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LMI-Based H∞ Nonlinear State Observer Design for Anaerobic
Digestion Model

K. CHAIB DRAA, H. VOOS, M. ALMA, A. ZEMOUCHE and M. DAROUACH

Abstract— This note deals with the design of an H∞ nonlinear
state observer for the anaerobic digestion model. Positively, the
designed observer is an unified one that can be used for different
class of systems, mainly linear systems, Linear Parameter
Varying (LPV) systems with known and bounded parameters,
and nonlinear Lipschitz systems. Applying the Lyapunov theory
and the H∞ criterion, Linear Matrix Inequality (LMI) condition
is synthesised and solved to obtain the designed observer gains.
The novelty of our work consists in the relaxation of the
synthesized LMI condition through the inclusion of additional
decision variables. This was possible due to the use of a suitable
reformulation of the Young’s inequality. Stability, effectiveness
and potency of the theoretical results are confirmed by the
simulation results.

Index Terms— Anaerobic digestion, LMIs, Observer design,
Nonlinear systems, H∞ Criterion.

I. INTRODUCTION AND PRELIMINARIES

A. Introduction

One class of renewable energy sources with a very high
potential for being integrated in virtual power plants (VPPs)
are Biogas Plants (BPs), where biogas is generated by anaer-
obic digestion of bio-degradable materials. Indeed, BPs have
the advantage of a high flexibility of power generation since
the produced biogas can either be converted to electrical
and heat energies or stored. However, the integration of
BPs in VPPs requires a continuous supervision and an ad-
vanced monitoring of the anaerobic digestion process, which
surely require on-line and adequate measurement devices.
Nevertheless, the existing monitoring apparatus for the key
variables of anaerobic digestion process, such as the different
bacteria concentrations are very costly and need a lot of
maintenance. Therefore, an alternative solution to reduce
the ownership costs is to estimate the missing variables
using a suitable mathematical model and the available cost
effective measurements, which means the design of software
sensors (state observers). Indeed, this has been an active area
over the last decades, we can find in the literature different
observer schemes for the anaerobic digestion processes,
among them we can cite the asymptotic observer [3] which
is quite simple and does not require the knowledge of some
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Université de Lorraine, IUT de Longwy.
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des Signaux et Systmes, CNRS-Supélec, 91192 Gif-sur-Yvette, France.

specific nonlinear functions. However, such an observer is
very sensitive to model uncertainties and its convergence
rate depends on the operational conditions. Therefore, it
has been extended to interval observers [5] which have
the advantage of using reliable measurements, which are
nonlinear functions of the state vector. The interval observers
estimate the interval where the state is lying when the
system has large uncertainties. However, generally the rate
of convergence is partially tunable and it is not easy to
exploit the intervals for control. In order to enhance the
convergence rate of the observers the Kalman filter has been
designed repeatedly in the literature [20], [9], [8], which
shows suitable results in different chemical applications, but
unfortunately the convergence of estimation errors to zero is
not guaranteed. The high gain observer [10], [14] converges
rapidely to the model state variables, however its synthesis is
complex and it is very sensitive to noise [15]. The invariant
observer [6], [13] also convergences fast to the real state
variables with the only use of simple and desirable measure-
ments, however its robustness to measurement disturbances
and model uncertainties is still an open question. Hence, to
remedy limitations of the mentioned works we propose, in
the current note, an H∞ nonlinear state observer able to cope
with model uncertainties and measurement disturbances. To
ensure the estimation error H∞ asymptotic stability, we
synthesised an LMI condition whose feasibility is relaxed by
introducing additional decision variables. This was possible
thanks to the use of a suitable reformulation of the Young’s
inequality as it will be shown in the sequel.

The rest of this note is organized as follows: In Section
II, we discuss the used mathematical model. Then, in Sec-
tion III we give the general structure of the designed H∞

observer. Later, in Section IV we provide the synthesised
LMI condition and then, we apply the designed observer to
the anaerobic digestion model and simulate it in Section V.
Finally, we conclude the paper in Section VI.

B. Notation and Preliminaries

1) Notation:: The following notations will be used
throughout this paper:

• (?) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0) means that this

matrix is positive definite (negative definite);
• the set Co(x,y) = {λx + (1− λ )y,0 ≤ λ ≤ 1} is the

convex hull of {x,y};



• es(i) =
(

0, ...,0,

i th︷︸︸︷
1 ,0, ...,0︸ ︷︷ ︸

s components

)T ∈Rs,s≥ 1 is a vector of

the canonical basis of Rs.
2) Preliminaries:: The preliminaries provided herein are

very useful in the design of the synthesis conditions to ensure
the asymptotic convergence of the state observer that will be
designed in the sequel.

Theorem 1 (Mean value theorem [21]): Let ϕ : Rn →
Rq. Let x,y ∈ Rn. We assume that ϕ is differentiable
on Co(x,y). Then, there are constant vectors z1, ...,zq ∈
Co(x,y),zi 6= x,zi 6= y for i = 1, ...,q such that :

ϕ(x)−ϕ(y) =

(
q,n

∑
i, j=1

eq(i)eT
n ( j)

∂ϕi

∂x j
(zi)

)
(x− y). (1)

Lemma 1.1 (a variant of Lipschitz reformulation): Let
ϕ : Rn → Rq a differentiable function on Rn. Then, the
following items are equivalent:
• ϕ is a globally γϕ -Lipschitz function;
• there exist finite and positive scalar constants ai j,bi j so

that for all x,y∈Rn there exist zi ∈Co(x,y),zi 6= x,zi 6= y
and functions ψi j: Rn→ R satisfying the following:

ϕ(x)−ϕ(y) =
i, j=q,n

∑
i, j=1

ψi j(zi)Hi j

(
x− y

)
(2)

ai j ≤ ψi j

(
zi

)
≤ bi j, (3)

where

ψi j(zi) =
∂ϕi

∂x j
(zi), Hi j = eq(i)eT

n ( j).

Notice that this lemma is obvious from the mean value
theorem, but it is important to introduce it at this stage, under
this formulation, in the aim to simplify the presentation of the
proposed observer design method. Indeed, for our technique,
we will exploit (2)-(3) instead of a direct use of Lipschitz
property.

Lemma 1.2 ([22]): Let X and Y be two given matrices
of appropriate dimensions. Then, for any symmetric positive
definite matrix S of appropriate dimension, the following
inequality holds:

XTY +Y T X ≤ 1
2

[
X +SY

]T
S−1
[
X +SY

]
. (4)

This lemma will be very useful for the main contributions of
this paper. It allows providing less restrictive LMI conditions
compared to the classical LMI techniques for the considered
class of systems.

II. MATHEMATICAL MODELING OF ANAEROBIC
DIGESTION PROCESS

Countless models of the anaerobic digestion process al-
ready exist. From first order model [1] to much more
complex and higher order ones [7], [12], [17]. Our attention
was mainly focused on two step models for continuous
stirred tank reactors, due to their widespread application and
popularity. Thus, among the existing ones [16], [18], [4],

Fig. 1. Controlled anaerobic digestion process.

. . . [19], we have selected the model studied by [11] due to
its validation with experimental results and the comparison of
its behaviour with the benchmark model ADM1. Moreover,
the selected model has many advantages when it comes to
control the produced biogas quality. Besides, being interested
by the inclusion of BPs in VPPs, we have slightly modified
the selected model by adding more freedom degree in the
control of both biogas quantity and quality as depicted in
Figure (1). The subsequent model is given by the following
equations:

ẋ1 = −k1µ1(x1)x2 +u1S1in−uoutx1
ẋ2 = (µ1(x1)−α)uoutx2
ẋ3 = k2µ1(x1)x2− k3µ2(x3)x4 +u1(S2in +S2ad)−

uoutx3
ẋ4 = (µ2(x3)−α)uoutx4
ẋ5 = k4µ1(x1)x2 + k5µ2(x3)x4 +u1Cin +u2Bicad−

uoutx5−Qc(x)
ẋ6 = u1Zin +u2Bicad−uoutx6

(5)
with

µ1(x1) = µ1
x1

x1+ks1

µ2(x3) = µ2
x3

x3+ks3+
x2
3

ki3
Qm(x) = k6µ2(x3)x4

co2 = x5 + x3− x6

Qc(x) =
RT γCO2

PT+RT γ(KH PT−co2)
Qm(x)

(6)

and 
bic = x6− x3
co2 = x5−bic
kb =

[H+]bic
co2

pH =− log10
(
kb

co2
bic

) (7)

where x1 (g/l) is the organic substrate concentration to be
consumed by the acidogenic bacteria x2 (g/l) for growth
and production of volatile fatty acids x3 (mM) (which is
supposed, in the model, to be pure acetate), x4 (g/l) is the
methanogenic bacteria concentration, x5 (mM) represents the



inorganic carbon concentration and x6 (mM) the alkalinity
concentration. The control inputs are u1 =

F1in
v (1/day) and

u2 = F2in
v (1/day), where F1in is the waste and the added

stimulating acids (S2ad) feeding rate and F2in is the input
flow rate of the added stimulating bicarbonates (Bicad) to
the digester. Since the later volume (v) is constant the output
flow rate uout = u1 +u2. The gaseous outputs are Qm(x) and
Qc(x) which represent the methane and carbon dioxide flow
rates, respectively. All the rest of the used parameters in the
model are defined in Table I.

III. PROBLEM STATEMENT

In order to make the results general and usable for other
nonlinear models, we will present the methodology in a
general way for a certain class of nonlinear models.

Motivated by the model of anaerobic digestion (5), we
will investigate the general class of models described by the
following equations:{

ẋ = A(ρ)x+Bγ(x)+g(u, t)+Ew
y =Cx+Dw (8)

where x ∈ Rn is the state vector, u ∈ Rq is the input vector,
y ∈ Rp is the linear output measurement, w ∈ Rz in the
disturbance L2 bounded vector and ρ ∈Rs is an L∞ bounded
and known parameter. The affine matrix A(ρ) is expressed
under the form

A(ρ) = A0 +
s

∑
j=1

ρ jA j

with
ρ j,min ≤ ρ j ≤ ρ j,max,

which means that the parameter ρ belongs to a bounded
convex set for which the set of 2s vertices can be defined
by:

Vρ =
{

ρ ∈ Rs : ρ j ∈ {ρ j,min,ρ j,max}
}
. (9)

The matrices Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, E ∈
Rn×z and D ∈ Rp×z are constant. The nonlinear function
γ : Rn −→ Rm is assumed to be globally Lipschitz and
can always be written under the detailed form:

Bγ(x) =
m

∑
i=1

Biγi(

ϑi︷︸︸︷
Hix )

where Hi ∈Rni×n and Bi refers to the ith column of the matrix
B.

To estimate the unmeasurable sate variables of the
model (8), we use the following observer scheme:

˙̂x = A(ρ)x̂+
m

∑
i=1

Biγi(ϑ̂i)+g(u, t)+L(ρ)
(

y−Cx̂
)

(10)

with

ϑ̂i = Hix̂, L(ρ) = L0 +
s

∑
j=1

ρ jL j (11)

where x̂ is the estimate of x. The observer gains Li ∈Rn×p

will be calculated so that the estimation error e = x− x̂, be
H∞ asymptotically stable.

Since γ(.) is globally Lipschitz, then from Lemma 1.1
there exist zi ∈Co(ϑi, ϑ̂i), functions

φi j : Rni −→ R

and constants ai j,bi j, so that

γ(x)− γ(x̂) =
m,ni

∑
i, j=1

φi j(zi)Hi j

(
ϑi− ϑ̂i

)
(12)

and
ai j ≤ φi j

(
zi

)
≤ bi j, (13)

where
φi j(zi) =

∂γi

∂ϑ
j

i

(zi), Hi j = Bieni( j).

For shortness, we set φi j , φi j

(
zi

)
. Without loss of

generality, we assume that ai j = 0 for all i = 1, . . . ,m and
j = 1, . . . ,ni. For more details about this, we refer the reader
to [2].

Since ϑi− ϑ̂i = Hie, then we have

γ(x)− γ(x̂) =

(
m,ni

∑
i, j=1

φi jHi jHi

)
e (14)

Therefore, the dynamic equation of the estimation error can
be obtained as

ė =

(
AL(ρ)+

m,ni

∑
i, j=1

[
φi jHi jHi

])
e+EL(ρ)w (15)

with
AL = A(ρ)−L(ρ)C, EL = E−L(ρ)D (16)

Herein, the objective is to make the estimation error dynam-
ics (15) H∞ asymptotically stable and thus, satisfying the
following H∞ criterion:

‖e‖L2 ≤
√

µ‖w‖2
L2

+ν‖e0‖2 (17)

where
√

µ is the disturbance attenuation level and ν > 0 a
parameter to be determined.

The H∞ criterion (17) is satisfied if the following holds

W , V̇ (e)+‖e‖2−µ‖w‖2 ≤ 0. (18)

where V̇ (e) is the time derivative of the classical quadratic
Lyapunov function V (e) = eTPe, P = PT > 0, which is
commonly used to analyse the H∞ stability of the estimation
error. Thus, by calculating W along the trajectories of (15),
we obtain:

W = eT

In +

(
AL(ρ)+

m,ni

∑
i, j=1

[
φi jHi jHi

])T

P

+P

(
AL(ρ)+

m,ni

∑
i, j=1

[
φi jHi jHi

])]
e

+wTET
L (ρ)Pe+ eTPEL(ρ)w−µwT w. (19)



TABLE I
MODEL PARAMETERS

Acronyms Definition Units Value
α Proportion of dilution rate for bacteria mmol/l 0.5
k1 Yield for substrate (x1) degradation g/(g of x2) 42,1
k2 Yield for VFA (x3) production mmol/(g of x2) 116,5
k3 Yield for VFA consumption mmol/(g of x4) 268
k4 Yield for co2 production mmol/g 100
k5 Yield for co2 production mmol/g 300
k6 Yield for ch4 production mmol/g 302
µ1 Maximum acidogenic bacteria (x2) growth rate 1/day 1,25
µ2 Maximum methanogenic bacteria (x4) growth rate 1/day 0,74
ks1 Half saturation constant associated with x1 g/l 0,41
ks3 Half saturation constant associated with x3 mmol/l 8,42
ki3 Inhibition constant associated with x3 mmol/l 247
kb Acidity constant of bicarbonate mol/l 6,5.10−7

KH Henry’s constant mmole/(l.atm) 27
R Gas constant L.atm/(K.mol) 82,1
PT Total preasure atm 1,013
T Temperature Kelvin 308
γ Dimensionless parameter introduced by Hess [11] − 0,025

Hence, W < 0 if the following holds:
Ψ︷ ︸︸ ︷AT

L (ρ)P+PAL(ρ)+ In PEL(ρ)

ET
L (ρ)P −µIz



+
m,ni

∑
i, j=1

φi j



XT
i j︷ ︸︸ ︷PHi j

0

 Yi︷ ︸︸ ︷[
Hi 0

]
+YT

i Xi j

≤ 0.

(20)

Many methods can be applied to solve the LMI (20),
however the resulted conditions may be conservative. Thus,
we provide in the next section a suitable and enhanced LMI
condition to cope with the conservatism issue.

IV. LMI SYNTHESIS CONDITION

The main contribution of this note may be summarised in
the following theorem, which provides the new and enhanced
LMI condition.

Theorem 2: If there exist symmetric positive definite ma-
trices P ∈ Rn×n, Si j ∈ Rni×ni for j = 1, . . . ni, i = 1, . . . m,
and matrices R j ∈ Rp×n, j = 0, . . . s so that the following
convex optimization problem is solvable:

min(µ) subject to (22) (21)

A
(
P,R j,ρ

)
E
(
P,R j,ρ

)
(?) −µIz

 Σ︷ ︸︸ ︷[
Σ1 . . . Σm

]

(?) −ΛM

≤ 0

(22)

with

A
(
P,R j,ρ

)
= AT

0 P+PA0−CT R0−RT
0 C+ In

+
s

∑
j=1

ρ j

(
AT

j P+PA j−CT R j−RT
j C
)

(23)

E
(
P,R j,ρ

)
= PE−RT

0 D−
s

∑
j=1

ρ jR
T
j D (24)

and
Σi =

[
N 1

i

(
P,Si1

)
. . . N ni

i

(
P,Sini

)]
(25)

N j
i

(
P,Si j

)
=

[
PGHi j

0

]
+

[
HT

i
0

]
Si j (26)

Λ = block-diag
(

Λ1, ...,Λm

)
(27)

Λi = block-diag
(
Λ

1
i , . . . ,Λ

ni
i

)
(28)

Λ
j
i =

2
bi j

Ini (29)

M= block-diag
(
M1, . . . ,Mm

)
(30)

Mi = block-diag
(
Si1, . . . ,Sini

)
(31)

then, the H∞ criterion (17) is satisfied with ν = λmax(P).
Hence, the observer gain L is computed as

L j = P−1RT
j .

Proof: From Lemma 1.2, we deduce that for all
symmetric positive definite matrices Si j and scalars, we have

XT
i jYi +YT

i Xi j ≤
1
2

[
Xi j +Si jYi

]T
S−1

i j

[
Xi j +Si jYi

]
(32)



Consequently, from (13) and the fact that without loss of
generality ai j = 0, inequality (20) is satisfied if

Ψ+
m,ni

∑
i, j=1

(
N j

i

(
P,Si j

)(
Λ

j
i M

j
i

)−1

×N j
i

(
P,Si j

)T
)
≤ 0. (33)

Therefore, from Schur lemma, inequality (33) is equivalent
to  Ψ

[
Σ1 . . . Σm

]
(?) −ΛM

≤ 0 (34)

Finally, with the change of variable R j = LT
j P, the in-

equality (34) becomes identical to (22). Hence, the H∞

criterion (17) is satisfied with the minimum µ obtained
by (21). This ends the proof.

V. SIMULATION RESULTS

It is obvious to verify the assumptions on the LPV parame-
ter ρ and the global Lipschitz property of γ(.) corresponding
to (5). Hence, the anaerobic digestion model (5) is easily
written under the form (8) with the following parameters:

ρ = uout , A(ρ)= ρ


1 0 0 0 0 0
0 α 0 0 0 0
0 0 1 0 0 0
0 0 0 α 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , γ(x)=
[

µ1(x1)x2
µ2(x3)x4

]

g(u, t) =


u1S1in

0
u1(S2in +S2ad)

0
u1Cin +u2Bicad−Qc(x)

u1Zin +u2Bicad

 , B =


−k1 0

1 0
k2 −k3
0 1
k4 k5
0 0


Let’s assume that the the linear output y= [x1,x3,x6]

T , and

thus the matrix C =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1

 .
For simulation, we assume that the model is affected by a
sinusoidal disturbance whose amplitude and frequency varies
in a finite time interval as depicted in Figure 2. The matrices
E and D corresponding to the model (8) are as the following:

E =
[
0.1 0.2 1 0.1 1 0.5

]T
, D =

[
0.1 0.5 1

]T
.

Concerning the observer design we have, m = 2, s = 1,

ni = 2, γ1(x) = µ1(x1)x2 , γ2(x) = µ2(x3)x4,

H1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
, H2 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
,

B1 =
[
−k1 1 k2 0 k4 0

]T
, B2 =

[
0 0 −k3 1 k5 0

]T
.

Simulation have been run for 100 days, with a varying
control (ρmin = 0, ρmax = 0.62), Bicad = 20, S2ad = 11,
S1in = 12.19, S2in = 6.7, Cin = 58.08, Zin = 31, u2 = 0.2 and
the parameter values given in Table I. The system and the
observer were initialized by x(0) = [2,0.15,4,0.6,65,62]T

and x̂(0) = [2,0.2,4,1,55,62]T , respectively. Using the LMI
toolbox of MATLAB to solve the problem (21), the observer
parameters have been found to be

L0 =


61.3104 −54.7744 21.3289
−1.6623 1.3492 −0.3639
−93.7694 435.7117 −207.7567
−0.5194 −1.8127 1.0305
−235.3312 −185.3113 116.9083
−0.1957 0.4014 0.1800



L1 =


38.0125 −33.9604 13.2229
−1.0306 0.8365 −0.2256
−58.1368 270.1411 −128.8089
−0.3220 −1.1239 0.6389
−145.9061 −114.8913 72.4886
−0.1213 0.2489 0.1116



Estimation of the missing state variables with the designed
nonlinear observer has been compared with another
estimation using the same structure of the observer but
without including the H∞ criterion (18), the results are
depicted in Figures 3, 4 and 5. Looking at the later figures,
we see clearly that the designed observer is robust against
the injected disturbance and converges relatively fast to
the real state variables despite the large initial estimation
error. Moreover, we notice a blatant difference in the
estimation robustness when including and excluding the
H∞ criterion. This can only confirm the effectiveness of
proposed methodology.
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Fig. 2. Disturbance in dynamics and measurements (w).

VI. CONCLUSION

In this note, we have designed an H∞ nonlinear state
observer for the anaerobic digestion model. The H∞ asymp-
totic stability of the estimation error was analysed using
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LMI techniques. We have used a suitable reformulation
of the Young’s inequality to enhance the feasibility of the
synthesised LMI condition. Besides, the theoretical results
have been provided in a general way in order to facilitate
the use of the designed observer for other applications. For
simulation, we have compared the proposed observer with
another observer which has the same structure but which is
not including the H∞ criterion. The results being promising,
we target in the near future to extend the methodology for
nonlinear outputs, and later to synthesise an optimal control
of the biogas quality and quantity based on the designed
observer.
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