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Abstract

One of the main characteristics of blood coagulation is the speed of clot
growth. This parameter strongly depends on the speed of propagation of
the thrombin concentration in blood plasma. In the current work we con-
sider a mathematical model of the coagulation cascade and study existence,
stability and speed of propagation of the reaction-diffusion waves of blood
coagulation. We also develop a simplified one-equation model that reflects
the main features of the thrombin wave propagation. For this equation we
estimate the wave speed analytically. The resulting formulas provide a good
approximation for the speed of wave propagation in a more complex model
as well as for the experimental data.
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1. Introduction

The main function of the coagulation system is terminating bleeding,
caused by the vessel wall damage by covering the injury site with a fibrin
clot. The reaction of fibrin polymerization appears at the final stage of the
proteolytic enzymatic cascade where the activated clotting factors act as
catalysts for activation of the others [1, 2]. Mature form of fibrin molecules
can aggregate into long branching fibers and form a complex network which
serves as a thrombus scaffold. The key enzyme of the coagulation cascade
is thrombin as it catalyzes fibrinogen conversion to fibrin and distribution of
the thrombin concentration has a crucial influence on the kinetics of the clot
formation [3, 4, 1]. To prevent the spontaneous formation of thrombi the ac-
tivation reactions are regulated by the action of plasma inhibitors [5, 6, 7, §].
The balance between coagulation and anti-coagulation systems is important
for the normal organism functioning and any alternations can lead to the se-
vere pathological states: thrombosis or, on the contrary, disseminative bleed-
ing [9, 10].

The key enzyme of the coagulation cascade is thrombin since it catalyzes
fibrinogen cleavage to fibrin which in turn forms hemostatic clot. Formation
of thrombin appears due to the prothrombin activation in the coagulation
cascade. The process can be launched by the tissue factor expressed to
the blood flow in case of the endothelium rupture (extrinsic pathway), or
through the activation of factor XII which triggers activation of factor XI in
case of the contact with the foreign surface (contact activation) [2, 11, 12].
Both pathways lead to the activation of factor X that contributes to the
prothrombin conversion to thrombin [2]. Once the thrombin concentration
reaches the threshold value, further prothrombin activation takes place due to
the positive feedback loops of the coagulation cascade (intrinsic pathway) [11,
2, 13]. Thrombin controls activation of factor XI [12] and also of factors V [7]
and VIII whose activated forms (Va, VIIIa) increase catalytic activity of
factors Xa and IXa by formation of the prothrombinase and intrinsic kinase
complexes respectively [14, 2, 15, 16] (Fig. 1).

Influence of different factors on the coagulation process was studied both
experimentally and using theoretical approaches. As compared to the ex-
periment, parameters in theoretical studies can be varied much easier allow-
ing to detect not only experimentally observed regimes of blood coagula-
tion [17, 18, 19, 20, 21] but also to suppose their possible variations for the
conditions that are hard to reproduce in the experiment [22]. Model results
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prothrombinase complex
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Figure 1: The main activation reactions of the intrinsic pathway of the coagulation cascade.
Thrombin (IIa) catalyzes activation of factors V, VIII, XI; factors Xla and IXa catalyze
activation of factors IX and X respectively; factors VIIIa and Va form active complexes
with factors IXa and Xa respectively and further increase thrombin production.

also provide data about the possible spatiotemporal distribution of all the
blood factors participating in the coagulation cascade, while the main pa-
rameter used to measure the dynamics of the clot growth experimentally is
fibrin clot density [20, 19, 23, 13, 24].

One of the main criteria used for the validation of the computational mod-
els of coagulation system is the spatio-temporal distribution of the throm-
bin concentration. During the amplification phase of the blood coagulation
process, thrombin concentration propagates in the direction from the in-
jury site to the vascular lumen. According to the experimental data, after
thrombin concentration exceeds some threshold value, the speed of the clot
growth does not anymore depend on the way of the initial activation of
the coagulation system [11, 24] and thrombin wave profile stays constant in
time [14, 20, 25, 26]. In terms of mathematical models, such behavior cor-
responds to the traveling wave solutions of the system of partial differential
equations on the reactions of the coagulation cascade [19, 25, 26, 27, 22, 28|.

Despite numerous evidence of the wave behavior of the thrombin con-
centration profile, theoretical analysis of the observed phenomena is lacking
in previous model studies of blood coagulation. That is why in our work
we focus on the detailed theoretical investigation of the mathematical model
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of the intrinsic pathway of the coagulation system (Section 2). We derive
conditions on the existence and stability of the traveling wave solutions cor-
responding to the amplification phase of coagulation cascade (Section 3) and
demonstrate an important property of their speed of propagation (Section 4).

We also pay particular attention to the calculation of the speed of throm-
bin propagation. Serving as an important indicator of blood coagulation
disorders [9, 10], the speed of thrombin propagation in mathematical mod-
els is usually measured according to the results of the computational sim-
ulations [25, 28, 29] or using the combination of analytical and numerical
approaches as it was done by [27]. In Section 5 of the current work we pro-
pose an alternative approach and derive theoretical estimates for the speed
of the thrombin wave propagation by the reduction of the initial system to
one equation on thrombin concentration. We compare the estimates given
by analytical formulas with computational values of the speed as well as with
the experimental data.

2. Mathematical model

We consider the following model of the intrinsic pathway of blood coag-
ulation:

oT —k T
—— = DAT + (k;gUm + kgﬂU10U5) (1 — —) — hoT,

ot hs10 Ty

% = DAU;5 + ksT — hsUs,

% = DAUg + kgT — hgUs,

(1)
% = DAUy + kU1 — hoUy,
oU —k
0 _ DAU, o + k10Uy + k10£U9U8 — hioUho,

ot hsgg
oU

atll = DAUy + kT — h11Upy.

Here, T, U; denote the concentrations of thrombin and activated forms of
the i-th factor respectively, Ty denotes the initial prothrombin concentra-
tion. First term of each equation corresponds to the diffusion of the factors
in blood plasma while other terms describe chemical reactions of the coagu-
lation cascade. k;, k; denote the rates of activation reactions and h; denote

4
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inhibition of the activated factors. k;; and h;; denote the rates of forma-
tion and inhibition respectively for the intrinsic kinase and prothrombinase
complexes. Corresponding equation terms have the given form due to the
assumption of the fast reactions of the complex formation.

In the current study we focus on the propagation stage of the coagula-
tion cascade and thus suppose the initial amount of activated factors to be
formed in the proximity of the vessel wall. Therefore we use step functions
of thrombin and activated factor concentrations as initial conditions for the
simulation. In order to take into account the activation of factor XI by fac-
tor XIla we take constant influx boundary condition on the left side of the
domain and zero-flux boundary conditions on the right side.

The similar model has previously demonstrated a good agreement with
experimental data [30, 28]. The main assumption of the model concerns
taking inactivated factor concentrations to be constant. Numerical com-
putations showed that concentrations of the precursors of active factors do
not significantly change during the simulation [28]. Therefore, depletion of
the precursors can be ignored. The only precursor whose concentration was
considered as variable in the model of [30] is prothrombin. Thus, the first
equation of our model replaces two following equations considered in [30, 28]:

oT T —Fks10 T

— = DAT + kyUqg= + k U,gUs = — hoT, 2

BT o 2, Lo 5T+K2m 2 (2)
oT — T —Fks10 T
— = DAT — kyUig= —k UigUs———, 3
ot T 4 Ko, “hso 5T+K2m ®)

with T denoting prothrombin concentration. For hy = 0 both models coin-
cide, and for low values of hy they would be very close. For the physiological
values of thrombin inhibition, in the model of [28] we observe propagation
of non-monotone thrombin wave while system (1) gives monotone traveling
waves with higher value of maximal concentration (Fig. 2). Despite this dif-
ference, the speed of thrombin wave propagation appears to be very close for
both models (Fig. 2) and thus further we use system (1) as an approximation
of the thrombin propagation process.

3. Existence and stability of the traveling wave solutions

Let us set u = (T, Us, Us, Ug, Uyg,Ur1). Then system (1) can be written
in the vector form:
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Figure 2: Propagation of thrombin wave for the model of [28] (a) and for the reduced
model (1) (b). Concentration profiles are plotted every 2 min of physical time, the speed
of the wave propagation is about 0.05 mm/min. Parameters of the simulations are provided
in Tab. C.1.

ou
at—DAu—i—F() (4)

where F' = (F, ..., Fg) is the vector of reaction rates in equations (1). It
satisfies the following property:

OF;

ou; —
This class of systems is called monotone systems and has a number of proper-
ties similar to those for one scalar equation including the maximum principle.
It allows the proof of existence and stability of the wave solutions for mono-
tone systems as well as the estimation of the wave propagation speed [31].
In order to apply these results to the considered system describing intrinsic
pathway functioning we start with the analysis of the existence and stability
of the stationary points of system (1).

7 ]

3.1. Stationary points of the kinetic system
Consider the system of ordinary differential equations:

du
)] (5)

Its equilibrium points satisfy the following relations:
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where T is a solution of the equation P(T') = 0. Here P(T) = aT* + bT® +
cT? +dT,

_ k_wk89k8?2k5k510k9k11 d — _k2k10k9k11 + h2T[)

h89h8h5h10h510h9h11 ’ h9h11h10 ’

_k_mksgksk_zk5k510k9k11 TO + klok_2k5k510k9kll + %kSQkSkall
h89h8h5h10h510h9h11 h5h10h510h9h11 h89h8h9h11

_ _klok_2k5k510k9k11T k2k10k9k11 k2k89k8k9k11

+ _
h5h10h510h9h11 ’ h9h11 h89h8h9h11h10

b:

Th.

Hence, the stationary points of system (5) can be found through the station-
ary points 7™ of the equation
dT
= —P(T), 0
and equalities (6), (7).

Let us determine the number of positive roots of the polynomial P(T).
We set P(T) = TQ(T), where Q(T) = aT? + bT? + ¢T + d. The number of
positive roots of Q(7) can be found as follows. First, we consider a function
Q'(T) = 3aT? + 20T + c. If it has no zeros, then Q(T) is increasing and has
one positive root if and only if Q(0) < 0. Otherwise, we denote by T}, T5 the
nonzero solutions of the equation Q'(T) = 0: Ty 5 = (—b £ Vb? — 3ac)/(3a).

Then, the polynomial QQ(u) has one positive root in one of the cases:
L Tl S 07 Q(O) < Oa
e 0T <Ts, Q(O) < 0 and Q(Tl) > 0, Q(Tg) > 0 or Q(Tl) <0

and it has two positive roots if 0 < Ty, Q(0) > 0, Q(T3) < 0.

Stability of the stationary points of system (5) can be determined from
the stability of stationary points of equation (8). The following theorem
holds (see Appendix A for the proof).

7
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Theorem 1. There is one to one correspondence between stationary solutions
ut = (T*,Uz, U, U5, Uy, Ufy) of system (1) and the stationary points T* of
equation (8) given by (6), (7). The principal eigenvalue of the matriz F'(u*)
is positive (negative) if and only if P(T*) <0 (P'(T*) >0).

Thus, we can make the following conclusions about the existence and
stability of stationary points of the kinetic system of equation (5). It always
has a trivial solution v* = 0. It has one (two) positive solution if and only if
the polynomial P(T") has one (two) positive root(s). A positive solution u*
is stable if and only if P'(7%) > 0.

3.2. Wave existence and stability

We can now formulate a theorem on the existence of wave solutions in
system (1).

Theorem 2. Suppose that P(T*) = 0 for some T* > 0 and P'(0) #
0, P(T*) # 0. Let v* = (T*,UZ, U, U, Uy, US)) be the corresponding
stationary solutions of system (5) determined by relations (6), (7).

e Monostable case. If there are no other positive roots of the polynomial
P(T), then system (1) has monotonically decreasing traveling wave so-
lutions u(x,t) = w(x — ct) with the limits u(4+o00) = 0, u(—00) = u* for
all values of the speed ¢ greater than or equal to the minimal speed cg,

e Bistable case. If there is one more positive root of the polynomial P(T')
in the interval 0 < T < T*, then system (1) has a monotonically
decreasing traveling wave solutions u(x,t) = w(x — ct) with the limits
u(+00) = 0,u(—00) = u* for a unique value of c.

The proof of Theorem 2 follows from the general results on the existence
of waves for monotone systems of equation [31, 32]. Let us note that the
conditions on the stability of stationary points follow from the assumption
of Theorem 2 and Theorem 1. We have P'(7%) > 0 in both cases since it is
the largest root of the polynomial increasing at infinity. The sign of P’(0)
is negative if there is no other root of P(T') in between of 0 and 7™ and the
sign is positive if P(T) has one more root.

Monotone traveling wave solutions of monotone systems are asymptoti-
cally stable [31, 32] that gives global stability in the bistable case. In the
monostable case the wave is globally stable for the minimal speed ¢y and
stable with respect to small perturbations in a weighted norm for ¢ > ¢ [32].

8
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The unique wave speed in the bistable case and the minimal wave speed
in the monostable case admit minimax representations. Below we use such
representations for the bistable system since this case is more appropriate
for the applications considered in the current work. Indeed, traveling wave
solution of system (1) describes propagation of the thrombin concentration
in blood plasma due to the reactions of the coagulation cascade. In this
system the convergence to the traveling wave solution takes place only if the
initial concentrations of blood factors exceed some critical level, otherwise the
clot formation does not start because of the action of plasma inhibitors. This
dependency on the initial conditions and stability of zero solution correspond
to the bistable case. In the monostable case, on the contrary, any small
perturbation would result in the solution converging to the propagating wave.
In terms of the coagulation system functioning, monostable case corresponds
to the spontaneous disseminated coagulation blocking blood circulation.

Finally, let us note that in Theorem 2 we consider only the case of a
single positive root of the polynomial and the case of two positive roots. If
P(T) has three positive roots the system would be monostable with a stable
intermediate stationary point. While this case is interesting from the point
of view of wave existence and stability, it is less relevant for the modeling of
blood coagulation, and we will not discuss it here.

4. Speed of wave propagation

One of the main objectives of this work is to obtain an analytical approx-
imation of the wave speed for the blood coagulation model (1). We proceed
in two steps. First, we reduce system (1) to a single equation and justify
this reduction. Then, we obtain some estimates of the wave speed for one
reaction-diffusion equation.

4.1. System reduction

In order to simplify the presentation, we describe the method of reduction
for the system of two equations:

u" +cu' + f(u,v) =0, 9)

1
V" 4+ v’ + =(au — bv) =0, (10)
5
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0
where ¢ is a small parameter, 9/ > 0 and system (9)—(10) is bistable. If we

multiply the second equation by ¢ and take a formal limit as ¢ — 0, then we

have v = gu, and the first equation can be rewritten as follows:
1 / a
u' +cu' + f (u, gu> = 0. (11)

Let us recall that the value of the speed ¢ = ¢, in system (9)—(10) and ¢ = ¢
for the scalar equation (11) are unknown, and in general they are different
from each other. We will demonstrate that ¢. — ¢o as € — O:

Theorem 3. The speed of wave propagation for system (9)—(10) converges
to the speed of the wave propagation for equation (11) as e — 0.

Singular perturbations of traveling waves are extensively studied by [31].
Here we present another method of proof based on the estimates of the wave
speed. This method is simpler and gives not only the limiting value of the
speed for € = 0 but also the estimates of the speed value for any positive ¢.
In the following sections we describe the approach in details and construct
the wave speed estimates for system (9)—(10).

4.2. Wave speed estimate

We get the following estimates from the minimax representation of the
wave speed in the bistable case [32] :

min (inf Si(p), inf Sg(p)> < ¢ < max (sup S1(p),sup Sg(p)> : (12)

where

Si(p) = p’1’+f(fl)1,p2)  Sy(p) = Py + (apy - bp2) /e
—P1 P2
p = (p1, p2) is an arbitrary test function continuous together with its second
derivatives, monotonically decreasing (component-wise) and having the same
limits at infinity as the wave solution, p(+o00) =0, p(—o00) = u*.
Let us choose the following test functions:

Y

a a a
pP1 = Ug, P2 = EUO —cf (UO, Eu0> b_2 ) (13)

10
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where wg is the solution of (11). Neglecting the second-order terms with
respect to e, we get:

500 = (45 (i =2 (o)) ) -
<Ug+f<UO>%U0> —5b2fv (Uo,zuo>f< ’Z ))/( up) = co + (),

(14)
where
a a a
p(z) = bQ—%fv (Um guo) / (Uo, 3”0) )
and ¢y is the value of the speed in (11). Next,
a € a "
ug + f (Uo, EUO> 3 (f <U07 EU0>>
S2<IO) = c a 7 = Cp + 5¢<$>7 (15>
—ugp + b (f <U07 g%))
where
a / 1 a "
0= g (F (0 5u0) ) + 5 (4 (w0 Gw0) )
Hence, from (14), (15) we obtain the estimate
Co + £ max {min ©, minl/z} < ¢ < ¢+ emin {maxgo,maxw} , (16)

where ¢ is the wave propagation speed for (11), the functions ¢(z), ¥(x)
are bounded. The proof of Theorem 3 follows from this estimate.

5. One equation model

5.1. Reduction to the equation on thrombin concentration

If the reaction rate constants in the equations of system (1) for the vari-
ables Uy, Uy, Us and Uy are sufficiently large, then we can replace these
equations by the following algebraic relations (Section 4.1):

11
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ks ks kg ko k’wksg ks
Us=—T, Us=—T, Uy=—Uy, Upp=U k — 1.
hs 5 e 97 gy 1 Yo = P g ( 10+ hso s )

Then, instead of system (1) we obtain the following system of two equations:

oT kg klOkSQ kg kaksio ks T
= DAT + U k —T ko + —T 1—— ) —hT
ot U, hohio < 0+ hgy hag 2 hsio s Ty 2

oU,
ot

== DAUH + knT - h11U11.

(17)
Similarly, we can reduce this system to the single equation:

or kok1 kiokso ks koksio ks T
= DAT+—T [k —T k —T 1—— )=hoT.
ot +h9h10h11 0+ hsgo hg 2 F hsio s Ty ?

(18)
We realize this reduction in two steps in order to compare the one-equation
model to system (1) as well as to the intermediate model of two equa-
tions (17). Numerical simulations show that for the values of parameters
in the physiological range [33, 25|, all three models give the wave speed of
the same order of magnitude (Fig. 3). The two equation model (17) gives a
better approximation of model (1) than the single equation (18). However,
the latter demonstrates the same parameter dependence of the wave speed
as other models. Taking into account the complexity of the initial model (1),
the approximation provided by one equation is acceptable. Below we obtain
the analytical formulas for the wave speed for the one equation model.

5.2. Dimensionless model

In dimensionless variables

t ~
T = Tou, t= h—, D= Dhg, (19)
2

we rewrite equation (18) in the following form:

8@1‘ = DAu+ Myu (1 + Mou) (1 + Mau) (1 — u) — u, (20)

12
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Figure 3: Speed of wave propagation (mm/min) as a function of D (left) and ko (right).
Solid line: reduced model (1); dashed line: two-equation model (17); dash-dot line: one
equation model (18). Parameters of the simulations are provided in Tab. C.1.

where:

M, = M7 M, = k8k89k_10T0’ M, = koksksio

= —T.
h2h9h10 k10h8h89 k2h5h510 ’

Analysis of the rate constant values allows us to further simplify the equation.
As M3 > 1 we can approximate equation (20) by the following equation:

% = DAu+ My Msu? (1 + Mou) (1 — u) — u. (21)

Let us note that the first component of the term u?(1+ Myu,) corresponds to
the prothrombin activation by the factor Xa and the second one corresponds
to the prothrombin activation by the [Va, Xa| complex. Since during the
propagation phase the rate of activation by prothrombinase complex is several
orders of magnitude higher than the activation by Xa itself [33], we can
neglect the first component. Thus, applying the assumption of the detailed
equilibrium for the second equation, we finally obtain the following equation
for the thrombin concentration:

% = DAuy 4 bud (1 — uy) — uy, (22)

where:

b= M, MyMs;. (23)

13
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5.8. Wave speed estimate

Equation (22) can be rewritten in the more general form:

% = DAu+bu" (1 —u) — ou. (24)

Traveling wave solution of (24) satisfies the equation:

Duw" + cw' + bw™ (1 — w) — ow = 0. (25)

Here we will present two analytical methods to approximate the wave speed.

5.3.1. Narrow reaction zone method

One of the methods to estimate the wave speed for the reaction-diffusion
equation is the narrow reaction zone method developed in combustion the-
ory [34]. Let us rewrite equation (25) in the form:

Duw" + cw' + F(w) — ow =0, F(w) =w"(1 —w). (26)

We assume that the reaction takes place at one point x = 0 in the coordinates
of the moving front. Then, outside of the reaction zone we consider the linear
equations:

" r _
{ Dw" +cpw' —ow =0, x>0, (27)

Duw" + ¢y’ =0, x < 0.

These equations should be completed with the jump conditions at the reac-
tion zone. In order to derive them, we omit the first derivative w’ at the
reaction zone since it is small in comparison with two other terms:

Duw” + F(w) = 0. (28)

Multiplying (28) by w’ and integrating through the reaction zone we obtain
the following jump conditions:

(W/(+0) - (-0 = 3 [ Flw)du. 29

considered together with the condition of the continuity of solution w(+0) =
w(—0).
Solving (27) we have:
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285

286

287

288

289

290

W, x <0,

W= <—c VT 4D0> (30)
Wy €XP , x>0.

2D

Then, from (29) and (30) we obtain the following equation for the wave speed:

w*

4D
a’+eava?+4Do+2Do = A, A=— / F(w)dw. (31)
w*

0

Hence,
A—-2D n—l n
o0="=7 A:4bD(w* B ) (32)
vV2A n+1 n+2

This formula gives a good approximation of the wave speed found numerically
for n > 3 (Fig. 4). The approximation improves with increasing values of n.
The obtained formula provides an estimation of the speed from below (see
Appendix B for the justification of the method).

1.5

141

13+

12+

speed ratio

1.1+

1L

0.9

2 4 6 & 10 12 14 16 18
Figure 4: Ratio of wave speeds found numerically and analytically for different values of
n; o = 0.01, D =2, b= 10. Solid line: i, dashed line ‘. Parameters of the simulations

C1 Co
are provided in Tab. C.1.

5.3.2. Piecewise linear approximation
Consider equation (26) written in the form

15
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292

293

294

295

297

298

299

300

301

Duw" + cw' + f(w) =0,

where f(w) = w"(1 —w) — ow and f(0) = f(w,) = 0. Let us introduce the

following approximation of this equation:
Duw" + cow' + fo(w) =0,

with

) aw, 0 < w < wy,
fo(w) = { Blw —w,), wy<w < w,,

where
a=f(0), 8= f'(w.).

In case of equation (24) we have:

a=—0o, B=bw' ' —bn+uw"—o.

We find the value of wq from the additional condition:

/w* fw)dw = - fo(w)dw.
0 0

Hence we obtain the following equation with respect to wy:

aT_ﬁwg + Bw,wg +1r =0,

where

r=—pw? — - f(w)dw.
0

Taking into account the explicit form of function f(w), we obtain:

n b n+1 1
:b n+l (" b n+2 (70~
rE e ( 2 n+1>+w* 2 g2

From (38) we get:

_6w* + \/52@03 — 2(04 B B)T
Wy = o — B .

Thus, instead of (33) we consider the following equations:
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311

312

313

314

315

(42)

Duw" + cw' 4+ f(w —w,) =0, x <0,
Dw" + cw' 4+ aw = 0, x>0,

with the additional conditions on the continuity of solution and its first
derivative:

w(0) = wy, w'(—0) = w'(40).
We find the explicit solution:

\/ 2 —48D —
w = (wy —wy)exp | ¢ — 45 @ +w,, <0,
2D
e (43)
w = woexp | z— 63_4QD_62 x>0
— Wo p 2D ) .

From the condition of continuity of the derivative we obtain the following
formula:

CTy) W= —20 (44)

V(@ —1)(aw? — Buw)’ wo — W
It gives a good approximation of the wave speed for equation (26) (Fig. 4).

Cy =

5.4. Comparison of the estimated speed of the wave propagation with the
complete model and experimental data

5.4.1. Comparison of the estimated speed with the computational speed in
system (1)
Considering system (1) and taking the parameter values for (32), (44)
according to (23), we approximate the speed of wave propagation by the
following formula obtained by the narrow reaction zone method:

4
bTE — ZUT3 — 2hs

4 7
\/ 2 <ng - 5ng)

_ ]{39 kl lk_l()kS k89k_2k5 kSlOT[)2
h9h10h11 hS h89h5 h510

01:\/5

where

: (46)
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a6 and by the piecewise linear approximation:

317

318

319

320

321

322

323

324

VD (=3bTy* — hoT + 4T3 — hy)

Cy = — — s (47)
\/(TO — )T (—hoT — 3T2 + AbT? + hy)
where:
s T _ —3HTZ + 4bT] + hy
T.-T, T2 — 36T,
\ (BUTZ — 46T — hy)? — 20(4Ty — )T (~30T3 — T2 + LT3 + hy)
T2 — 36T, ‘
(48)

011} P -

speed of the wave propagation, mm/min

speed of the wave propagation, mm/min
o
c o
&

L L L L L L L ‘ 0
1 2 3 4 5 6 7 8 9 10 12 14 16 18 20 22 24 26 28 30
D, mm%min kg, min”!

Figure 5: Speeds of wave propagation (mm/min) as function of D (left) and k9 (right).
Solid line: model (1); dashed line: narrow reaction zone approximation; dash-dot line:
piecewise linear approximation. Parameters of the simulations are provided in Tab. C.1.

We compare the speed of wave propagation for model (1) found numer-
ically with the analytical formulas (Fig. 5). As it was demonstrated above,
the computational speed for the one-equation model is higher than for the
complete model (Fig. 3). The analytical formulas for the speed of the wave
propagation for one-equation model in turn provide the estimates from be-
low (Fig. 4). As the result, the analytical estimates for one equation give
better approximations of the speed in the complete model than the numerical
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speed for one equation (Fig. 5). If we then compare two different analytical
estimates for the wave speed in one-equation model, we can conclude that
narrow reaction zone method gives the speed further from the one-equation
computational speed than piecewise linear approximation (Fig. 4) but at the
same time it better approximates the wave speed in the complete model (the
narrow reaction zone speed is 1.5 times higher than the computational one).

5.4.2. Comparison with experimental data

The speed of clot formation has crucial influence on the organism physi-
ology. Coagulation disorders such as hemophilia A, B or C are the result of
severe deficiency of the clotting factors. The effect of this deficiency on the
propagation phase is the most critical for situation in vivo [25, 35, 36]. Speed
of the thrombin propagation in mathematical model of the intrinsic pathway
functioning can provide estimation of the clot growth rate dependence on
different factors.

As an example, here we consider the experimental results obtained by [25]
on the patients with hemophilia B. Authors examined the effect of factor IX
deficiency on the spatial clotting dynamics. Plasma used was obtained from
hemophiliacs with different extent of the disease and from severe hemophil-
iacs treated with factor IX concentrate (Ahemphil B). Clotting process was
launched through the intrinsic pathway by small artificial contact activation
by plastic material. The obtained results show that the most pronounced
changes in clotting kinetics occurred at factor IX activity less than 20% [25].

Experimental data correlate well with the results given by the analytical
estimate of the thrombin propagation speed (Fig. 6). In the lack of precise
kinetic constants we had to fit the approximated speed value at the first point
of the plot corresponding to 1% of factor IX activity. While fitting, we varied
only the value of the parameter b. In terms of our model, factor IX activity is
reflected by the value of the parameter ky. Thus, analytical estimate provided
by (45) and (47) are plotted as functions of kg and give the values close to
the experimental ones for all the considered range.

6. Discussion and conclusions

Spatio-temporal dynamics of clot growth is of crucial importance for the
normal organism functioning. The key stage of the blood coagulation pro-
cess determining the dynamics of the clot formation is cumulative thrombin
production due to the intrinsic pathway functioning. Propagating from the
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Figure 6: Speeds of the thrombin wave propagation (mm/min) as function of percentage
of factor IX activity. Dots: experimental data [25]; dashed line: narrow reaction zone
approximation; dash-dot line: piecewise linear approximation (Tab. 1)

injury site with constant velocity during the amplification phase, thrombin
concentration can be modeled as traveling wave solutions in the PDE system
on plasma factor concentrations [26]. In the current work we derive condi-
tions on the existence and stability of the traveling wave solutions for the
system describing intrinsic pathway of blood coagulation cascade.

Despite the general character of the methods used in this work, the de-
veloped approaches imply some limitations. In our model we considered only
a part of the coagulation cascade (intrinsic pathway) without taking into ac-
count neither the initial activation, nor the role of the activated protein C
pathway. In terms of our model, initial thrombin formation appears on the
left boundary of the domain. However, since the problem of the existence of
the traveling wave solutions is considered on the whole axis, the solutions do
not depend on the boundary conditions. The independence of the speed of
the thrombin wave propagation during the amplification phase on the nature
of the stimuli that launched the clotting process was also demonstrated in
multiple experimental studies [2, 11, 25]. Then, inhibition role of the acti-
vated protein C appears only in the proximity of the vessel wall due to its
activation by thrombomodulin and thus does not directly impact thrombin
propagation on the distance from the vessel wall [37] and we do not incor-
porate it in our model. As the result, considered model is monotone, that is
equivalent to positive contribution of all factors to the activation reactions
in terms of the chemical reaction network. This important feature of the
coagulation cascade model allows us to study existence and properties of its
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wave solutions.

The most important parameter determining the dynamics of clot growth
is the speed of the thrombin wave propagation or, in terms of the mathemat-
ical model, the speed of propagation of the reaction-diffusion wave. In the
current work we obtain analytical formula for the speed of wave propagation
in the model of blood coagulation. We reduce the system of equations to
one equation on the thrombin concentration and then determine the wave
speed for this equation. The method of reduction is based on the minimax
representation of the wave speed applicable for monotone reaction-diffusion
systems. One-equation model gives the speed of the wave propagation above
the wave speed obtained in the initial system. The difference dues to the as-
sumption on the fast reactions applied for the derivation of the one-equation
model. Analytical estimates obtained for the wave speed in one-equation
model in turn provide its approximation from below. Since narrow reaction
zone method was originally developed for the description of the flame front
propagation in the combustion theory with the exponential function in reac-
tion term. In our work thrombin activation is described with the polynomial
of the third degree that makes the obtained estimate less precise. Never-
theless, the obtained analytical estimates give good approximation of both
computational and experimental speed of the thrombin propagation.

The described approach for system analysis and estimation of the wave
propagation speed can be further expanded on other cascade models. An-
alytical formulas for the reaction front propagation can provide important
information on the system response on different factors and is of big impor-
tance for the model validation.

Appendix A. Proof of the Theorem 1

Proof. Along with the system system

du
—F Al
= Fu), (A1)
consider the system
du
— = F.(u), A2
= F(w) (4.2)

which depends on the parameter 7 € [0, 1]. They differ only by the equation
for T" which is considered now in the following form:
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ar
dt

Here the functions ¢;(T") are determined by the equalities:

h510

k kok k k
S011(7-') = h_iT7 909(T) = ﬁ ) 905(T> = h_ZTv 908<T) = h—ZT,
kok11 —kso,
TY= ——— | koD + kio—17 ) .
eu(T) hiohghia < 0+ 10h89

We can express U;, 1 = 5,8,9,10, 11 as functions of T" from the corresponding
equations in (A.1) or, the same, from (A.2): U; = ¢;(T). Therefore the
solutions of the system of equations F;(T") = 0 coincide with the solutions of
the system F(7T') = 0.

Thus, systems (A.1) and (A.2) have the same stationary solutions for all
7 € [0,1]. For 7 = 1 these two systems coincide. For 7 = 0 the equation
for T in (A.2) does not depend on other variables. This will allow us to
determined the eigenvalues of the corresponding linearized matrix.

It can be verified by the direct calculations that det F(u*) = 0 if and
only if det F'(u*) = 0 for all 7 € [0,1]. Suppose that the latter is different
from zero. Then the principal eigenvalue of the matrix F!, which is real and
simple, cannot change sign when 7 changes from 0 to 1. Hence the sign of
the principal eigenvalue of the matrix F’(u*) is the same as for the matrix
Fj(u*). This matrix has the form:

T Us Us Un Uyg Uro
T /-P(T*) 0 0 0 0 0
Us ks —hs 0 0 0 0
Us ks 0 —hg 0 0 0
Fy(u') = Uy ki1 0 0 —h1 0 0
Uy 0 0 0 kg —hg 0
Uio 0 0 k_m@Ug 0 ko +k_1o@U§ —hio
hsg hsg

The principal eigenvalue of this matrix is positive if P'(T*) < 0 and negative
if this inequality is opposite.
O
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Appendix B. Justification of the narrow reaction zone method

Consider equation (26) and suppose for simplicity that F(u) = 0 for
u < wug and F(u) > 0 for up < u < 1. Let u* be the maximal solution of the
equation F(u) = ou (Figure B.7). We will look for a decreasing solution of
equation (26) with the limits:

u(—o0) =u*, u(+o00)=0.

Multiplying the equation (26) by u' and integrate through the hole axis we
obtain:

F(u)du — 30(u*)?

c= . (B.1)

[e.e]

J (W(x))*dz

—00

o=

Along with equation (26) we consider the system of two first-order equations:

u' = p,

{ P = —cp— F(u) + ou. (B-2)
The wave solution of (26) corresponds to the trajectory connecting the sta-
tionary points (u*,0) and (0,0) (Figure B.7). This trajectory coincides with
the line p = Au for 0 < v < ug, where A is a negative solution of the equation

N t+el—o=0.

The integral in the denominator of (B.1) can be approximated by replacing
the trajectory function by the straight line p = —Au:

[e'S) u* 1

/ (u'(x))2dx:/ p(u)du ~ 5)\(u*)2.

—0o0 0

Substituting this expression into (B.1) we obtain the same formula for the
speed as by the narrow reaction zone method (32).

Thus, narrow reaction zone method is equivalent to replacing the equa-
tion trajectory by the straight line. Hence we can conclude that this method
provides the estimate of the speed from below, and it also gives asymptoti-
cally correct result in the limiting case as the support of the function F'(u)
converges to a point.
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Figure B.7: Hllustration of the narrow reaction zone method approximation.

s Appendix C. Parameter values used for the simulations
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Table C.1: Parameter rates used for the modeling of the coagulation cascade.

parameter  value units reference
kit 0.000011  min! [12]
hll 0.5 minfl [38]
k1o 0.00033 min~! [39]
k1o 500 min~! [39]
h1o 1 min ! [40]
kg 20 min~! [41]
hg 0.2 min~! [42]
kso 100 nM~'min! [30]
hgg 100 min_l [30]
ks 0.00001 min ! [30]
hs 0.31 min~! [43]
ks 0.17 min~! 30]
hs 0.31 min ! 30]
k‘510 100 nM_lmin_l [30]
h510 100 minfl [30]
ko 2.45 min~! [44]
ks 2000 min ! [44]
ho 1.45 min ! [33]
Ko, 58 nM [44]
Kop 210 nM [44]
D 0.0037  mm*min~! 30]
T, 1400 nM 1]
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