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Abstract

One of the main characteristics of blood coagulation is the speed of clot
growth. This parameter strongly depends on the speed of propagation of
the thrombin concentration in blood plasma. In the current work we con-
sider a mathematical model of the coagulation cascade and study existence,
stability and speed of propagation of the reaction-diffusion waves of blood
coagulation. We also develop a simplified one-equation model that reflects
the main features of the thrombin wave propagation. For this equation we
estimate the wave speed analytically. The resulting formulas provide a good
approximation for the speed of wave propagation in a more complex model
as well as for the experimental data.
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1. Introduction1

The main function of the coagulation system is terminating bleeding,2

caused by the vessel wall damage by covering the injury site with a fibrin3

clot. The reaction of fibrin polymerization appears at the final stage of the4

proteolytic enzymatic cascade where the activated clotting factors act as5

catalysts for activation of the others [1, 2]. Mature form of fibrin molecules6

can aggregate into long branching fibers and form a complex network which7

serves as a thrombus scaffold. The key enzyme of the coagulation cascade8

is thrombin as it catalyzes fibrinogen conversion to fibrin and distribution of9

the thrombin concentration has a crucial influence on the kinetics of the clot10

formation [3, 4, 1]. To prevent the spontaneous formation of thrombi the ac-11

tivation reactions are regulated by the action of plasma inhibitors [5, 6, 7, 8].12

The balance between coagulation and anti-coagulation systems is important13

for the normal organism functioning and any alternations can lead to the se-14

vere pathological states: thrombosis or, on the contrary, disseminative bleed-15

ing [9, 10].16

The key enzyme of the coagulation cascade is thrombin since it catalyzes17

fibrinogen cleavage to fibrin which in turn forms hemostatic clot. Formation18

of thrombin appears due to the prothrombin activation in the coagulation19

cascade. The process can be launched by the tissue factor expressed to20

the blood flow in case of the endothelium rupture (extrinsic pathway), or21

through the activation of factor XII which triggers activation of factor XI in22

case of the contact with the foreign surface (contact activation) [2, 11, 12].23

Both pathways lead to the activation of factor X that contributes to the24

prothrombin conversion to thrombin [2]. Once the thrombin concentration25

reaches the threshold value, further prothrombin activation takes place due to26

the positive feedback loops of the coagulation cascade (intrinsic pathway) [11,27

2, 13]. Thrombin controls activation of factor XI [12] and also of factors V [7]28

and VIII whose activated forms (Va, VIIIa) increase catalytic activity of29

factors Xa and IXa by formation of the prothrombinase and intrinsic kinase30

complexes respectively [14, 2, 15, 16] (Fig. 1).31

Influence of different factors on the coagulation process was studied both32

experimentally and using theoretical approaches. As compared to the ex-33

periment, parameters in theoretical studies can be varied much easier allow-34

ing to detect not only experimentally observed regimes of blood coagula-35

tion [17, 18, 19, 20, 21] but also to suppose their possible variations for the36

conditions that are hard to reproduce in the experiment [22]. Model results37
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Figure 1: The main activation reactions of the intrinsic pathway of the coagulation cascade.
Thrombin (IIa) catalyzes activation of factors V, VIII, XI; factors XIa and IXa catalyze
activation of factors IX and X respectively; factors VIIIa and Va form active complexes
with factors IXa and Xa respectively and further increase thrombin production.

also provide data about the possible spatiotemporal distribution of all the38

blood factors participating in the coagulation cascade, while the main pa-39

rameter used to measure the dynamics of the clot growth experimentally is40

fibrin clot density [20, 19, 23, 13, 24].41

One of the main criteria used for the validation of the computational mod-42

els of coagulation system is the spatio-temporal distribution of the throm-43

bin concentration. During the amplification phase of the blood coagulation44

process, thrombin concentration propagates in the direction from the in-45

jury site to the vascular lumen. According to the experimental data, after46

thrombin concentration exceeds some threshold value, the speed of the clot47

growth does not anymore depend on the way of the initial activation of48

the coagulation system [11, 24] and thrombin wave profile stays constant in49

time [14, 20, 25, 26]. In terms of mathematical models, such behavior cor-50

responds to the traveling wave solutions of the system of partial differential51

equations on the reactions of the coagulation cascade [19, 25, 26, 27, 22, 28].52

Despite numerous evidence of the wave behavior of the thrombin con-53

centration profile, theoretical analysis of the observed phenomena is lacking54

in previous model studies of blood coagulation. That is why in our work55

we focus on the detailed theoretical investigation of the mathematical model56
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of the intrinsic pathway of the coagulation system (Section 2). We derive57

conditions on the existence and stability of the traveling wave solutions cor-58

responding to the amplification phase of coagulation cascade (Section 3) and59

demonstrate an important property of their speed of propagation (Section 4).60

We also pay particular attention to the calculation of the speed of throm-61

bin propagation. Serving as an important indicator of blood coagulation62

disorders [9, 10], the speed of thrombin propagation in mathematical mod-63

els is usually measured according to the results of the computational sim-64

ulations [25, 28, 29] or using the combination of analytical and numerical65

approaches as it was done by [27]. In Section 5 of the current work we pro-66

pose an alternative approach and derive theoretical estimates for the speed67

of the thrombin wave propagation by the reduction of the initial system to68

one equation on thrombin concentration. We compare the estimates given69

by analytical formulas with computational values of the speed as well as with70

the experimental data.71

2. Mathematical model72

We consider the following model of the intrinsic pathway of blood coag-73

ulation:74

∂T

∂t
= D∆T +

(
k2U10 + k2

k510
h510

U10U5

)(
1− T

T0

)
− h2T,

∂U5

∂t
= D∆U5 + k5T − h5U5,

∂U8

∂t
= D∆U8 + k8T − h8U8,

∂U9

∂t
= D∆U9 + k9U11 − h9U9,

∂U10

∂t
= D∆U10 + k10U9 + k10

k89
h89

U9U8 − h10U10,

∂U11

∂t
= D∆U11 + k11T − h11U11.

(1)

Here, T , Ui denote the concentrations of thrombin and activated forms of75

the i-th factor respectively, T0 denotes the initial prothrombin concentra-76

tion. First term of each equation corresponds to the diffusion of the factors77

in blood plasma while other terms describe chemical reactions of the coagu-78

lation cascade. ki, ki denote the rates of activation reactions and hi denote79
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inhibition of the activated factors. kij and hij denote the rates of forma-80

tion and inhibition respectively for the intrinsic kinase and prothrombinase81

complexes. Corresponding equation terms have the given form due to the82

assumption of the fast reactions of the complex formation.83

In the current study we focus on the propagation stage of the coagula-84

tion cascade and thus suppose the initial amount of activated factors to be85

formed in the proximity of the vessel wall. Therefore we use step functions86

of thrombin and activated factor concentrations as initial conditions for the87

simulation. In order to take into account the activation of factor XI by fac-88

tor XIIa we take constant influx boundary condition on the left side of the89

domain and zero-flux boundary conditions on the right side.90

The similar model has previously demonstrated a good agreement with91

experimental data [30, 28]. The main assumption of the model concerns92

taking inactivated factor concentrations to be constant. Numerical com-93

putations showed that concentrations of the precursors of active factors do94

not significantly change during the simulation [28]. Therefore, depletion of95

the precursors can be ignored. The only precursor whose concentration was96

considered as variable in the model of [30] is prothrombin. Thus, the first97

equation of our model replaces two following equations considered in [30, 28]:98

∂T

∂t
= D∆T + k2U10

T̄

T̄ +K2m

+ k2
k510
h510

U10U5
T̄

T̄ +K2m

− h2T, (2)

∂T̄

∂t
= D∆T̄ − k2U10

T̄

T̄ +K2m

− k2
k510
h510

U10U5
T̄

T̄ +K2m

, (3)

with T̄ denoting prothrombin concentration. For h2 = 0 both models coin-99

cide, and for low values of h2 they would be very close. For the physiological100

values of thrombin inhibition, in the model of [28] we observe propagation101

of non-monotone thrombin wave while system (1) gives monotone traveling102

waves with higher value of maximal concentration (Fig. 2). Despite this dif-103

ference, the speed of thrombin wave propagation appears to be very close for104

both models (Fig. 2) and thus further we use system (1) as an approximation105

of the thrombin propagation process.106

3. Existence and stability of the traveling wave solutions107

Let us set u = (T, U5, U8, U9, U10, U11). Then system (1) can be written108

in the vector form:109
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Figure 2: Propagation of thrombin wave for the model of [28] (a) and for the reduced
model (1) (b). Concentration profiles are plotted every 2 min of physical time, the speed
of the wave propagation is about 0.05 mm/min. Parameters of the simulations are provided
in Tab. C.1.

∂u

∂t
= D∆u+ F (u), (4)

where F = (F1, ..., F6) is the vector of reaction rates in equations (1). It110

satisfies the following property:111

∂Fi
∂uj
≥ 0, ∀i 6= j.

This class of systems is called monotone systems and has a number of proper-112

ties similar to those for one scalar equation including the maximum principle.113

It allows the proof of existence and stability of the wave solutions for mono-114

tone systems as well as the estimation of the wave propagation speed [31].115

In order to apply these results to the considered system describing intrinsic116

pathway functioning we start with the analysis of the existence and stability117

of the stationary points of system (1).118

3.1. Stationary points of the kinetic system119

Consider the system of ordinary differential equations:120

du

dt
= F (u). (5)

Its equilibrium points satisfy the following relations:121
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U5 =
k5
h5
T, U8 =

k8
h8
T, U11 =

k11
h11

T, U9 =
k9k11
h9h11

T, (6)

U10 =
k9k11

h10h9h11

(
k10T + k10

k89
h89

T 2

)
, (7)

where T is a solution of the equation P (T ) = 0. Here P (T ) = aT 4 + bT 3 +122

cT 2 + dT ,123

a =
k10k89k8k2k5k510k9k11
h89h8h5h10h510h9h11

, d = −k2k10k9k11
h9h11h10

+ h2T0,

b = −k10k89k8k2k5k510k9k11
h89h8h5h10h510h9h11

T0 +
k10k2k5k510k9k11
h5h10h510h9h11

+
k2k10k89k8k9k11
h89h8h9h11

,

c = −k10k2k5k510k9k11
h5h10h510h9h11

T0 +
k2k10k9k11
h9h11

− k2k89k8k9k11
h89h8h9h11h10

T0.

Hence, the stationary points of system (5) can be found through the station-124

ary points T ∗ of the equation125

dT

dt
= −P (T ), (8)

and equalities (6), (7).126

Let us determine the number of positive roots of the polynomial P (T ).127

We set P (T ) = TQ(T ), where Q(T ) = aT 3 + bT 2 + cT + d. The number of128

positive roots of Q(T ) can be found as follows. First, we consider a function129

Q′(T ) = 3aT 2 + 2bT + c. If it has no zeros, then Q(T ) is increasing and has130

one positive root if and only if Q(0) < 0. Otherwise, we denote by T1, T2 the131

nonzero solutions of the equation Q′(T ) = 0: T1,2 = (−b±
√
b2 − 3ac)/(3a).132

Then, the polynomial Q(u) has one positive root in one of the cases:133

• T1 ≤ 0, Q(0) < 0,134

• 0 ≤ T1 < T2, Q(0) < 0 and Q(T1) > 0, Q(T2) > 0 or Q(T1) < 0135

and it has two positive roots if 0 < T2, Q(0) > 0, Q(T2) < 0.136

Stability of the stationary points of system (5) can be determined from137

the stability of stationary points of equation (8). The following theorem138

holds (see Appendix A for the proof).139
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Theorem 1. There is one to one correspondence between stationary solutions140

u∗ = (T ∗, U∗5 , U
∗
8 , U

∗
9 , U

∗
10, U

∗
11) of system (1) and the stationary points T ∗ of141

equation (8) given by (6), (7). The principal eigenvalue of the matrix F ′(u∗)142

is positive (negative) if and only if P ′(T ∗) < 0 (P ′(T ∗) > 0).143

Thus, we can make the following conclusions about the existence and144

stability of stationary points of the kinetic system of equation (5). It always145

has a trivial solution u∗ = 0. It has one (two) positive solution if and only if146

the polynomial P (T ) has one (two) positive root(s). A positive solution u∗147

is stable if and only if P ′(T ∗) > 0.148

3.2. Wave existence and stability149

We can now formulate a theorem on the existence of wave solutions in150

system (1).151

Theorem 2. Suppose that P (T ∗) = 0 for some T ∗ > 0 and P ′(0) 6=152

0, P ′(T ∗) 6= 0. Let u∗ = (T ∗, U∗5 , U
∗
8 , U

∗
9 , U

∗
10, U

∗
11) be the corresponding153

stationary solutions of system (5) determined by relations (6), (7).154

• Monostable case. If there are no other positive roots of the polynomial155

P (T ), then system (1) has monotonically decreasing traveling wave so-156

lutions u(x, t) = w(x− ct) with the limits u(+∞) = 0, u(−∞) = u∗ for157

all values of the speed c greater than or equal to the minimal speed c0,158

• Bistable case. If there is one more positive root of the polynomial P (T )159

in the interval 0 < T < T ∗, then system (1) has a monotonically160

decreasing traveling wave solutions u(x, t) = w(x − ct) with the limits161

u(+∞) = 0, u(−∞) = u∗ for a unique value of c.162

The proof of Theorem 2 follows from the general results on the existence163

of waves for monotone systems of equation [31, 32]. Let us note that the164

conditions on the stability of stationary points follow from the assumption165

of Theorem 2 and Theorem 1. We have P ′(T ∗) > 0 in both cases since it is166

the largest root of the polynomial increasing at infinity. The sign of P ′(0)167

is negative if there is no other root of P (T ) in between of 0 and T ∗ and the168

sign is positive if P (T ) has one more root.169

Monotone traveling wave solutions of monotone systems are asymptoti-170

cally stable [31, 32] that gives global stability in the bistable case. In the171

monostable case the wave is globally stable for the minimal speed c0 and172

stable with respect to small perturbations in a weighted norm for c > c0 [32].173
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The unique wave speed in the bistable case and the minimal wave speed174

in the monostable case admit minimax representations. Below we use such175

representations for the bistable system since this case is more appropriate176

for the applications considered in the current work. Indeed, traveling wave177

solution of system (1) describes propagation of the thrombin concentration178

in blood plasma due to the reactions of the coagulation cascade. In this179

system the convergence to the traveling wave solution takes place only if the180

initial concentrations of blood factors exceed some critical level, otherwise the181

clot formation does not start because of the action of plasma inhibitors. This182

dependency on the initial conditions and stability of zero solution correspond183

to the bistable case. In the monostable case, on the contrary, any small184

perturbation would result in the solution converging to the propagating wave.185

In terms of the coagulation system functioning, monostable case corresponds186

to the spontaneous disseminated coagulation blocking blood circulation.187

Finally, let us note that in Theorem 2 we consider only the case of a188

single positive root of the polynomial and the case of two positive roots. If189

P (T ) has three positive roots the system would be monostable with a stable190

intermediate stationary point. While this case is interesting from the point191

of view of wave existence and stability, it is less relevant for the modeling of192

blood coagulation, and we will not discuss it here.193

4. Speed of wave propagation194

One of the main objectives of this work is to obtain an analytical approx-195

imation of the wave speed for the blood coagulation model (1). We proceed196

in two steps. First, we reduce system (1) to a single equation and justify197

this reduction. Then, we obtain some estimates of the wave speed for one198

reaction-diffusion equation.199

4.1. System reduction200

In order to simplify the presentation, we describe the method of reduction201

for the system of two equations:202

u′′ + cu′ + f(u, v) = 0, (9)

v′′ + cv′ +
1

ε
(au− bv) = 0, (10)
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where ε is a small parameter,
∂f

∂v
> 0 and system (9)–(10) is bistable. If we203

multiply the second equation by ε and take a formal limit as ε→ 0, then we204

have v =
a

b
u, and the first equation can be rewritten as follows:205

u′′ + cu′ + f
(
u,
a

b
u
)

= 0. (11)

Let us recall that the value of the speed c = cε in system (9)–(10) and c = c0206

for the scalar equation (11) are unknown, and in general they are different207

from each other. We will demonstrate that cε → c0 as ε→ 0:208

Theorem 3. The speed of wave propagation for system (9)–(10) converges209

to the speed of the wave propagation for equation (11) as ε→ 0.210

Singular perturbations of traveling waves are extensively studied by [31].211

Here we present another method of proof based on the estimates of the wave212

speed. This method is simpler and gives not only the limiting value of the213

speed for ε = 0 but also the estimates of the speed value for any positive ε.214

In the following sections we describe the approach in details and construct215

the wave speed estimates for system (9)–(10).216

4.2. Wave speed estimate217

We get the following estimates from the minimax representation of the218

wave speed in the bistable case [32] :219

min
(

inf
x
S1(ρ), inf

x
S2(ρ)

)
≤ c ≤ max

(
sup
x
S1(ρ), sup

x
S2(ρ)

)
, (12)

where220

S1(ρ) =
ρ′′1 + f(ρ1, ρ2)

−ρ′1
, S2(ρ) =

ρ′′2 + (aρ1 − bρ2)/ε
−ρ′2

,

ρ = (ρ1, ρ2) is an arbitrary test function continuous together with its second221

derivatives, monotonically decreasing (component-wise) and having the same222

limits at infinity as the wave solution, ρ(+∞) = 0, ρ(−∞) = u∗.223

Let us choose the following test functions:224

ρ1 = u0, ρ2 =
a

b
u0 − εf

(
u0,

a

b
u0

) a

b2
, (13)
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where u0 is the solution of (11). Neglecting the second-order terms with225

respect to ε, we get:226

S1(ρ) =
(
u′′0 + f

(
u0,

a

b
u0 − ε

a

b2
f
(
u0,

a

b
u0

)))
/(−u′0) =(

u′′0 + f
(
u0,

a

b
u0

)
− ε a

b2
fv

(
u0,

a

b
u0

)
f
(
u0,

a

b
u0

))
/(−u′0) = c0 + εϕ(x),

(14)

where227

ϕ(x) =
a

b2u′0
fv

(
u0,

a

b
u0

)
f
(
u0,

a

b
u0

)
,

and c0 is the value of the speed in (11). Next,228

S2(ρ) =
u′′0 + f

(
u0,

a

b
u0

)
− ε

b

(
f
(
u0,

a

b
u0

))′′
−u′0 +

ε

b

(
f
(
u0,

a

b
u0

))′ = c0 + εψ(x), (15)

where229

ψ =
c0
bu′0

(
f
(
u0,

a

b
u0

))′
+

1

bu′0

(
f
(
u0,

a

b
u0

))′′
.

Hence, from (14), (15) we obtain the estimate230

c0 + εmax
{

min
x
ϕ,min

x
ψ
}
≤ c ≤ c0 + εmin

{
max
x

ϕ,max
x

ψ
}
, (16)

where c0 is the wave propagation speed for (11), the functions ϕ(x), ψ(x)231

are bounded. The proof of Theorem 3 follows from this estimate.232

5. One equation model233

5.1. Reduction to the equation on thrombin concentration234

If the reaction rate constants in the equations of system (1) for the vari-235

ables U9, U10, U5 and U8 are sufficiently large, then we can replace these236

equations by the following algebraic relations (Section 4.1):237
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U5 =
k5
h5
T, U8 =

k8
h8
T, U9 =

k9
h9
U11, U10 = U11

k9
h9h10

(
k10 +

k10k89
h89

k8
h8
T

)
.

Then, instead of system (1) we obtain the following system of two equations:238

∂T

∂t
= D∆T + U11

k9
h9h10

(
k10 +

k10k89
h89

k8
h8
T

)(
k2 +

k2k510
h510

k5
h5
T

)(
1− T

T0

)
− h2T,

∂U11

∂t
= D∆U11 + k11T − h11U11.

(17)
Similarly, we can reduce this system to the single equation:239

∂T

∂t
= D∆T+

k9k11
h9h10h11

T

(
k10 +

k10k89
h89

k8
h8
T

)(
k2 +

k2k510
h510

k5
h5
T

)(
1− T

T0

)
−h2T.

(18)
We realize this reduction in two steps in order to compare the one-equation240

model to system (1) as well as to the intermediate model of two equa-241

tions (17). Numerical simulations show that for the values of parameters242

in the physiological range [33, 25], all three models give the wave speed of243

the same order of magnitude (Fig. 3). The two equation model (17) gives a244

better approximation of model (1) than the single equation (18). However,245

the latter demonstrates the same parameter dependence of the wave speed246

as other models. Taking into account the complexity of the initial model (1),247

the approximation provided by one equation is acceptable. Below we obtain248

the analytical formulas for the wave speed for the one equation model.249

5.2. Dimensionless model250

In dimensionless variables251

T = T0u, t =
t̃

h2
, D = D̃h2, (19)

we rewrite equation (18) in the following form:252

∂u

∂t̃
= D̃∆u+M1u (1 +M2u) (1 +M3u) (1− u)− u, (20)

12
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Figure 3: Speed of wave propagation (mm/min) as a function of D (left) and k9 (right).
Solid line: reduced model (1); dashed line: two-equation model (17); dash-dot line: one
equation model (18). Parameters of the simulations are provided in Tab. C.1.

where:

M1 =
k2k9k10k11
h2h9h10

, M2 =
k8k89k10
k10h8h89

T0, M3 =
k2k5k510
k2h5h510

T0.

Analysis of the rate constant values allows us to further simplify the equation.253

As M3 � 1 we can approximate equation (20) by the following equation:254

∂u

∂t̃
= D̃∆u+M1M3u

2 (1 +M2u) (1− u)− u. (21)

Let us note that the first component of the term u21(1+M2u1) corresponds to255

the prothrombin activation by the factor Xa and the second one corresponds256

to the prothrombin activation by the [Va, Xa] complex. Since during the257

propagation phase the rate of activation by prothrombinase complex is several258

orders of magnitude higher than the activation by Xa itself [33], we can259

neglect the first component. Thus, applying the assumption of the detailed260

equilibrium for the second equation, we finally obtain the following equation261

for the thrombin concentration:262

∂u1

∂t̃
= D̃∆u1 + bu31 (1− u1)− u1, (22)

where:263

b = M1M2M3. (23)
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5.3. Wave speed estimate264

Equation (22) can be rewritten in the more general form:265

∂u

∂t
= D∆u+ bun (1− u)− σu. (24)

Traveling wave solution of (24) satisfies the equation:266

Dw′′ + cw′ + bwn(1− w)− σw = 0. (25)

Here we will present two analytical methods to approximate the wave speed.267

5.3.1. Narrow reaction zone method268

One of the methods to estimate the wave speed for the reaction-diffusion269

equation is the narrow reaction zone method developed in combustion the-270

ory [34]. Let us rewrite equation (25) in the form:271

Dw′′ + cw′ + F (w)− σw = 0, F (w) = wn(1− w). (26)

We assume that the reaction takes place at one point x = 0 in the coordinates272

of the moving front. Then, outside of the reaction zone we consider the linear273

equations:274 {
Dw′′ + c1w

′ − σw = 0, x > 0,
Dw′′ + c1w

′ = 0, x < 0.
(27)

These equations should be completed with the jump conditions at the reac-275

tion zone. In order to derive them, we omit the first derivative w′ at the276

reaction zone since it is small in comparison with two other terms:277

Dw′′ + F (w) = 0. (28)

Multiplying (28) by w′ and integrating through the reaction zone we obtain278

the following jump conditions:279

(w′(+0))2 − (w′(−0))2 =
2

D

w∗∫
0

F (w)dw, (29)

considered together with the condition of the continuity of solution w(+0) =280

w(−0).281

Solving (27) we have:282
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w =


w∗, x < 0,

w∗ exp

(
−c−

√
c2 + 4Dσ

2D

)
, x > 0.

(30)

Then, from (29) and (30) we obtain the following equation for the wave speed:283

c1
2 + c1

√
c12 + 4Dσ + 2Dσ = A, A =

4D

w2
∗

w∗∫
0

F (w)dw. (31)

Hence,284

c1 =
A− 2Dσ√

2A
, A = 4bD

(
wn−1∗
n+ 1

− wn∗
n+ 2

)
. (32)

This formula gives a good approximation of the wave speed found numerically285

for n ≥ 3 (Fig. 4). The approximation improves with increasing values of n.286

The obtained formula provides an estimation of the speed from below (see287

Appendix B for the justification of the method).288

2 4 6 8 10 12 14 16 18

0.9

1

1.1

1.2

1.3

1.4

1.5

n

sp
ee

d
 r

at
io

Figure 4: Ratio of wave speeds found numerically and analytically for different values of

n; σ = 0.01, D = 2, b = 10. Solid line:
c

c1
, dashed line

c

c2
. Parameters of the simulations

are provided in Tab. C.1.

5.3.2. Piecewise linear approximation289

Consider equation (26) written in the form290
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Dw′′ + cw′ + f(w) = 0,

where f(w) = wn(1− w)− σw and f(0) = f(w∗) = 0. Let us introduce the291

following approximation of this equation:292

Dw′′ + c2w
′ + f0(w) = 0, (33)

with293

f0(w) =

{
αw, 0 < w < w0,
β(w − w∗), w0 < w < w∗,

(34)

where294

α = f ′(0), β = f ′(w∗). (35)

In case of equation (24) we have:295

α = −σ, β = bnwn−1∗ − b(n+ 1)wn∗ − σ. (36)

We find the value of w0 from the additional condition:296 ∫ w∗

0

f(w)dw =

∫ w∗

0

f0(w)dw. (37)

Hence we obtain the following equation with respect to w0:297

α− β
2

w2
0 + βw∗w0 + r = 0, (38)

where298

r = −βw2
∗ −

∫ w∗

0

f(w)dw. (39)

Taking into account the explicit form of function f(w), we obtain:299

r = bwn+1
∗

(
−n

2
− b

n+ 1

)
+ bwn+2

∗

(
n+ 1

2
+

1

n+ 2

)
+ σw2

∗. (40)

From (38) we get:300

w0 =
−βw∗ +

√
β2w2

∗ − 2(α− β)r

α− β
. (41)

Thus, instead of (33) we consider the following equations:301
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{
Dw′′ + cw′ + β(w − w∗) = 0, x < 0,
Dw′′ + cw′ + αw = 0, x > 0,

(42)

with the additional conditions on the continuity of solution and its first302

derivative:303

w(0) = w0, w′(−0) = w′(+0).

We find the explicit solution:304 
w = (w0 − w∗) exp

(
x

√
c22 − 4βD − c2

2D

)
+ w∗, x < 0,

w = w0 exp

(
x
−
√
c22 − 4αD − c2

2D

)
, x > 0.

(43)

From the condition of continuity of the derivative we obtain the following305

formula:306

c2 =

√
D(αw̄2 − β)√

(w̄ − 1)(αw̄2 − βw̄)
, w̄ =

w0

w0 − w∗
. (44)

It gives a good approximation of the wave speed for equation (26) (Fig. 4).307

5.4. Comparison of the estimated speed of the wave propagation with the308

complete model and experimental data309

5.4.1. Comparison of the estimated speed with the computational speed in310

system (1)311

Considering system (1) and taking the parameter values for (32), (44)312

according to (23), we approximate the speed of wave propagation by the313

following formula obtained by the narrow reaction zone method:314

c1 =
√
D
bT 2

0 −
4

5
bT 3

0 − 2h2√
2

(
bT 2

0 −
4

5
bT 3

0

) , (45)

where315

b =
k9k11k10k8k89k2k5k510T

2
0

h9h10h11h8h89h5h510
, (46)
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and by the piecewise linear approximation:316

c2 =

√
D
(
−3bT0

2 − h2T + 4bT 3
0 − h2

)√
(T0 − 1)T

(
−h2T − 3bT 2

0 + 4bT 3
0 + h2

) , (47)

where:317

T =
T∗

T∗ − T0
, T∗ =

−3bT 2
0 + 4bT 4

0 + h2
4bT 2

0 − 3bT0
+√

(3bT 2
0 − 4bT 3

0 − h2)
2 − 2b(4T0 − 3)T 2

0

(
−3

2
bT 2

0 − b2

4
T 2
0 + 11

5
bT 3

0 + h2
)

4bT 2
0 − 3bT0

.
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Figure 5: Speeds of wave propagation (mm/min) as function of D (left) and k9 (right).
Solid line: model (1); dashed line: narrow reaction zone approximation; dash-dot line:
piecewise linear approximation. Parameters of the simulations are provided in Tab. C.1.

We compare the speed of wave propagation for model (1) found numer-318

ically with the analytical formulas (Fig. 5). As it was demonstrated above,319

the computational speed for the one-equation model is higher than for the320

complete model (Fig. 3). The analytical formulas for the speed of the wave321

propagation for one-equation model in turn provide the estimates from be-322

low (Fig. 4). As the result, the analytical estimates for one equation give323

better approximations of the speed in the complete model than the numerical324
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speed for one equation (Fig. 5). If we then compare two different analytical325

estimates for the wave speed in one-equation model, we can conclude that326

narrow reaction zone method gives the speed further from the one-equation327

computational speed than piecewise linear approximation (Fig. 4) but at the328

same time it better approximates the wave speed in the complete model (the329

narrow reaction zone speed is 1.5 times higher than the computational one).330

5.4.2. Comparison with experimental data331

The speed of clot formation has crucial influence on the organism physi-332

ology. Coagulation disorders such as hemophilia A, B or C are the result of333

severe deficiency of the clotting factors. The effect of this deficiency on the334

propagation phase is the most critical for situation in vivo [25, 35, 36]. Speed335

of the thrombin propagation in mathematical model of the intrinsic pathway336

functioning can provide estimation of the clot growth rate dependence on337

different factors.338

As an example, here we consider the experimental results obtained by [25]339

on the patients with hemophilia B. Authors examined the effect of factor IX340

deficiency on the spatial clotting dynamics. Plasma used was obtained from341

hemophiliacs with different extent of the disease and from severe hemophil-342

iacs treated with factor IX concentrate (Ahemphil B). Clotting process was343

launched through the intrinsic pathway by small artificial contact activation344

by plastic material. The obtained results show that the most pronounced345

changes in clotting kinetics occurred at factor IX activity less than 20% [25].346

Experimental data correlate well with the results given by the analytical347

estimate of the thrombin propagation speed (Fig. 6). In the lack of precise348

kinetic constants we had to fit the approximated speed value at the first point349

of the plot corresponding to 1% of factor IX activity. While fitting, we varied350

only the value of the parameter b. In terms of our model, factor IX activity is351

reflected by the value of the parameter k9. Thus, analytical estimate provided352

by (45) and (47) are plotted as functions of k9 and give the values close to353

the experimental ones for all the considered range.354

6. Discussion and conclusions355

Spatio-temporal dynamics of clot growth is of crucial importance for the356

normal organism functioning. The key stage of the blood coagulation pro-357

cess determining the dynamics of the clot formation is cumulative thrombin358

production due to the intrinsic pathway functioning. Propagating from the359
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Figure 6: Speeds of the thrombin wave propagation (mm/min) as function of percentage
of factor IX activity. Dots: experimental data [25]; dashed line: narrow reaction zone
approximation; dash-dot line: piecewise linear approximation (Tab. 1)

injury site with constant velocity during the amplification phase, thrombin360

concentration can be modeled as traveling wave solutions in the PDE system361

on plasma factor concentrations [26]. In the current work we derive condi-362

tions on the existence and stability of the traveling wave solutions for the363

system describing intrinsic pathway of blood coagulation cascade.364

Despite the general character of the methods used in this work, the de-365

veloped approaches imply some limitations. In our model we considered only366

a part of the coagulation cascade (intrinsic pathway) without taking into ac-367

count neither the initial activation, nor the role of the activated protein C368

pathway. In terms of our model, initial thrombin formation appears on the369

left boundary of the domain. However, since the problem of the existence of370

the traveling wave solutions is considered on the whole axis, the solutions do371

not depend on the boundary conditions. The independence of the speed of372

the thrombin wave propagation during the amplification phase on the nature373

of the stimuli that launched the clotting process was also demonstrated in374

multiple experimental studies [2, 11, 25]. Then, inhibition role of the acti-375

vated protein C appears only in the proximity of the vessel wall due to its376

activation by thrombomodulin and thus does not directly impact thrombin377

propagation on the distance from the vessel wall [37] and we do not incor-378

porate it in our model. As the result, considered model is monotone, that is379

equivalent to positive contribution of all factors to the activation reactions380

in terms of the chemical reaction network. This important feature of the381

coagulation cascade model allows us to study existence and properties of its382
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wave solutions.383

The most important parameter determining the dynamics of clot growth384

is the speed of the thrombin wave propagation or, in terms of the mathemat-385

ical model, the speed of propagation of the reaction-diffusion wave. In the386

current work we obtain analytical formula for the speed of wave propagation387

in the model of blood coagulation. We reduce the system of equations to388

one equation on the thrombin concentration and then determine the wave389

speed for this equation. The method of reduction is based on the minimax390

representation of the wave speed applicable for monotone reaction-diffusion391

systems. One-equation model gives the speed of the wave propagation above392

the wave speed obtained in the initial system. The difference dues to the as-393

sumption on the fast reactions applied for the derivation of the one-equation394

model. Analytical estimates obtained for the wave speed in one-equation395

model in turn provide its approximation from below. Since narrow reaction396

zone method was originally developed for the description of the flame front397

propagation in the combustion theory with the exponential function in reac-398

tion term. In our work thrombin activation is described with the polynomial399

of the third degree that makes the obtained estimate less precise. Never-400

theless, the obtained analytical estimates give good approximation of both401

computational and experimental speed of the thrombin propagation.402

The described approach for system analysis and estimation of the wave403

propagation speed can be further expanded on other cascade models. An-404

alytical formulas for the reaction front propagation can provide important405

information on the system response on different factors and is of big impor-406

tance for the model validation.407

Appendix A. Proof of the Theorem 1408

Proof. Along with the system system409

du

dt
= F (u), (A.1)

consider the system410

du

dt
= Fτ (u), (A.2)

which depends on the parameter τ ∈ [0, 1]. They differ only by the equation411

for T which is considered now in the following form:412
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dT

dt
= (τU10 + (1− τ)ϕ10(T ))

(
k2 + k2

k510
h510

(τU5 + (1− τ)ϕ5(T ))

)(
1− T

T0

)
−h2T.

Here the functions ϕi(T ) are determined by the equalities:413

ϕ11(T ) =
k11
h11

T, ϕ9(T ) =
k9k11
h9h11

T, ϕ5(T ) =
k5
h5
T, ϕ8(T ) =

k8
h8
T,

ϕ10(T ) =
k9k11

h10h9h11

(
k10T + k10

k89
h89

T 2

)
.

We can express Ui, i = 5, 8, 9, 10, 11 as functions of T from the corresponding414

equations in (A.1) or, the same, from (A.2): Ui = ϕi(T ). Therefore the415

solutions of the system of equations Fτ (T ) = 0 coincide with the solutions of416

the system F (T ) = 0.417

Thus, systems (A.1) and (A.2) have the same stationary solutions for all418

τ ∈ [0, 1]. For τ = 1 these two systems coincide. For τ = 0 the equation419

for T in (A.2) does not depend on other variables. This will allow us to420

determined the eigenvalues of the corresponding linearized matrix.421

It can be verified by the direct calculations that det F ′τ (u
∗) = 0 if and422

only if detF ′(u∗) = 0 for all τ ∈ [0, 1]. Suppose that the latter is different423

from zero. Then the principal eigenvalue of the matrix F ′τ , which is real and424

simple, cannot change sign when τ changes from 0 to 1. Hence the sign of425

the principal eigenvalue of the matrix F ′(u∗) is the same as for the matrix426

F ′0(u
∗). This matrix has the form:427

F ′0(u
∗) =



T U5 U8 U11 U9 U10

T −P ′(T ∗) 0 0 0 0 0
U5 k5 −h5 0 0 0 0
U8 k8 0 −h8 0 0 0
U11 k11 0 0 −h11 0 0
U9 0 0 0 k9 −h9 0

U10 0 0 k10
k89
h89

U∗9 0 k10 + k10
k89
h89

U∗8 −h10


The principal eigenvalue of this matrix is positive if P ′(T ∗) < 0 and negative428

if this inequality is opposite.429

430
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Appendix B. Justification of the narrow reaction zone method431

Consider equation (26) and suppose for simplicity that F (u) = 0 for432

u ≤ u0 and F (u) > 0 for u0 < u < 1. Let u∗ be the maximal solution of the433

equation F (u) = σu (Figure B.7). We will look for a decreasing solution of434

equation (26) with the limits:435

u(−∞) = u∗, u(+∞) = 0.

Multiplying the equation (26) by u′ and integrate through the hole axis we436

obtain:437

c =

u∗∫
0

F (u)du− 1
2
σ(u∗)2

∞∫
−∞

(u′(x))2dx

. (B.1)

Along with equation (26) we consider the system of two first-order equations:438 {
u′ = p,
p′ = −cp− F (u) + σu.

(B.2)

The wave solution of (26) corresponds to the trajectory connecting the sta-439

tionary points (u∗, 0) and (0, 0) (Figure B.7). This trajectory coincides with440

the line p = λu for 0 < u ≤ u0, where λ is a negative solution of the equation441

λ2 + cλ− σ = 0.

The integral in the denominator of (B.1) can be approximated by replacing442

the trajectory function by the straight line p = −λu:443 ∫ ∞
−∞

(u′(x))2dx =

∫ u∗

0

p(u)du ≈ 1

2
λ(u∗)2.

Substituting this expression into (B.1) we obtain the same formula for the444

speed as by the narrow reaction zone method (32).445

Thus, narrow reaction zone method is equivalent to replacing the equa-446

tion trajectory by the straight line. Hence we can conclude that this method447

provides the estimate of the speed from below, and it also gives asymptoti-448

cally correct result in the limiting case as the support of the function F (u)449

converges to a point.450
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Figure B.7: Illustration of the narrow reaction zone method approximation.

Appendix C. Parameter values used for the simulations451
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Table C.1: Parameter rates used for the modeling of the coagulation cascade.

parameter value units reference
k11 0.000011 min−1 [12]
h11 0.5 min−1 [38]
k10 0.00033 min−1 [39]

k10 500 min−1 [39]
h10 1 min−1 [40]
k9 20 min−1 [41]
h9 0.2 min−1 [42]
k89 100 nM−1min−1 [30]
h89 100 min−1 [30]
k8 0.00001 min−1 [30]
h8 0.31 min−1 [43]
k5 0.17 min−1 [30]
h5 0.31 min−1 [30]
k510 100 nM−1min−1 [30]
h510 100 min−1 [30]
k2 2.45 min−1 [44]

k2 2000 min−1 [44]
h2 1.45 min−1 [33]
K2m 58 nM [44]
K2m 210 nM [44]
D 0.0037 mm2min−1 [30]
T0 1400 nM [1]
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[4] H. C. Hemker, S. Béguin, Thrombin generation in plasma: its assessment459

via the endogenous thrombin potential., Thrombosis and haemostasis460

74 (1) (1995) 134–8.461

25



[5] J. Pieters, G. Willems, H. C. Hemker, T. Lindhout, Inhibition of Factor462

Xa and Factor X , by Antithrombin III / Heparin during Factor X463

Activation, The Journal of biological chemistry 263 (30) (1988) 15313–464

15318.465

[6] S. J. Koppelman, T. M. Hackeng, J. J. Sixma, B. N. Bouma, Inhibition466

of the Intrinsic Factor X Activating Complex by Protein S: Evidence467

for a Specific Binding of Protein S to Factor VIII, Blood 86 (3) (1995)468

1062–1071.469

[7] D. D. Monkovic, P. B. Tracy, Functional characterization of human470

platelet-released factor V and its activation by factor Xa and throm-471

bin, J Biol Chem 265 (18) (1990) 17132–17141.472

[8] M. A. Panteleev, V. I. Zarnitsina, F. I. Ataullakhanov, Tissue factor473

pathway inhibitor: a possible mechanism of action, Eur. J. Biochem.474

269 (2002) 118–122. doi:10.1046/j.1432-1033.2002.02818.x.475

[9] R. W. Colman, Hemostasis and thrombosis: basic principles and clinical476

practice, lippincott Edition, 2006.477

[10] A. T. Askari, A. M. Lincoff, Antithrombotic Drug Therapy in Cardio-478

vascular Disease, no. 1, 2010. doi:10.1007/978-1-60327-235-3.479

[11] T. Orfeo, K. E. Brummel-Ziedins, M. Gissel, S. Butenas, K. G.480

Mann, The nature of the stable blood clot procoagulant activi-481

ties, Journal of Biological Chemistry 283 (15) (2008) 9776–9786.482

doi:10.1074/jbc.M707435200.483

[12] D. Gailani, G. J. Broze, Factor XI Activation in a Revised Model of484

Blood Coagulation, Science 253 (5022) (1991) 909–912.485

[13] M. A. Panteleev, M. V. Ovanesov, D. A. Kireev, A. M. Shibeko,486

E. I. Sinauridze, N. M. Ananyeva, A. A. Butylin, E. L. Saenko,487

F. I. Ataullakhanov, Spatial Propagation and Localization of Blood488

Coagulation Are Regulated by Intrinsic and Protein C Path-489

ways, Respectively, Biophysical Journal 90 (5) (2006) 1489–1500.490

doi:10.1529/biophysj.105.069062.491

[14] S. Butenas, T. Orfeo, M. T. Gissel, K. E. Brummel, K. G. Mann, The492

significance of circulating factor IXa in blood, Biochemistry (2004) 1–41.493

26



[15] R. J. Baugh, S. Krishnaswamy, Role of the Activation Peptide Domain494

in Human Factor X Activation by the Extrinsic Xase Complex, J Biol495

Chem 271 (27) (1996) 16126–16134.496

[16] J. M. Scandura, P. N. Walsh, Factor X bound to the surface of activated497

human platelets is preferentially activated by platelet-bound factor IXa,498

Biochemistry 35 (27) (1996) 8903–13. doi:10.1021/bi9525031.499

[17] W. Stortelder, P. W. Hemker, Mathematical modelling in blood co-500

agulation ; Simulation and parameter estimation, Report - Modelling,501

analysis and simulation 20 (1997) 1–11.502

[18] K. Leiderman, A. L. Fogelson, Grow with the flow: A spatial-503

temporal model of platelet deposition and blood coagulation un-504

der flow, Mathematical Medicine and Biology 28 (1) (2011) 47–84.505

doi:10.1093/imammb/dqq005.506

[19] Y. V. Krasotkina, E. I. Sinauridze, F. I. Ataullakhanov, Spatiotem-507

poral dynamics of fibrin formation and spreading of active thrombin508

entering non-recalcified plasma by diffusion, Biochimica et Biophysica509

Acta - General Subjects 1474 (3) (2000) 337–345. doi:10.1016/S0304-510

4165(00)00019-2.511

[20] F. I. Ataullakhanov, G. T. Guria, V. I. Sarbash, R. I. Volkova,512

Spatiotemporal dynamics of clotting and pattern formation in hu-513

man blood., Biochimica et biophysica acta 1425 (3) (1998) 453–468.514

doi:10.1016/S0304-4165(98)00102-0.515

[21] A. Bouchnita, A. Tosenberger, V. Volpert, On the regimes of516

blood coagulation, Applied Mathematics Letters 51 (2016) 74–79.517

doi:10.1016/j.aml.2015.07.010.518

[22] V. I. Zarnitsina, F. I. Ataullakhanov, A. I. Lobanov, O. L. Morozova,519

Dynamics of spatially nonuniform patterning in the model of blood co-520

agulation, Chaos 11 (1) (2001) 57–70. doi:10.1063/1.1345728.521

[23] F. I. Ataullakhanov, Y. V. Krasotkina, V. I. Sarbash, R. I. Volkova, E. I.522

Sinauridse, A. Y. Kondratovich, Spatio-Temporal Dynamics of Blood523

Coagulation and Pattern Formation: a Theoretical Approach, Interna-524

tional Journal of Bifurcation and Chaos 12 (9) (2002) 1969–1983.525

27



[24] M. V. Ovasenov, N. M. Ananyeva, M. A. Panteleev, F. I. Ataullakhanov,526

E. L. Saenko, Initiation and propagation of coagulation from tis-527

sue factor-benfin cell monolayers to plasma: initiator cells do not528

regulate spatial growth rate, J Thromb Haemost 3 (2005) 321–31.529

arXiv:arXiv:1011.1669v3, doi:10.1017/CBO9781107415324.004.530

[25] A. Tokarev, Y. Krasotkina, M. Ovanesov, M. Panteleev, M. Azhi-531

girova, Spatial Dynamics of Contact-Activated Fibrin Clot Forma-532

tion in vitro and in silico in Haemophilia B : Effects of Severity and533

Ahemphil B Treatment, Math. Model. Nat. Phenom. 1 (2) (2006) 124–534

137. doi:10.1051/mmnp:2008007.535

[26] N. M. Dashkevich, M. V. Ovanesov, . N. Balandina, S. S. Karamzin,536

P. I. Shestakov, N. P. Soshitova, A. A. Tokarev, M. A. Panteleev, F. I.537

Ataullakhanov, Thrombin activity propagates in space during blood co-538

agulation as an excitation wave, Biophysical Journal 103 (10) (2012)539

2233–2240. doi:10.1016/j.bpj.2012.10.011.540

[27] E. A. Pogorelova, A. I. Lobanov, Influence of enzymatic reactions541

on blood coagulation autowave, Biophysics 59 (1) (2014) 110–118.542

doi:10.1134/S0006350914010151.543

[28] V. I. Zarnitsina, A. V. Pokhilko, F. I. Ataullakhanov, A mathematical544

model for the spatio-temporal dynamics of intrinsic pathway of blood545

coagulation. II. Results, Thrombosis Research 84 (5) (1996) 333–344.546

doi:10.1016/S0049-3848(96)00197-1.547

[29] A. I. Lobanov, T. K. Starozhilova, The effect of convective flows on blood548

coagulation processes., Pathophysiology of haemostasis and thrombosis549

34 (2-3) (2005) 121–34. doi:10.1159/000089932.550

[30] V. I. Zarnitsina, A. V. Pokhilko, F. I. Ataullakhanov, A mathematical551

model for the spatio-temporal dynamics of intrinsic pathway of blood co-552

agulation. I. The model description, Thrombosis Research 84 (4) (1996)553

225–236. doi:10.1016/S0049-3848(96)00182-X.554

[31] V. Volpert, Elliptic Partial Differential Equations, Vol. 104, 2014.555

[32] A. I. Volpert, V. A. Volpert, V. A. Volpert, Traveling Wave Solutions of556

Parabolic Systems, Vol. 140, 1994.557

28



[33] M. F. Hockin, K. C. Jones, S. J. Everse, K. G. Mann, A model for558

the stoichiometric regulation of blood coagulation, Journal of Biological559

Chemistry 277 (21) (2002) 18322–18333. doi:10.1074/jbc.M201173200.560

[34] Y. B. Zeldovich, D. A. Frank-Kamenetskii, A theory of thermal propa-561

gation of flame, Acta Physicochim. USSR 9.562

[35] M. V. Ovanesov, E. G. Lopatina, E. L. Saenko, N. M. Ananyeva, L. I.563

Ul’yanova, O. P. Plyushch, A. A. Butilin, F. I. Ataullakhanov, Effect564

of factor VIII on tissue factor-initiated spatial clot growth, Thromb.565

Haemost. 2 (2003) 235–242.566

[36] M. V. Ovanesov, J. V. Krasotkina, L. I. Ul’yanova, K. V. Abushinova,567

O. P. Plyushch, S. P. Domogatskii, A. I. Vorob’ev, F. I. Ataullakhanov,568

Hemophilia A and B are associated with abnormal spatial dynamics of569

clot growth, Biochimica et Biophysica Acta - General Subjects 1572 (1)570

(2002) 45–57. doi:10.1016/S0304-4165(02)00278-7.571

[37] M. Anand, K. Rajagopal, K. R. Rajagopal, A model for the for-572

mation, growth, and lysis of clots in quiescent plasma. A compar-573

ison between the effects of antithrombin III deficiency and protein574

C deficiency, Journal of Theoretical Biology 253 (4) (2008) 725–738.575

doi:10.1016/j.jtbi.2008.04.015.576

[38] C. F. Scott, M. Schapira, H. L. James, A. B. Cohen, R. W. Colman,577

Inactivation of factor XIa by plasma protease inhibitors: predominant578

role of alpha 1-protease inhibitor and protective effect of high molecular579

weight kininogen., The Journal of clinical investigation 69 (4) (1982)580

844–52.581

URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=370139&tool=pmcentrez&rendertype=abstract582

[39] G. Van Dieijen, G. Tans, J. Rosing, H. C. Hemker, The role of phospho-583

lipid and factor VIII(a) in the activation of bovine factor X, Journal of584

Biological Chemistry 256 (7) (1981) 3433–3442.585

[40] J. Jesty, Analysis of the generation and inhibition of activated coagula-586

tion factor X in pure systems and in human plasma, Journal of Biological587

Chemistry 261 (19) (1986) 8695–8702.588

29



[41] F. I. Ataullakhanov, A. V. Pohilko, E. I. Sinauridze, R. I. Volkova, Cal-589

cium threshold in human plasma clotting kinetics, Thrombosis Research590

75 (4) (1994) 383–394. doi:10.1016/0049-3848(94)90253-4.591

[42] J. S. Rosenberg, P. W. Mckenna, Inhibition of Human Factor IX , by592

Human Antithrombin, Journal of Biological Chemistry 250 (23) (1975)593

8883–8889.594

[43] P. F. Neuenschwander, J. Jesty, Thrombin-activated and factor Xa-595

activated human factor VIII: Differences in cofactor activity and decay596

rate, Archives of Biochemistry and Biophysics 296 (2) (1992) 426–434.597

doi:10.1016/0003-9861(92)90593-L.598

[44] J. Rosing, G. Tans, J. W. P. Goversriemslag, R. F. A. Zwaal, H. C.599

Hemker, Role of Phospholipids and Factor-Va in the Prothrombinase600

Complex, Journal of Biological Chemistry 255 (1) (1980) 274–283.601

URL <Go to ISI>://A1980JB74900042602

30


