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LMI-Based Discrete-Time Nonlinear State Observer for an Anaerobic
Digestion Model

K. CHAIB DRAA, H. VOOS, M. ALMA, A. ZEMOUCHE and M. DAROUACH

Abstract— This paper deals with the design of a discrete
time nonlinear observer for an anaerobic digestion process.
The designed observer is devoted to a general class of systems,
precisely linear systems, LPV systems with known and bounded
parameters, and nonlinear Lipschitz systems. In order to
ensure stability of the estimation error, a new LMI condition
is proposed. In this LMI, additional decision variables are
included to enhance its feasibility. Indeed, this was possible due
to the use of a suitable reformulation of the Young’s inequality.
Numerical simulations using the investigated two-step anaerobic
digestion model show the effectiveness of the proposed LMI
methodology.

Index Terms— Anaerobic digestion, LMI approach, Observer
Design, Nonlinear systems.

I. INTRODUCTION

A fundamental problem in Anaerobic Digestion (AD)
monitoring and supervision is how to access the process state
variables. Indeed, some key variables are very important to
measure for controlling the process and prevent its disruption
and failure. However, in practice some of those key variables
(bacteria concentration for instance) may not be measurable
due the lack of appropriate measurement devices, or the
high cost of these devices. An alternative solution for such
a problem is the design of software sensors (observers)
to estimate the unmeasurable state variables. Nevertheless,
designing an observer for AD model is not an easy task due
to the complexity of its dynamics and the absence of key
measurements.

Among the designed observers for AD model, we can
cite the asymptotic observer [1] which is quite simple and
does not require the knowledge of some specific nonlinear
functions. However, such an observer is very sensitive to
model uncertainties and its convergence rate depends on
the operating conditions. Therefore, it has been extended
to interval observers [2] which have the advantage of using
reliable measurements, which are nonlinear functions of the
state vector. The interval observers estimate the interval
where the state is lying when the system has some uncertain-
ties. However, generally the rate of convergence is partially
tunable and it is not easy to exploit the estimated intervals for
control. Of course observers with tunable rate of convergence
have also been proposed in the literature. We find a lot
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of papers dealing with the Kalman filtering which shows
suitable results in different chemical applications. However,
convergence of the estimation arror to zero is not guarantied.
The high gain observer [3] also converges fast enough to
the model state variables, however its synthesis is complex
and is very sensitive to noise. Moreover, in the majority of
papers dealing with the design of observers for AD models,
the authors assume that measurements are available on line.
Whereas, this is not true in real applications. Hence, the
observer operates in discrete time and is driven by discrete
time measurements (sampled data) [4]. Consequently, we
design in the current paper a suitable discrete time nonlinear
observer for an AD model. The designed observer is simple
to implement and its rate of convergence is tunable. More-
over, we provide a novel algorithm to ensure the stability of
the estimation error using LMI techniques. Indeed, we give
a new and less conservative LMI to find the observer gains.
This was possible due to the use of a suitable reformulation
of the Young’s inequality [5]. Actually, we include additional
decision variables in the new LMI to enhance its feasibility.

The rest of the paper is organized as follows. Section II, is
devoted to the modelling of a controlled AD process. Section
III, discusses the observer design and its stability. Section
IV, is dedicated to the simulation results, while Section V
concludes the paper.

Notations: The following notations will be used through-
out this paper
• (?) is used for the blocks induced by symmetry;
• AT represents the transposed matrix of A;
• Ir represents the identity matrix of dimension r;
• for a square matrix S, S > 0 (S < 0) means that this

matrix is positive definite (negative definite);
• the set Co(x, y) = {λx + (1 − λ)y, 0 ≤ λ ≤ 1} is the

convex hull of {x, y};

• es(i) =
(

0, ..., 0,

i th︷︸︸︷
1 , 0, ..., 0︸ ︷︷ ︸

s components

)T ∈ Rs, s ≥ 1 is a

vector of the canonical basis of Rs;
• Rn+ for the positive orthant of dimension n.

II. PROCESS MODELING

AD modelling has been widely investigated in the lit-
erature, plenty models have been proposed to reproduce
as close as possible its behaviour. The difference between
the proposed models is linked to the application objectives
and to the considered number of bacteria [6]. Nowadays,
the two step (acidogenesis-methanogenesis) model (AM2)
developed in [7] has become a reference in modelling of



two step reaction processes. Therefore, we have adopted it
and adapted it for further research objectives as depicted in
Figure 1.

The structure of the reference model (AM2) does not
change, except that the authors have introduced S2ad and
Zad as added control inputs to provide more freedom degree
when the purpose is to control the biogas quality. The other
control inputs are u1 = F1in

v and u2 = F2in

v and since the
digester volume (v) is constant, then uout = u1 + u2. Thus,
the mass balance model of the system depicted in Figure 1
is given by equations (1a-1f), (2), (3), (4) and (5), where
x1 is the concentration of the organic matter to be digested,
x2 the concentration of acidogenic bacteria the responsible
for the organic matter degradation. The volatile fatty acids
concentration x3 is supposed to be pure acetate, x4 is
the concentration of methanogenic bacteria, x5 represents
the inorganic carbon concentration and x6 the alkalinity
concentration (it is the sum of bicarbonate (bic) and acid
concentrations, as given by equations (4)). The rest of the
parameters used in the model are defined Table I.

ẋ1 = −k1µ1(x1)x2 + u1S1in − uoutx1 (1a)
ẋ2 = µ1(x1)x2 − uoutx2 (1b)
ẋ3 = k2µ1(x1)x2 − k3µ2(x3)x4 − uoutx3 + (1c)

u1(S2in + S2ad)

ẋ4 = µ2(x3)x4 − uoutx4 (1d)
ẋ5 = k4µ1(x1)x2 + k5µ2(x3)x4 + u1Cin − (1e)

uoutx5 − qc(x)

ẋ6 = u1Zin + u2Zad − uoutx6 (1f)

with 
µ1(x1) = µ1

x1

x1+ks1

µ2(x3) = µ2
x3

x3+ks2+
x2
3

ki2

(2)

and the gaseous flow rates, for methane (qm) and carbon
dioxide (qc), are expressed by

qm(x) = k6µ2(x3)x4

co2 = x5 + x3 − x6

qc(x) = kLa[co2 −KHPC(x)]

PC(x) =
φ−
√
φ2−4KHPT co2

2KH

φ = co2 +KHPT + k6
kLaµ2(x3)x4

(3)

We also have 
bic = x6 − x3

co2 = x5 − bic
kb = [H+]bic

co2
pH = − log10(kb

co2
bic )

(4)

We divide the system output into linear (y1) and nonlinear
(y2) outputs {

y1 = [x1, x3, x6]T

y2 = qc(x)
(5)
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Fig. 1. Controlled Anaerobic Digestion Process.

III. OBSERVER DESIGN AND CONVERGENCE ANALYSIS

A. System description and assumptions

To render the proposed state observer design method
general and applicable for other nonlinear models, and for
clarity of the presentation, we will present the results in a
general way.

Motivated by the model of anaerobic digestion (1a-1f),
we will investigate the general class of discrete-time systems
described by the following equations{

xk+1 = A(ρk)xk +Bγ(xk) + g(yk, uk)
yk = Cxk

(6)

where xk ∈ Rn is the state vector, yk ∈ Rp is the output
measurement, uk ∈ Rq is an input vector and ρk ∈ Rs is an
L∞ bounded and known parameter. The affine matrix A(ρk)
is expressed under the form

A(ρk) = A0 +

s∑
j=1

ρjkAj

with
ρjmin ≤ ρ

j
k ≤ ρ

j
max,

which means that the parameter ρk belongs to a bounded
convex set for which the set of 2s vertices can be defined by

Vρ =
{
% ∈ Rs : %j ∈ {ρjmin, ρ

j
max}

}
. (7)

The matrices Ai ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n are
constant. The nonlinear function γ : Rn −→ Rm is assumed



TABLE I
MODEL PARAMETERS [7]

Acronyms Definition Units Value
k1 Yield for substrate (x1) degradation g/(g of x2) 42.1
k2 Yield for VFA (x3) production mmol/(g of x2) 116.5
k3 Yield for VFA consumption mmol/(g of x4) 268
k4 Yield for co2 production mmol/g 50.6
k5 Yield for co2 production mmol/g 343.6
k6 Yield for ch4 production mmol/g 453
µ1 Maximum acidogenic bacteria (x2) growth rate 1/day 1.25
µ2 Maximum methanogenic bacteria (x4) growth rate 1/day 0.74
ks1 Half saturation constant associated with x1 g/l 7.1
ks2 Half saturation constant associated with x3 mmol/l 9.28
ki2 Inhibition constant associated with x3 mmol/l 256
kb Acidity constant of bicarbonate mol/l 6.5 10−7

KH Henry’s constant mmol/(l.atm) 27
PT Total preasure atm 1.013
kLa Liquid/gas transfer constant 1/day 19.8

to be globally Lipschitz. It is obvious that Bγ(.) can always
be written under the detailed form:

Bγ(xk) =

m∑
i=1

Biγi(

ϑi︷ ︸︸ ︷
Hixk)

where Hi ∈ Rni×n and Bi is the ith column of the matrix
B.

It is easy to show that the model of anaerobic diges-
tion (1a-1f) can be written under the form (6) with particular
parameters that we will provide in a detailed description in
Section IV.

B. Some useful preliminaries

This section is devoted to some preliminaries that will be
very useful in the design of the synthesis conditions to ensure
the asymptotic convergence of the state observer that we will
propose later.

Theorem 3.1 (Mean value theorem [8]): Let ϕ : Rn →
Rq . Let x, y ∈ Rn. We assume that ϕ is differentiable
on Co(x, y). Then, there are constant vectors z1, ..., zq ∈
Co(x, y), zi 6= x, zi 6= y for i = 1, ..., q such that

ϕ(x)− ϕ(y) =

 q,n∑
i,j=1

eq(i)e
T
n (j)

∂ϕi
∂xj

(zi)

 (x− y) (8)

Lemma 3.1 (a variant of Lipschitz reformulation): Let
ϕ : Rn → Rq a differentiable function on Rn. Then, the
following items are equivalent
• ϕ is a globally γϕ-Lipschitz function;
• there exist finite and positive scalar constants aij , bij so

that for all x, y ∈ Rn there exist zi ∈ Co(x, y), zi 6=
x, zi 6= y and functions ψij : Rn → R satisfying the
following

ϕ(x)− ϕ(y) =

q,n∑
i,j=1

ψij(zi)Hij(x− y) (9)

aij ≤ ψij
(
zi

)
≤ bij , (10)

where

ψij(zi) =
∂ϕi
∂xj

(zi), Hij = eq(i)e
T
n (j).

Notice that this lemma is obvious from the mean value
theorem, but it is important to introduce it at this stage, under
this formulation, in the aim to simplify the presentation of the
proposed observer design method. Indeed, for our technique,
we will exploit (9)-(10) instead of a direct use of Lipschitz
property.

Lemma 3.2 ([9]): Let X and Y two given matrices of
appropriate dimensions. Then, for any symmetric positive
definite matrix S of appropriate dimension, the following
inequality holds

XTY + Y TX ≤ 1

2

[
X + SY

]T
S−1

[
X + SY

]
. (11)

This lemma will be very useful for the main contribu-
tions of this paper. It allows providing less restrictive LMI
conditions compared to the classical LMI techniques for the
considered class of systems.

C. Observer structure and error dynamics

In this section, we will propose the structure of the state
observer that we will use to estimate the unmeasurable vari-
ables of the model (1a-1f). Consider the following general
observer structure

x̂k+1 = A(ρk)x̂k +

m∑
i=1

Biγi(ϑ̂i) + g(yk, uk)

+ L(ρk)(yk − Cx̂k) (12a)

ϑ̂i = Hix̂k +Ki(ρk)(yk − Cx̂k) (12b)

L(ρk) = L0 +

s∑
j=1

ρjkLj , Ki(ρk) = K0
i +

s∑
j=1

ρjkK
j
i (12c)



where x̂k is the estimate of xk. The matrices Li ∈ Rn×p and
Kj
i ∈ Rni×p are the observer parameters to be determined

so that the estimation error ek = xk − x̂k converges
asymptotically towards zero.

Since γ(.) is globally Lipschitz, then from Lemma 3.1
there exist zi ∈ Co(ϑi, ϑ̂i), functions

φij : Rni −→ R

and constants aij , bij , such that

B(γ(x)− γ(x̂)) =

m,ni∑
i,j=1

φij(zi)Hij(ϑi − ϑ̂i) (13)

and
aij ≤ φij

(
zi

)
≤ bij , (14)

where

φij(zi) =
∂γi

∂ϑji
(zi), Hij = Bieni(j).

For shortness, we set

φij , φij

(
zi

)
.

Without loss of generality, we assume that aij = 0 for all
i = 1, . . . ,m and j = 1, . . . , ni. For more details about this,
we refer the reader to [10].

Since ϑi − ϑ̂i =
(
Hi −Ki(ρk)C

)
ek, then we have

B(γ(xk)− γ(x̂k)) =

m,ni∑
i,j=1

φijHij
(
Hi −Ki(ρk)C

) ek
(15)

The dynamics equation of the estimation error is then
given by

ek+1 =

AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

] ek (16)

with

AL = A(ρk)− L(ρk)C, HKi
= Hi −Ki(ρk)C. (17)

The aim consists in finding the gains Lj and Kj
i , i =

1, . . . ,m, j = 1, . . . , ni so that the estimation error (16)
turns to be asymptotically stable around zero.

D. Synthesis conditions and convergence analysis

The main result related to the convergence analysis of the
estimation error is summarized in the following theorem,
which provides new LMI conditions.

Theorem 3.2: If there exist symmetric positive definite
matrices P ∈ Rn×n, Si ∈ Rni×ni and matrices Xl ∈ Rp×n,
Y li ∈ Rp×ni , i = 1, . . . ,m; l = 1, . . . , s, of appropriate
dimensions so that the following LMI conditions are feasibleM(%)

[
Σ1 . . . Σm

]
(?) −ΛS

 < 0, ∀% ∈ Vρ (18)

with

M(%) =


−P M12(%) 0

(?) −P 0

(?) 0 −P

 (19)

M12(%) =
(
AT0 P− CTX0

)
+

s∑
l=1

%l
(
ATl P− CTXl

)
(20)

Σi =
[
ΣTi1 . . .Σ

T
ini

]T
(21)

with

ΣTij =

M12(ρk)Hij
0

PHij

+

H
(
Si,Y li

)
0
0

 (22)

and

H
(
Si,Yi,l

)
= HT

i Si − CT
(
Y0
i +

s∑
l=1

%lY li

)
(23)

Λ = block-diag(Λ1, ...,Λm) (24)

Λi = block-diag
(

2

bi1
Ini
, . . . ,

2

bini

Ini

)
(25)

S = block-diag(S1, . . . ,Sm) (26)

Si = block-diag
( ni times︷ ︸︸ ︷
Si, . . . ,Si

)
(27)

then, the estimation error converges asymptotically towards
zero. Consequently, the observer parameters Ll and Kl

i are
to be computed as follows

Ll = P−1X Tl , Kl
i = S−1

i (Y li)T .

Proof: We use the following quadratic Lyapunov func-
tion to perform the stability analysis of the estimation error

V (ek) = eTk Pek, P = PT > 0.

By calculating ∆V = V (ek+1)−V (ek) along the trajectories
of (16), we obtain

∆V = eTk


AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

]T

P

×

AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

]− P

 e (28)

Hence, ∆V < 0 if the following inequality holdsAL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

]T

P

×

AL(ρk) +

m,ni∑
i,j=1

[
φijHijHKi

]− P

 < 0. (29)



Inequality (29) is equivalent, by Schur lemma, to
−P + Σ11 + ΣT11 ATL(ρk)P ΣT13

(?) −P 0

(?) 0 −P

 < 0 (30)

where

Σ11 =

m,ni∑
i,j=1

(
φijATL(ρk)PHijHKi

)
,

Σ13 =

m,ni∑
i,j=1

(
φijPHijHKi

)
.

On the other hand, inequality (30) can be rewritten under the
form

Ψ︷ ︸︸ ︷
−P ATL(ρk)P 0

(?) −P 0

(?) 0 −P

+

m,ni∑
i,j=1

φij



XT
ij︷ ︸︸ ︷

ATL(ρk)PHij

0

PHij


Yi︷ ︸︸ ︷[

HKi 0 0
]

+YTi Xij


< 0.

(31)

Now, by applying Lemma 3.2 we have

XTijYi + YTi Xij ≤
1

2

(
Xij + SijYi

)T
S−1
ij

Σij︷ ︸︸ ︷(
Xij + SijYi

)
for any symmetric positive definite matrices Sij . Since the
matrix block Yi does not depend on the index j and depends
on the same Ki(ρk), then to obtain an LMI we need to put

Sij = Si, ∀(i, j)

with Si ∈ Rni×ni .
Consequently, from (14) and the fact that aij = 0,

inequality (31) holds if

Ψ−
m,ni∑
i,j=1

(
ΣTij

(
− 2

bij
Sij
)−1

Σij

)
< 0. (32)

Using Schur lemma, inequality (32) is equivalent to Ψ
[
ΣT1 . . . ΣTm

]
(?) −ΛS

 < 0 (33)

Finally, we use the change of variables Xi = LTi P and
Y li = (Kl

i)
TSi, and since (33) is affine in ρk, then the

convexity principle [11] leads to (18). This ends the proof.

IV. SIMULATION RESULTS: APPLICATION OF THE
PROPOSED OBSERVER ON THE AD MODEL

The objective of this paper is to estimate the main state
variables of the AD model (1a-1f). Therefore, to apply the
designed observer in Section III, we first write the model (1a-
1f) in the form (6). This is done by using the first order
Euler discretization method with sampling time Ts. After
discretization, the model (1a-1f) is written under the form (6)
with the following parameters

ρk = uout(k), A0 = I6
A1 = −Ts × block-diag(1, α, 1, α, 1, 1)

γ(xk) =

[
µ1(x1k)x2k

µ2(x3k)x4k

]

B = Ts

[
−k1 1 k2 0 k4 0

0 0 −k3 1 k5 0

]T

g(yk, uk) =


u1(k)S1in

0
u1(k)(S2in + S2ad(k))

0
u1(k)Cin − qc(k)

u1(k)Zin + u2(k)Zad


and

C =

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


Moreover, for the observer design we have, m = 2, s = 1,

ni = 2, γ1(xk) = µ1(x1k)x2k , γ2(xk) = µ2(x3k)x4k,

H1 =

[
1 0 0 0 0 0
0 1 0 0 0 0

]

H2 =

[
0 0 1 0 0 0
0 0 0 1 0 0

]
B1 = Ts

[
−k1 1 k2 0 k4 0

]T
B2 = Ts

[
0 0 −k3 1 k5 0

]T
The simulations have been run for Ts = 0.001 (day),

ρmin = 0, ρmax = 0.62 (1/day), Zad = 700
(mmol/l), S2ad = 0, S1in = 16 (g/l), S2in = 170
(mmol/l), Cin = 76.15 (mmol/l), Zin = 200 (mmol/l)
and the parameter values given in Table I. Moreover,
the system and the observer were initialized, respec-
tively, at x(0) = [2, 0.5, 12, 0.7, 53.48, 55]T and x̂(0) =
[2, 1, 12, 0.4, 58.48, 55]T . The simulation results are de-
picted in Figures 2-4, they were obtained after solving the
LMIs (18), which were found feasible by using the LMI
toolbox of MATLAB . These LMIs provided the observer
gains which ensure the asymptotic convergence of the esti-
mation error to zero. Indeed, as it can be seen from Figures 2-
4, although the large initial estimation errors, the observer



states are converging very well to the simulated system state
variables. Moreover, we want to say that the convergence
of the methanogenic bacteria concentration, which plays a
key role in supervision and monitoring of AD processes, is
relatively fast.
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V. CONCLUSIONS

In the present paper, we have first modified an anaerobic
digestion model to adapt it for further research objectives.
Then, we have proposed a suitable nonlinear observer to
estimate the key state variables of the proposed model. The
designed observer is based on new and less restrictive LMI
conditions. Actually, this was possible due to the exploit of
the new judicious reformulation of Young’s inequality.

The simulation results being promising, we target in the
near future to extend the methodology for systems with
unknown inputs and evaluate the observer robustness when
the system is disturbed and the measurements are corrupted.
Further, we also plan to investigate the optimal control
problem of biogas plants based on the designed nonlinear
observer.
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