of detectability is produced
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when s = − 1
τ . Indeed, in this case, we get

rank(Det) < n+m if p < m.

However, if p ≥ m, it is possible to have rank(Det) = n+m; but this depends on the matrices A, B and C,

but not only on A and C as usually.

To overcome this obstacle, first we can generalize the technique by replacing equation (36) by the following

more general one:

τ u̇+ Du = w, (43)

where D is an invertible matrix introduced to enhance the observability of (A,C). Second, we can have some

situations where some input variables are accessible (can be measured). That is, we can have as additional

output measurement ȳ = Cuu, where Cu ∈ Rp̄×m. In this case, the matrices A and C become

A ,

− 1
τD 0m×n

B A

 , C ,

0p×m C

Cu 0p̄×n

 .
Therefore, we get

rank(Det) = rank





sIm + 1
τD 0

−B sIn −A

0p×m C

Cu 0p̄×n




.

Consequently, we have only to choose an invertible matrix D that compensates the detectability condition on

the new (A,C). Notice that even if we keep C ,

[
0p×m C

]
, the matrix D enable to have the detectability

of (A,C). The new matrix C is useful if we use the original equation (36) instead of the new more general

one (43). Indeed, in such a case, the structure of C is modified and the number of outputs is now p+ p̄, for

which we can have p+ p̄ ≥ m even in case p < m.

4. EXTENSION TO UNCERTAIN LIPSCHITZ NONLINEAR SYSTEMS

In order to be more general, an investigation is held on systems in the presence of L2 bounded disturbances.

Then, the synthesis will be based on the H∞ analysis. Hence, consider the system (1) under the effect of additive 
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disturbances and Lipschitz nonlinearities described by the following equations:

ẋ =
(
A+ ∆A(t)

)
x+Bu+ φ(x, u) +Dω (44a)

y =
(
C + ∆C(t)

)
x+ ψ(x, u) + Eω (44b)

where ω ∈ Rs is the vector of the noises, D, and E, are n× s, and p× s real matrices, respectively. The

functions φ and ψ in (44) are globally Lipschitz uniformly with respect to the second variable, that is there exist

γφ > 0 and γψ > 0 such that

‖φ(x, u)− φ(z, u)‖ ≤ γφ‖x− z‖ , ∀x, z ∈ Rn

‖ψ(x, u)− ψ(z, u)‖ ≤ γψ‖x− z‖ , ∀x, z ∈ Rn .

Moreover, without loss of generality let us assume φ(0, u) = 0 for all u ∈ Rm. As in the linear case, by applying

the transformation T on the system (44), the later takes the following equivalent form:

D := TD, E := E, φ(x, u) := Tφ(T−1x, u), ψ(x, u) := ψ(T−1x, u). (45)

The rest of the parameters are given by (21).

The observer-based controller we consider in this part is under the form :

˙̂x = Ax̂+Bu+ φ(x̂, u) + L
(
y − Cx̂− ψ(x̂, u)

)
(46a)

u = −Kx̂ (46b)

where x̂ ∈ Rn is the estimate of x, K ∈ Rm×n is the control gain, L ∈ Rn×p is the observer gain.

Our problem is then reduced to find simultaneously the observer gain L and the state feedback gain K so that

the closed loop system isH∞ asymptotically stable with attenuation level µ > 0. Under the feedback u = −Kx̂,

the closed-loop system has the form:ẋ
ė

 =


(
A−BK + ∆A(t)

)
BK(

∆A(t)− L∆C(t)
) (

A− LC
)

x
e

+

 φ(x, u)

∆φ− L∆ψ

+

 D

D − LE

ω (47)

where e = x− x̂ represents the estimation error, and

∆φ = φ(x, u)− φ(x̂, u) (48a)

∆ψ = ψ(x, u)− ψ(x̂, u). (48b)
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To deal with the nonlinearities in (47), similarly proceed as in [16]. Hence, according to [27, Lemma 6],

the Lipschitz property on φ and ψ leads to the existence of bounded functions φij : Rn ×Rn → R , ψij :

Rp ×Rn → R and constants γ
φij

, γ̄φij
, for i, j = 1, . . . , n, γ̄ψij

and γ
ψij

, for i = 1, . . . , p and j = 1, . . . , n,

so that

γ
φij
≤ φij ≤ γ̄φij , γ

ψij
≤ ψij ≤ γ̄ψij (49)

and

∆φ =

[∑n
i=1

∑n
j=1 φij(x, x̂)Hn

ij

]
(x− x̂) (50a)

∆ψ =

[∑p
i=1

∑n
j=1 ψij(x, x̂)Hp,n

ij

]
(x− x̂) (50b)

φ(x, u) =

[∑n
i=1

∑n
j=1 φij(x, 0)Hn

ij

]
x (50c)

where Hp,n
ij = ep(i)e

T
n (j). Following the notations in [16], the system (47) can be rewritten under the formẋ

ė

 =


(
A(Λ)−BK + ∆A(t)

)
BK(

∆A− L∆C(t)
) (

A(Υ)− LC(Ξ)
)

x
e

+

 D

D − LE

ω (51)

which takes the compact form

ż = Π1(Λ,Υ,Ξ)z + Π2ω (52)

where zT = [xT eT ] and the detailed expression of the matrices in Π1(Λ,Υ,Ξ) derived from the nonlinerities

are respectively

A(Λ) := A+ Λ = A+

n∑
i=1

n∑
j=1

φij(x, 0)Hn
ij

A(Υ) := A+ Υ = A+

n∑
i=1

n∑
j=1

φij(x, x̂)Hn
ij

C(Ξ) := C + Ξ = C +

p∑
i=1

n∑
j=1

ψij(x, x̂)Hp,n
ij .

and the parameters Λ and Υ (resp. Ξ) belong to bounded convex setHn (resp.Hp) for which the set of vertices

is defined by:

VHn =
{

Π ∈ Rn×n,Πij ∈ {γφij
, γ̄φij

}
}
,
(

resp.VHp =
{

Γ ∈ Rp×n,Γij ∈ {γψij
, γ̄ψij

}
})
.

Our objective consists in finding matricesK and L so that the augmented closed-loop system (51) with ω(t) = 0

is asymptotically stable; and the effect of ω(t) on the tracking error Z(t) = Hx(t), where H is a known matrix 
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of appropriate dimension, is attenuated in the H∞ sense. More precisely, it is required that

‖Z‖2 < µ‖ω‖2, ∀ω ∈ L2[0,∞) (53)

where µ > 0 is the disturbance attenuation level to be determined. To this end, let’s consider the following index

J

J =

∫ ∞
0

[Z(t)TZ(t)− µ2ω(t)Tω(t)]dt. (54)

Under zeros-initial conditions, the Lyapunov function satisfies V (0) = 0 and V (∞) ≥ 0, which leads to

J =

∫ ∞
0

[ZT (t)Z(t)− µ2ω(t)Tω(t) + V̇ (t)]dt− V (∞)

≤
∫ ∞

0

[ZT (t)Z(t)− µ2ω(t)Tω(t) + V̇ (t)]dt. (55)

To satisfy the attenuation level in (53), it suffices that inequality (56) holds :

ZT (t)Z(t)− µ2ω(t)Tω(t) + V̇ (t) < 0, ∀t ∈ [0,∞). (56)

Derived from the same Lyapunov function candidate as previously, that is

V (z) = zTdiag{P,R}z. (57)

Therefore,

V̇ = He
(
zTΠT

1 (Λ,Υ,Ξ)diag{P,R}z + ωTΠT
2 diag{P,R}z

)
. (58)

According to (2) and using Young inequality, V̇ can be upper bounded as follows:

V̇ ≤


x

e

ω



T 
Ω11 PBK PD

(?) Ω22 R(D − LE)

(?) (?) 0




x

e

ω

 (59)

where

Ω11 =

[(
A(Λ)−BK

)T
P + P

(
A(Λ)−BK

)]
+

[
(ε1 + ε2)NT

1 N1 + ε3N
T
2 N2 +

1

ε1
PM1M

T
1 P

]

Ω22 =

[(
A(Υ)− LC(Ξ)

)T
R+R

(
A(Υ)− LC(Ξ)

)]
+

[
1

ε2
RM1M

T
1 R+

1

ε3
RLM2M

T
2 L

TR

]
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and ε1, ε2, ε3 are positive real constants. Inequality (56) is then satisfied if the following quadratic form
x

e

ω



T 
Ω11 +HTH PBK PD

(?) Ω22 R(D − LE)

(?) (?) −µ2I




x

e

ω

 < 0 (60)

holds for all (Λ,Υ,Ξ) ∈ Hn ×Hn ×Hp, or equivalently

Ω(Λ,Υ,Ξ) < 0, ∀(Λ,Υ,Ξ) ∈ Hn ×Hn ×Hp (61)

with

Ω(Λ,Υ,Ξ) =



Ω̃11 PBK PM1 0 0 PD

(?) Ω̃22 0 RM1 L̂M2 RD − L̂E

(?) (?) −ε1I 0 0 0

(?) (?) (?) −ε2I 0 0

(?) (?) (?) (?) −ε3I 0

(?) (?) (?) (?) (?) −δI



, (62)

and

Ω̃11 = He
{
PA(Λ)− PBK

}
+HTH + (ε1 + ε2)NT

1 N1 + ε3N
T
2 N2 (63)

Ω̃22 = He
{
RA(Υ)− L̂C(Ξ)

}
, L̂ = RL, δ = µ2. (64)

4.1. Linearization of (61) via equality constraint method (ECM)

As a start begins by presenting sufficient conditions including an equality constraint to ensure the stability of

the system (47) and the H∞ criterion (53). In order to linearize (61), the approach in [18] is used.

Theorem 4.1

System (44) is asymptotically stabilizable by (46) if there exist positive definite matrices P,R ∈ Rn×n, matrices

K̂ ∈ Rm×n, L̂ ∈ Rn×p and P̂ ∈ Rm×m so that the following LMI optimization problem

minimize(δ)

subject to the following set of LMIs and equality constraint
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L11(Λ) BK̂ PM1 0 0 PD

(?) L22(Υ,Ξ) 0 RM1 L̂M2 RD − L̂E

(?) (?) −ε1I 0 0 0

(?) (?) (?) −ε2I 0 0

(?) (?) (?) (?) −ε3I 0

(?) (?) (?) (?) (?) −δI



< 0 (65)

for all (Λ,Υ,Ξ) ∈ Hn ×Hn ×Hp,

PB = BP̂ (66)

where (67)

L11(Λ) = He
{
PA(Λ)−BK̂

}
+HTH + (ε1 + ε2)NT

1 N1 + ε3N
T
2 N2

L22(Υ,Ξ) = He
(
RA(Υ)− L̂C(Ξ)

)
is feasible. The stabilizing observer-based control gains are given by K = P̂−1K̂ and L = R−1L̂ and the

optimal disturbance attenuation level is given by µmin =
√
δ.

4.2. Linearization of (61) via Young’s relation based approach

This section is devoted to the presentation of the Young’s relation based approach, for nonlinear systems, to

obtain a set of bilinear conditions for the robust observer-based controller design problem, which become

linear matrix inequalities by freezing some scalars. Note that this method does not depend on m and works

successfully for all m ≤ n, and without imposing the particular stucture of B. As in the linear case [15, 14],

this method is based on a judicious use of the Young’s relation to linearize the classical BMI problem (61).

Theorem 4.2

System (44) is asymptotically stabilizable by (46) if for fixed scalars ε2 > 0, ε3 > 0 and ε4 > 0, there exist two

positive definite matrices Z ∈ Rn×n, R ∈ Rn×n, two matrices K̂ ∈ Rm×n, L̂ ∈ Rn×p, and a scalar ε1 > 0 so

that the following LMI optimization problem has a solution

minimize(δ)

subject to the following set of LMIs
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K11(Λ,Υ,Ξ) K12

(?) −diag
{

1
ε4
Z, ε4Z, ε1I, ε2I, 1

ε2
, ε3I,

1
ε3
I, δI

}
 < 0 (68)

for all (Λ,Υ,Ξ) ∈ Hn ×Hn ×Hp

with

K12 =


BK̂ 0 ZNT

1 0 ZNT
1 0 ZNT

2 D

0 0 0 0 0 0 0 0

0 I 0 RM1 0 L̂M2 0 RD − L̂E



K11(Λ,Υ,Ξ) =


K11

11(Λ) ZHT 0

(?) −I 0

(?) (?) K33
11(Υ,Ξ)


K11

11(Λ) = He
(
A(Λ)Z −BK̂

)
+ ε1M1M

T
1

K33
11(Υ,Ξ) = He

(
RA(Υ)− L̂C(Ξ)

)
.

Hence, the H∞ stabilizing observer-based control gains are given by K = K̂Z−1 and L = R−1L̂, and the

optimal disturbance attenuation level is given by µmin =
√
δ.

4.3. Linearization of (61) via the new two-steps algorithm (NTSA)

Starting from inequality (10). Taking into account the detailed structure of the term PBK, namely (24), and

the structure (26), inequalities (61) become after using the change of variables K̂ = P11K, L̂ = RL, δ = µ2:

Ω̃11

 K̂

ST K̂

 PM1 0 0 PD

(?) Ω̃22 0 RM1 L̂M2 RD − L̂E

(?) (?) −ε1I 0 0 0

(?) (?) (?) −ε2I 0 0

(?) (?) (?) (?) −ε3I 0

(?) (?) (?) (?) (?) −δI



< 0 (69)
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for all (Λ,Υ,Ξ) ∈ VHn × VHn × VHp, and

Ω̃11 = He
{
PA(Λ)−

 K̂

ST K̂

}+HTH + (ε1 + ε2)NT
1 N1 + ε3N

T
2 N2.

At this stage, we proceed as in Subsection 3.4. We consider the stabilization problem of (44) by a static state

feedback u = −Kx. System (44a) can be written in the closed-loop form (by taking into account the rewrite of

φ in (50)):

ẋ =
(
A(Λ)−BK +M1F1(t)N1

)
x+Dω. (70)

System (70) is is globally H∞ asymptotically stable with a minimum attenuation level ν by the Lyapunov

function V (x) = xTPx if the following inequalities hold:

(
A(Λ)−BK

)T
P + P

(
A(Λ)−BK

)
+NT

1 F
T
1 (t)MT

1 P + PM1F1(t)N1 +HTH + ν−2PDDTP < 0, ∀Λ ∈ VHn. (71)

Inequalities (71) can be easily linearized as in (31). We deduce that (70) is globally H∞ asymptotically stable

if the following LMI conditions are fulfilled:

He
(
A(Λ)Z −BK̄

)
+ εM1M

T
1 ZNT

1 ZHT D

(?) −εI 0 0

(?) (?) −I 0

(?) (?) (?) −δ̂I


< 0,∀Λ ∈ VHn (72)

where K̄ = KZ , δ̂ = ν2 and Z−1 = P =

P11 P12

PT12 P22

. The rest of our approach is reported in the following

new two-steps algorithm:

Algorithm 5: general algorithm for nonlinear systems

step 1: Solve the optimization problem: minimize δ subject to LMI (68) with the decision variables Z, R, K̂, L̂,

and ε1 > 0 and go to step 2;

step 2: If LMI (68) is found feasible, then compute the observer-based controller gains as K = K̂TZ−1,

L = R−1L̂T and µmin =
√
δ. Otherwise, go to step 3;
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step 3: Solve the optimization problem: minimize δ̂ subject to LMI (72) with the decision variables Z, K̄, and

ε > 0, and go to step 4;

step 4: Compute S̄ by S̄ = P−1
11 P12, put S = ΘS̄, with Θ = diag(α1, α2, . . . , αm) and go to step 5;

step 5: Solve the optimization problem: minimize δ subject to (69) with S = ΘS̄ by using the gridding method

on αi, i = 1, ...,m, with the decision variables P11, P22, R, K̂, L̂ and εi, i = 1, 2, 3, and go to step 6;

step 6 Compute the observer-based controller gains as K = P−1
11 K̂, L = R−1L̂ and the optimal disturbance

attenuation level as µmin =
√
δ.

5. NUMERICAL EXAMPLES AND COMPARISONS

In this section, numerical examples are presented to show the validity and effectiveness of the proposed design

methodology.

5.1. Example 1

Consider the same example as that in [18]. The system has the following parameters:

A =


1 1 1

0 −2 1

1 −2 −5

 , B =


1 0

0 1

0 0


C =

[
1 0 1

]
, D = 0

∆A(t) =


0 0 a(t)

0 b(t) 0

c(t) 0 0

 , ∆C(t) =

[
0 d(t) 0

]

where a(t) ≤ α, b(t) ≤ β, c(t) ≤ γ and d(t) ≤ δ. The uncertainties can be rewritten under the form (2) with

M1 = M2 = I

F1(t) =


a(t)
α 0 0

0 b(t)
β 0

0 0 c(t)
γ
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F2(t) =
d(t)

δ
, N1 =


0 0 α

0 β 0

γ 0 0

 , N2 =

[
0 δ 0

]
.

5.1.1. Case 1 Assume that α = β = γ = δ. Testing the feasibility of LMIs (11), (12)-(13), (14) and the new

design algorithm. To do that, we search for the maximum value of α, αmax, tolerated by each method. The

superiority of the new design Algorithm 3, is quite clear from Table I.
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ε2 = 0.1100

ε3 = 0.0500

ε4 = 0.0335

αmax 1.2372 1.3660 1.3420 1.3660 1.3126 1.3673

Table I. Case 1: superiority of the new LMI design procedure

5.1.2. Case 2: modification of A and B It is clear that all the above mentioned methods depend strongly on

the input matrix B. For this, B is modified and the feasibility of each method is tested in order to look for the

tolerated maximum value of αmax. It is assumed that there is only one input to stabilize the system. We also

modify the last diagonal element of A. Indeed, we take the following matrices:

A =


1 1 1

0 −2 1

1 −2 0

 , B =


1

0

0

 .

Under these new considerations, new values of αmax are obtained for each method. The new values are

illustrated in Table II.
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ε2 = 0.0101

ε3 = 0.0101

ε4 = 0.1905

αmax (!) (!) 0.8367 0.6129 0.4545 0.8982

Table II. Case 2: superiority of the new LMI design procedure

Notice that the symbol (!) means that LMIs (11) and (12)-(13) are unfeasible even without uncertainties.

Indeed, as mentioned in (35), the diagonal block A2
22 = 0 is not Schur stable. Hence, the LMIs (11) and (12)-

(13) cannot be applied.

5.2. Example 2 (DC motor)

This example is introduced in order to show the effectiveness of the proposed design method in the case of

systems with uncertainty in theB matrix. For this, we consider the DC motor model given in [12] and described

by the following matrices:

A =


− b
J

Km

J

−Km

Lm
−Rm

Lm

 , B =

 0

1
Lm

 , C =

[
1 0

]
.

The parameters of the DC motor are presented in Table III.

The electric inductance Lm is assumed to be time varying and uncertain, which leads to an uncertain system.

Since the equations depend only on 1
Lm

, then it is assumed that 1
Lm

is affected by an additive uncertainty as

follows:

1

Lm(t)
=

1

L0
m

+ ∆(t)

where ∆(t) satisfies the inequality

| ∆(t) |≤ ∆max
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Moment of inertia of the rotor J = 0.01 kg.m2

Motor viscous friction constant b = 0.1 N.m.s

Electromotive force constant Ke = Km = 0.01 V/rad/s

Motor torque constant Kt = Km = 0.01 N.m/Amp

Electric resistance Rm = 1 Ω

Electric inductance L0
m = 0.5 H

Table III. The DC motor model parameters

and L0
m = 0.5 H is the nominal value of the electric inductance.

Now, we search for the largest value ∆max (then δmax) tolerated by all the previous methods. The results are

summarized in Table IV.
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ε2 = 0.0556

ε3 = 0.4530

ε4 = 0.0283

∆max 1.3965 1.4142 1.4142 1.4142 1.9999 1.9999

Table IV. Example 2: superiority of the Algorithm 4

5.3. Monte-Carlo evaluation in uncertainty-free case

The aim consists in evaluating numerically the necessary conditions required by each method. For this, we

generate randomly 1000 stabilizable and detectable linear systems of dimension n = 3, p = 1 and m ranging

from 1 to n. After transformation of the system to have a matrix B under the form (22), we obtain the results 
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of Table III, which gives the percentage of systems for which the different methods addressed in this paper

succeeded for each value of m.
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m = 1 15.8% 47.8% 56.9% 48.3% 100% 100%

m = 2 50.1% 69.0% 70.6% 72.6% 100% 100%

m = 3 100% 100% 100% 100% 100% 100%

Table V. Superiority of the new LMI design procedure in the uncertainty-free case

Notice that even if the system is treated without transformation ofB under the form (22), the Young’s relation

based approach (LMI (14)) remains better. The results of this case are provided in Table V.

It is quite clear from Tables V and VI that the proposed new Algorithm 4, combining LMI (14) and

Algorithm 3, is the least conservative and succeeds for all m ≤ n, while the results obtained by the other

methods depend on the value of m.

Method LMI (11) LMIs (12)-(13) Algorithm 1 LMI (14)

m = 1 13.8% 57.5% 54.3% 100%

m = 2 50.8% 80.5% 68.2% 100%

m = 3 100% 100% 100% 100%

Table VI. Superiority of the new LMI design procedure in the uncertainty-free case

5.4. Example 3: Validation of Algorithm 5

In order to validate the approaches proposed in Section 4, all the optimization problems (65), (68)-(66),

Algorithm 5, and the classical two-steps method (TSM) are tested on the system described by the following 
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parameters taken from [9]:

A =


1
3

3
2 0

1
2

3
5 1

1 −1 1
3

 , B =


0 1

2

1
3 0

0 0

 , C =

− 1
9

1
2 0

1
5

1
6

1
9

 , H = C,

φ(x) =

[
0 1

7
x1

1+x2
1

0

]T
, D = 0.1I3. (73)

By applying the transformation T =


0 3 0

2 0 0

0 0 1

 on the previous system, the following new parameters A,B,

C and φ(.) are reached:

A :=


3
5

3
4 3

1 1
3 0

− 1
3

1
2

1
3

 , B :=


1 0

0 1

0 0

 , C :=

 1
6 − 1

18 0

1
18

1
10

1
9

 , H = C,

φ(x) :=

[
6
7

x2

4+x2
2

0 0

]T
, D = 0.1T. (74)

According to [27, Lemma 6], the set of vertices VHn is defined as:

VHn =




0 −3

112 0

0 0 0

0 0 0

 ,


0 3
14 0

0 0 0

0 0 0




.

With these parameters, except the approach based on the classical two-steps method (TSM), which

unfortunately does not provide solutions, all the approaches presented in Section 4 perform successfully.

LMI (65) under constraint equality (66) of Theorem 4.1 provides solutions for optimal value µmin(ECM)=

10, 9050. Using the gridding method, for ε4 = 0.0003, LMI (68) was found feasible. The corresponding optimal

disturbance attenuation level is given by µmin(Young)= 4.71× 10−4. As compared to (NTSA) Algorithm 5,

for α1 = α2 = 1, the optimal value of the disturbance attenuation level is µ∗min(NTSA)= 4.33× 10−5. The

simulation results when applying the gridding method (with a length of discretization equal to h = 0.001) show

that the first instant making Algorithm 5 feasible when κ browsing ]− 1,+1[ corresponds to κ = 0.593. These

results show also that Algorithm 5 performs successfully for all κ ∈ [0.593, 1[. The evolution of µmin(NTSA)
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with respect to κ ∈ [0.593, 1[ is illustrated in Figure 1. The optimal value µ∗min(NTSA) is obtained by

µ∗min(NTSA) = min
κ∈[0.593,1[

µmin(NTSA)(κ).

The later is attained for κ = 0.6180 (or equivalently, for α = 1). It is clear that Algorithm 5 performs better than

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

κ

 

 

µmin (NTSA) versus κ

Figure 1. Evolution of µmin(NTSA) via the gridding method

the other LMI design methods.

5.5. Evaluation with respect to the H∞ attenuation level

To evaluate the conservatism of the proposed (NTSM) Algorithm 5 as compared to Young based approach, 

equality constraint based method (ECM), and the classical two-steps method (TSM) we take again the linear 

systems in Example 1, with ∆A(t) = ∆C(t) = 0, under the effect of additive noises, represented by random 

matrices D, E and H . The aim here consists in evaluating the better index performance tolerated by each 

method. We randomly gererate 1000 systems via a Monte Carlo simulation and compute the percentage of 

feasible optimization problem for each method. The three approaches: Young based approach (LMIs (68)), 

equality constraint based method (ECM) (represented by LMI (65)-(66)), and the new two-steps method 

(NTSM) (or Algorithm 5), provide solutions for 100% of systems, while the classical two-steps method 

performs successfully in 76% cases. In order to boost the comparison, we assume that the values of the objective 

function are fixed t o b e a ll l ower t han µmax = 1 0. T he r esults a re s ummarized i n Table V II. A s s hown in 
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Method ECM Young Algo. 5 TSM

Feasible LMIs 100% 100% 100% 76%

µmax < 10 37.1% 100% 100% 37.4%

µmin (Algo. 5) < µmin(Method) 100% 94% – 100%

µmin (Young) < µmin(Method) 100% – 6% 94.6%

µmin (ECM) < µmin(Method) – 0% 0% 10%

µmin (TSM) < µmin(Method) 90% 5.4% 0% –

Table VII. Superiority of the proposed LMI methodology in H∞ case

Table VII, Algorithm 5 and the Young based approach provide solution for the largest percentage of systems.

Note that among the LMIs (65) under (66) found feasible, 100% returned values of µmin(ECM) larger than those

returned by µmin(Young) and µmin(Algo. 5). The same situation occurs with the classical two-steps compared

with both Young based approach and the new two-steps method (Algorithm 5). On the other hand, µmin(Young)

is larger than µmin(Algo. 5) in 94% cases. Noticing that since both Young based approach and NTSM are based

on the gridding method, it is difficult to provide exact comparison. Thus, taking into consideration the fact that

we have fixed α1 = α2 = 1 and ε4 = 0.0101, the obtained results in this particular case show that µmin(Young)

is very close to µmin(Algo.5) in 100% cases. All the conclusions are summarized in Figure 2. We can see that

Algorithm 5 performs better than the Young inequality based approach, the equality constraint based approach

and the classical two-steps method.

6. CONCLUSION

The proposed design method for observer-based state feedback developed in this paper provides less 

conservative LMI conditions than those established in the literature. Indeed, the new design algorithm works in 

two-steps, but the procedure is completely different than the classical two-steps method. The general algorithm 

combining the Young’s relation based technique and the new two-steps algorithm is particularly interesting.
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Figure 2. Evaluation of µmin for each method

Indeed, this general algorithm contains additional degrees of freedom and encompasses both Lien’s method and

the Young’s relation based approach. The analytical and numerical comparisons show clearly the superiority

of the proposed methodology. In future work, we hope to extend our technique to switching systems with

unknown switching modes and to linear parameter varying systems with inexact parameters. Indeed, these

classes of systems are particularly difficult from the observer-based stabilization point of view.
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