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—— Abstract

We prove that the Oritatami model of molecular folding is capable of embedding arbitrary computations in
the folding process itself, by a local energy optimisation process, similar to how actual biomolecules such as DNA
or RNA fold into complex shapes and functions.

This result is the rst principled construction in this research direction, and motivated the development of
a generic toolbox, easily reusable in future work. One major challenge addressed by our design is that choosing
the interactions to get the folding to react to its environment is NP-complete. Our techniques bypass this issue
by allowing some exibility in the shapes, which allows to encode di erent functions in di erent parts of the
sequence (instead of using the same part of the sequence).

However, the number of possible interactions between these functions remains quite large, and each interaction
also involves a small combinatorial optimisation problem. One of the major challenges we faced was to decompose
our programming into various levels of abstraction, allowing to prove their correctness thoroughly in a human
readable/checkable form. We hope this framework can be generalised to other discrete dynamical systems, where
proofs of such large objects are often di cult to get.
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Proving the Turing Universality of Oritatami Co-Transcriptional Folding

1 Introduction

Molecular folding is the biological process that turns one-dimensional sequences into three-dimensional
shapes. In the particular context of proteins and RNA, this process has attracted a lot of attention, as
it could allow us to engineer our own molecules, and therefore to interact with biological functions. The po-
tential applications range from using bacteria as computing devices or nano-factories, to producing targeted
drugs to cure speci c diseases with little to no side e ects. More fundamentally, understanding molecu-
lar programming by engineering our own molecules will shed a new light on how these mechanisms, and
evolution in particular, work in nature.

If we are to have such an engineering discipline crafting computing molecules with arbitrary shapes,
we need a theory of these systems to inform of their capabilities and give hints for building actual molecules
in the wet lab.

Unfortunately, we seem quite far from a full understanding of these mechanisms. From a practical
perspective, the latest e orts to solve the protein design problem [19] are still quite far from a complete
general methodology. From a theoretical perspective, it has been shown that, in di erent variants of the
hydrophobic-hydrophilic (HP) model [6], the problem of predicting the most likely geometry (or conformation)
of a sequence is NP-complete [20, 17, 2, 3, 5], both in two and three dimensional models. Approximation
algorithms have also been developped [1, 16].

However, the e ective speed of molecular folding in actual cells seems to contradict these hardness results.
Moreover, its reliability and relative robustness to small changes in conditions or sequences seem to rule out
approximations as well.

To understand these phenomena, two essential ingredients of molecular dynamics need to be considered:
thermodynamics which governs probability distributions over shapes in the long run, andkinetics, which is
the step-by-step movements of molecules in solution. Some models of tile assembly, such as the abstract Tile
Assembly Model [21, 18] chose to ignore thermodynamics and focused on kinetics, and got excellent results
in the lab. Models of molecular folding, like the HP model, focus on hardness results, and for that reason
ignore kinetics and work entirely on thermodynamics.

Our goal with Oritatami [11] is to try to understand the kinetics of folding, and in the future get a more
complete picture including both aspects. The rationale of this choice is that the wetlab version of Oritatami
already exists, and has been successfully used to engineer shapes with RNA in the wetlab [10]. The main
feature of RNA that motivates our approach is the fact that RNA folds while being produced, which is known
as co-transcriptional folding. This process has been shown to play an important role in the nal shape of
biomolecules [12], especially in the case of RNA [7].

1.1 Brief overview of the model

In Oritatami, we consider a nite set of bead typesand a periodic sequence dbeads each of a speci c bead
type. Beads are attracted to each other according to a xed symmetric relation, and in any folding (a folding
is also called aconformation), whenever two beads attracted to each other are found at adjacent positions,
a bond is formed between them.

At each step, the latest few beads in the sequence are allowed to explore all possible positions, and we
keep only those positions that minimise the energy, or otherwise put, those positions that maximise the
number of bonds in the folding. Beads are a metaphor for domains, i.e. subsequences, in RNA and DNA.

1.2 Main results

In this paper, we construct a universal set of 520 bead types, along with a single universal attraction rule
for these bead types, with which we can simulate any tag system, and therefore any Turing machin® ,
within a polynomial factor of the running time M .

This construction motivated the development of a toolbox composed of two things: common structures
that can react to their environment, and solutions to combine these structures into larger constructions.
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| Theorem 1. There is a nite universal set of beadsB and an attraction rule B2 such that for any
Turing machine M running in time t on input x (where t is possibly in nite), there is a seed structure

2 BZ of size O(jxj), and a periodic sequencev of beads fromB (with period of length O(1)) such that w
folds into a structure of size O(t3 logt).t

Our construction is composed of di erent modules or subsequences, each building di erent sub-shapes
of the global conformation. This result had to overcome a number of important challenges, presented in
Sections 1.3 and 1.4.

1.3 Proving our designs

The main challenge we faced in this paper was the size of our constructions: indeed, while we developed
higher-level geometric constructs to program useful shapes, there is a large number of possible interactions
between all di erent parts of the sequence.

Getting solid proofs on large objects is a common problem in discrete dynamical systems, for instance
on cellular automata [8, 4] or tile assembly systems [13]. In this paper, we introduce a general framework to
deal with that complexity, and prove our constructions rigorously. This method proceeds by decomposing
the sequence into di erent modules and the space into di erent areas where exactly one module grows. We
can then reason on the modules separately, and only deal with interactions at the border between all possible
modules that can have a common border.

1.4 Design challenges

As shown in our previous results [9], the problem of choosing an attraction rule so that a single sequence folds
into di erent shapes depending on its environment, is NP-complete. That problem is called thesequence
design problemin [9].

In the present paper, since our sequence is periodic and has a small number of bead types, a single module
can interact with a large number of other modules (including previous copies of itself).

We introduce a tool to cope with such situations, calledsocks The goal is to shift the sequence, so that
di erent parts interact with the various environments. Socks work as follows: whenever di erent copies of a

with a large number of di erent unrelated environments (where an environment is a local con guration of
beads), we reduced the number of environments by folding a small part of the molecule, befoiie into a
compact useless shape (with the shape of a sock), so that only a later pars; ;sj+1;::: with j>i + k of
the sequence interact with a subset of all environments.

This allows us to dispatch the di erent interactions to di erent parts of the sequence.

1.5 Relationship to other work

This construction generalises our previous results, where we built an arbitrary-width counter with a xed
periodic sequence [9]. In that result, all parts of the structure are densely packed into parallelograms, and
these structures react to their environment by folding into a di erent hamiltonian path in each parallelogram.

That result required tedious manual tweaking of the rule, so that di erent parts of the sequence interacted
nicely with each other. Moreover, nding useful hamiltonian paths is hard, which means that our techniques
could not scale well.

In this paper, we solve these issues to a large extent, using the toolbox we introduce in Section 6. Note
that the dynamics used is slightly changed compared to [9]. We believe the dynamics used here to be more
intuitive, and our previous negative results (NP-completeness of rule design) still hold.

! The constants in the O()s only depend on the size of the simulated Turing machine.
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2 De nitions and Preliminary Results

The empty word is denoted by". For 16 i 6 j 6 n, by w[i:;j ], we refer to the factor wiwi+;  w; of w.

2.1 Oritatami Systems

Let B be a nite set of bead types. A conformation c of a bead sequencev 2 B [ BN is a directed self-
avoiding path in the triangular lattice T,2 where for all integer i, vertex ¢ of ¢ is labelled by w;. ¢ is the
position in T of the (i + 1) th bead, of type w;, in conformation c. A partial conformation of a sequencew is
a conformation of a pre x of w.

For any partial conformation c of some sequence, an elongation of ¢ by k beads (ork-elongation) is a
partial conformation of w of length j¢j + k. We denote by G, the set of all partial conformations of w (the
index w will be omitted when the context is clear). We denote by E(c; k) the set of all k-elongations of a
partial conformation c of a sequencew.

Oritatami systems. An Oritatami system O = (w; ;; ) is composed of (1) a (possibly in nite) bead
sequencew, called the primary structure, (2) an attraction rule , which is a symmetric relation B2, (3)a
parameter called thedelay timeand (4) , an initial conformation of w, called the seed O is said periodic if
wisinnite and its sSUX W, jWj j41 is a periodic bead sequence. Periodicity ensures that the program
embedded in the oritatami system is nite (does not hardcode any speci c behavior) and at the same time
allows arbitrary long computation.

We say that two bead typesa and b attract each other whena b. Furthermore, given a conformation c
of w, we say that there is abond between two adjacent positionsc; and ¢; ofcin T if wi w; andji jj> 1
The number of bondsof conformation cof w is denoted byH (¢) = jf(i;j) : ¢ ¢;j>i +1; andw; w;gj.

Oritatami dynamics. The folding of an oritatami system is controlled by the delay time . Informally, the
conformation grows from the seed conformation, one bead at a time. This new bead adopts the position(s)
that maximise the potential number of bonds the conformation can make when elongated by beads in total.
This dynamics is oblivious as it keeps no memory of the previously preferred positions; it di ers thus slightly
from the hasty dynamics studied in [11]; it might also be considered as closer to experimental conditions.

Formally, given an Oritatami system O = (p;% ; ), we consider thedynamics D : 2! 2C that maps
every subsetS of partial conformations of length = of w to the subset D(S) of partial conformations of
length * +1 of w as follows: [

D(S) = arg max max H()
o2s 2E(y 26061
The possible conformations at timet of the Oritatami system O are the elongations of the seed conformation
by t beads in the setD'(f g).

We say that the Oritatami system is deterministic if at all time t, D}, (f @) is either a singleton or the
empty set. In this case, we denote byc! the conformation at time t, such that: ¢ = and D'(f @) = fc'g
for all t > 0; we say that the partial conformation ¢! folds (co-transcriptionally) into the partial conformation
c*! deterministically. In this case, at time t, the (j j+ t + 1) -th bead of w is placed inc'*! at the position
that maximises the number of bonds that can be made in a -elongation of c'.

We say that the Oritatami system halts at time t if t is the rst time for which D'(f g) = ?. The
folding process may only stop because of a geometric obstruction (no more elongation is possible because
the conformation is trapped in a closed area).

In this article, we will only consider deterministic periodic Oritatami systems with delay time =3.

2 The triangular lattice is dened as T = (2% ), where (xy) (u;v) if and only if (u;v) 2
f(x Ly);(x+1;y);0y+1);(xy 1);(x+1;y+1);(x 1;y 1)g. Every position (x;y) in T is mapped in the eu-
clidean plane to x X +y Y using the vector basis X =(1;0) and Y =rotation 120 (X).
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2.2 Skipping Cyclic Tag systems

In the next sections, we demonstrate the existence of a single periodic primary structure that can simulate
any Turing computation. Precisely, our construction simulates the following particular type of tag systems
which are known to simulate in O(T?In T) steps any Turing machine running in T steps [22].

f ; g and aninitial word u® 2f ; g . At each time step, the tag system cycles through the productions
and decides to append the current production or not according to the letter read. We denote by the word
at time t. Formally, at time t =0, its pointer ¢° is set to 0. At all time t,

Halting step: If u' is the empty word , then the tag system halts and outputs qf ; otherwise
Deletion step: If the rst letter uf of u' is , then setq*! = (g +1) mod n and u*** :=u} u

t
jutj 10
the su x of u! without its rst letter; nally

Appending step: if uf, = , then the tag system appends the next production tou' and skips to the following
production, i.e.: ut*l := u} u].tutj 1 P(qt+1mod n) and setg*! :=(qf +2) mod n.
For instance, the skipping tag systemp = h ;; ; i has the following execution([qt]ut)t on input
word u® =
(0] ) !!PPEND (3] L o] !!PPEND 2] !!PPEND o | [
' (2 ' [1: [31: P AL

and outputs thus production p; =

Annotated trimmed space-time diagram.  Given a SCTS(po;:::;pn 1;u%), we denote by0 6 t; <t, <

all the times t such that the word u' starts with letter and setto = 1 by convention. Let us now compress
the deletion steps occurring during stepg; +1 andtj.; 1 by simply indicating in exponent the production
index for each deleted letter:

0l 1 |!PPEND B [ I!PPEND 2 I!PPEND 0l [1]
: [ c: (ALT

and align the resulting words in a 2D diagram according to their common parts:

# # # #
[0 | ! IPPEND[2]:
81|00 ! IPPEND[1]:
21 I IPPEND[3]:
© | (ALT [1]:

we obtain the annotated trimmed space-time diagramfor the SCTS (p; ). The following lemma gives
a formal de nition:

| Lemma 2. The annotated word on rowi (indexed fromi = 0) of the annotated trimmed space-time diagram
is: (the production indices in exponent are computed modula)
ifut*ti= " sforsomer >0ands2f ; g:thenr=ts t 1andthe annotated word on
row i is [*+1+ til [ tal [+tal  swhose rst letter is placed in columnt; +1 (where the leftmost
column is indexed by0);
if ut*t = T for some r> O0: then, row i is the last row of the diagram and its annotated word is
li+1+ 1] li+ti+r] [i+ti+r+1] gnd starts at columnt; + 1.

Proof. Observe thatg'i = i+ t; mod n as exactlyt; letters have been read and appending steps occurred
before reading thei-th . J
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Finally, we use a result by Cook [4], and Neary and Woods [22, 14] to show that simulating a skipping
cyclic tag system is su cient to simulate universal Turing machines e ciently:

| Lemma 3. Let M be a Turing machine running in time t. There is a skipping cyclic tag systemS
simulating M in O(t? logt) steps. Moreover, the number of productions of is a multiple of 4.

Proof. The original cyclic tag system by Cook [4] di ers from the skipping cyclic tag system only in that
in the original, the list rotates by 1 no matter which letter the current word begins with. By a classi-
cal result about tag systems, 2-tag system withm productions (i.e. over an m letter alphabet) can be
simulated by a cyclic tag system with 2m productions: that simulation works by encoding the m letters

as ™1 m2 2 m3.... m1 regpectively. We can in turn simulate a cyclic tag system withn
productions po; p1;:::;pn 1, Starting from an input u, by a skipping cyclic tag system with 2n productions
“f(po);";f (pa);"i:i;f (pn 1), Starting from the word f (u), where f is the automorphism overf ; g

denedasf( )= andf ()=

Finally, the result by Neary and Woods [15, 22] on cyclic tag systems implies that 2-tag systems can
simulate t steps of a Turing machines inO(t? logt). J

3  Proof structure

Figure 1 shows the global structure of our construction: at the abstract level (Section 4), we will show how
the geometrical arrangement of bigblocks (regions of the plane) simulates a tag system. The construction
then becomes local: we only have to construct a molecule that correctly folds into the blocks, and interacts
with neighbouring blocks as planned.

In Section 5, we will introduce modules (parts of the sequence), functions (possible conformations of a
module in response to the environment in which it is folded), andbricks (partial conformations contained
inside a block). Finally, in Section 7, we will show the actual sequences and attraction rule that implement
all bricks, and show that our choice of geometric parameters guarantees that important parts of the sequence
always fold in the same environments, in all possible conformations and inputs.

Section 8 gives a proof that the bricks actually implement the blocks, and shows how we veri ed the
assembly level using a program on a specic tag system that exhibited all possible interactions between
modules. This last step of our proof will follow the following steps:

1. Enumerate all the surroundings for each brick of each module

2. Enumerate all possible modules following the module

3. Generate automatically human-readable certi cate of the correctness of the folding for each possibility,
in the form of proof trees

4. In the few cases where the surrounding may vary, prove that it has no incidence in the folding of the
brick.

(Section 4)

(Section 5)

(Section 7)

Figure 1 Programming framework.
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4  Simulating Tag Systems with Blocks

This section presents the simulation logic and the global geometrywithout any folding. The simulation is
decomposed into blocks, which are regions of the plane.

In the simulation, these blocks only interact at their border. In Section 5, we will show how to implement
each block, and interactions between blocks, using actual folding. The names of blocks, introduced here, will
be the same between the di erent parts of the paper.

4.1 The Blocks
41.1 Overview

Our simulation proceeds by mimicking the annotated trimmed space-time diagram of the skipping cyclic tag
system to be simulated. The folding walks to the South, i.e. each new step is below the previous step.

At each step, the simulation starts in a general movement from left to right. Leading zeros are trimmed
0, and the simulation halts if the remaining word is empty. If the remaining word is not empty, there is at
least onel in the word. The simulation removes the leadingl, skips over (and copies) the rest of the word,
and appends the relevant production at the end of the word. Finally, the sequence is folded again in the
opposite direction (i.e. right to left), and copies the computed word for the nest step to start. See Figure 2
for an example.

Figure 2 Execution of the block automaton simulating the SCTS (p = h; N NV ). Every other row
is shaded in blue. Each row encodes one step of the tag system, and each row is divided into a zig part (on top)
and a zag part (on the bottom). The word at the end of each step can be read at the bottom of the zag part for the
corresponding row. In this gure, is pictured as a at border with a red rectangle and s pictured as a red spike
with a red circle. Green and cyan ovals mark the presence of a letter, on zig and zag rows respectively.
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4.1.2 Types of blocks
There are 10 di erent types of blocks, shown in Figure 31. All of them are used in our example in Figure 2:

3EEDencodes the initial word into a conformation beads where s are represented as red-dot spikes and
s as red rectangles.

2EADI , 2EADI , #OPY1 , #OPYI| are responsible for reading, and copying the letters of the current

word during the zig phase (left to right). When clear from the context, we will sometimes refer to both

2EADI| and 2EADI collectively as 2EAD , and to both #OPY| and #OPY| as#OPY .

J #OPY, J #OPY are responsible for copying the letters of the new word over to the next step, during

the zag pass (right to left). When clear from the context, we will sometimes refer to bothJ #OPY and

J #OPY collectively asJ #OPY

IPPEND #2 and J #OPY,INE&EE[re responsible for appending a production, carriage return and line-

feed.

(ALT is the last block produced corresponding to the halt of the simulated tag system.

4.1.3 The block automaton

A visual depiction of the logic is shown in Figure 3 in the form of an automaton: starting from the seed

block, blocks attach at the orange anchors ¥ and <€) one next to the other as described by the block
automaton in Figure 3. Each block is labelled with the current production index of the tag system which

determines the production to be appended. An example of execution of the block automaton for the SCTS
(p=h ;; ;U= ) is illustrated in Figure 2.

4.1.4 Simulating tag systems with blocks

Let S =(po;p1:::pn 1;u°) be a skipping cyclic tag system, and for all integeri > 0, let t; be the i!" step
where ut starts with ~ (starting from 0, i.e. to is the rst step where u'° starts with ). The following lemma
describes the encoding of into blocks (i.e. generalises Figure 2 to arbitrary tag systems).

| Lemma 4. The (possibly in nite) nal block con guration consists of: (see illustration on Figure 6)
The seed row consists of the blocREEDU®i anchored at its end point at coordinates(0; 1).
For i > 0, the i-th row consists of a zig row anchored at height = 2i, and a zag row anchored at height
Y =2i +1 de ned as follows:
(Compute) if ut*' = "1 sandif sandpii+,, arenotboth :then r=ts t 1 and,
as illustrated in Figure 4(b) and Figure 4(c):

the i-th zig-row, growing from left to right, contains the sequence of annotated blocks located at the
following coordinates (with respect to their anchor point, shown in Figure 31):

Y 2i+1 2i

X i+1+ i+r+t i+t i+1+ tiyg i+ jsj+ tis i+ jsj+1+ tix
Blocks 2EADI 2EADI  2EADI #OPYso)! #OPYsis; 1)]  !PPEND #2 (Prsi+t,., )

[ [i+1+t] [f+r+t] [i+tia] [+1+ tin] i +1+ tiva] [[+1+ tin]

the i-th zag-row consists from left to right of the sequence of blocks located at the following
coordinates (with respect to their anchor point, see Figure 31):

Y 2i+1
X i +3+ tiy i +4+ tivg i +2+ jVj+ tiv
Blocks J #OPY,INEQEE(, J #OPYvy) J #OPYW,y; 1)
[al [+2+ tin] i +2+ tiva] [[+2+ tin]
wherev = ul*tiv =5 pgyy,, 6 (assandp+i+,, are notboth ).
(Halt 1) if u® % = "1 and pi+i+r,,, = :thenr = ti,x t 1 and the last rows of the block

con guration consist from left to right in the sequence of annotated blocks located at the following
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Figure 3 The block automaton.
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coordinates, as illustrated in Figure 4(d):

Y 2i+1 2i 2i+3
X i +1+ i+r+t i+ tjs i+1+ tjyg P+2+ tjyg
Blocks 2EADI 2EADI  2EADI #ARRIAGE2ETURN ,INE&EED (ALT
[dl [i+1+ ti] [i+r+t] [i+tia] [i+1+ tisg] [i+2+ tix1]

nally, (Halt2) if u*% = T for some r > 0: then the i-th zig-row is last row of the block con-

guration and consists of the sequence of annotated blocks located at the following coordinates, as
illustrated in Figure 4(e):

Y 2i+1

X i+1+t i+r+t i+r+l+t
Blocks 2EADI 2EADI (ALT

[ [+1+t] [+r+t] [i+r+1+t]

Proof. This follows from an easy induction on the number of rows The induction hypothesis at step is that
the word encoded by the blocks at the bottom of the zag-rom(i 1) is u**! and the production index in
this zag row isg'*% =1+ i+ t; modn.

First, since we choose the conformation of the seed, we choose the encoding of the initial word in the tag
system. Then, showing that if the induction hypothesis holds at stepi, it also holds at stepi + 1, follows
from the case enumeration in Figure 6 and the block automaton in Figure 3. J

4.2 General geometry of the Blocks

The precise geometry of each block is given by the gures 5 and 32 39. We begin by introducing a number
of parameters we will use to align bricks properly for all possible tag systems and inputs.

We rst de ne the write position of a block the position on its border where its value is written, i.e.
as either a spike (, red circles on Figure 4) or a dent (, red squares on Figure 4). Similarly,read positions
are positions where the shape of the folding depends on whether there is a spike or a dent on the adjacent
block. See Figure 5 for an illustration.

Starting from a skipping cyclic tag system S, we rst build a tag system T by turning S into a skipping
cyclic tag system such thatn, the number of productions of T, is a multiple of 4, and moreovern > 8. We
build T by duplicating all the productions of S and all the s in all productions of S, until 4jn and n > 8.

n is the number of productions in T, hencen is a multiple of 4, and n > 8.

L is the length of the longest production in T .

P is the length of an extra padding on each production. We letP = 11+ (L mod 2), henceL + P is
even.

w is an atomic width we need to de ne other constantsW and h. For now, let w =6(L + P)+18. We
will later use the fact that w mod 12 = 6.

W is the width of the #OPY and J #OPYblocks.

Let W = n (w+6). We will later use the fact that W mod 48 = 0 (becausen is a multiple of 4 and
w + 6 is a multiple of 12).

h is the height of the 2EAD , #0PY and J #OPYblocks, not counting the small bumps.

Leth=W (w+3). Note that h mod 12 =3.

We can now translate Lemma 4, to give blocks their actual coordinates in the simulation:

% Here, we understand align both as align in the plane and adjust the length of sequences to match modulo common
parameters.
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(@) The seed row anchored at coordinates(0; 0).

I+t —

(b) The case whereu s and the production to be appended is pi+i+t;,, 6

I+t — or

(c) The case whereu swith s6 and the production to be appended is pi+i+t;,, =

(e) The case whereu'*'i = .
1+t — r

(d) The case whereu
pended ispi+i+t;,, =

and the production to be ap-

Figure 4 The ith row of the nal block con guration (the previous and next rows are shaded in blue). Production
index in the label are computed modulo n. Observe that the 2EAD and #OPY in the i-th zig row correspond readily
the i-th line in the annotated trimmed space-time diagram of the simulated SCTS.

XX:11
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Figure 5 Geometry of the 2EAD blocks. Note that the internal structures (the lines in white) of both blocks
2EADI and 2EADI agree until position (w+2; h+1) where the presence or absence of a spike, encoding a, at
the bottom of the row above forces the block to adopt the shape 2EADI| or 2EADI| respectively.

(@) The 2EADI block has the shape of a trapezium whose bottom basis has lengthw and top basis has lengthw+5,
with height h. It has a dent (an empty position) located at (w+2; h+1) (w.r.t. to its origin at the bottom left
corner), in which plugs the spike of the block from the row above it, encoding the letter . The next block will start
folding at the bottom right corner, at (W, 0).

(b) The 2EADI block has the shape of a parallelogram with horizontal side length W and vertical side length h. The
red rectangle area at position (w+2; h+1) (w.r.t. its origin at the bottom left corner) aligns with the at bottom
block above encoding the letter (as opposed to a spiked-block encoding a ). The next block will start folding at
the top right corner, at (W 1, h+1).
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I Lemma 5. The (possibly in nite) nal block con guration consists of: (see illustration on Figure 6)

The seed row, i.e. the blockBEEDLCi ending at coordinates( 1;h).
For i > O, the i-th row consists of a zig row located between = 2ih +1 andy = (2i +1) h, and a zag row
located betweery = (2i +1)h+1 andy =2(i + 1), de ned as follows:

(Compute) if u*t = "1 sandif sand pis+ i+t

.,, arenotboth :then r=t4+ t 1 and,
as illustrated in Figure 6(a) and Figure 6(b):

the i-th zig-row consists from left to right of the sequence of geometrical blocks whose origin is
located at the following coordinates:

Ly 2i+1)h 2ih +1
' x  ih+@Q+ t)w ih+(r+t)W ih+t, W ih+(1+ tiy)W 1 ih+(jsj+ tizg)W 1 ih+@+ jsj+tixg)W 1
Blocks 2EADI 2EADI 2EADI

#OPYso)! #OPYsjsj 1)l IPPEND #2 (P1+i+t., )
This row ends at position ((i +1)h+ (1 + jSj+ jpi+1+ t,,, ]+ tiva )W 7;(2i +1)h+1).

the i-th zag-row consists from left to right of the sequence of geometrical blocks whose origins are
located at the following coordinates:

Ly (i+1)h+1
' x (i+1)h+@2+ tixa)W 8 (i+1)h+(3+ tisa)W 8 (i+1)h+@+ jvj+ tix)W 8
Blocks  J #OPY,INE&EE@, J #OPYvy) J #OPYWjy; 1)

wherev = ul*tit =5 piu4q,, 6 (assandp+i+ 1, are notboth ). This row ends at position
(((+Dh+1Q+ ti)W  1(2( +1) +1) h).
(Halt 1) if u % = "1 and pisivt,., = :thenr =ty t 1and the last rows of the geomet-
rical block con guration consist from left to right of the sequence of geometrical blocks located at the
following coordinates, as illustrated in Figure 6(c):

Ly (2i+1)h 2ih +1

(2i +3)h
' x  ih+(Q+ )W ih+(r+t)W ih+t. W ih+(1+ tiga)W 1 i+1)h+(1+ tig)W
Blocks 2EADI 2EADI 2EADI #ARRIAGE2ETURN ,INE&EED (ALT

nally, (Halt2) if u**% = T for some r > 0: then the i-th zig-row is last row of the geometrical

block con guration and consists of the sequence of geometrical blocks located at the following coordi-
nates, as illustrated in Figure 6(d):

Y 2i+1)h
! x ih+@+ tH)w ih+(r+t)W ih+(@1+ r+t)W
Blocks 2EADI 2EADI (ALT

Hence, the read positions and write positions of blocks in consecutive rows are adjacent.

Proof. We map each block from Lemma 4 to its actual position, using the following table to compute the
space taken by each block:

Block X y
2EADI W 0
2EADI w 1 1 h
#OPY!| and #OPYI w 0
IPPEND #2 (u) juj W+h 7 h
J #OPY and J #OPY W 0
J #OPY,INE&EEDand J #OPY,INE&EED W +8 2h 1

| Corollary 6. The geometrical blocks simulate the associated skipping cyclic tag system.
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(@) The case whereu'"' = " s and the production to be appended is pi+ i+t ©
(b) The case whereu™' = " swith s6 and the production to be appended is piri+t,,, =
(c) The case whereu'™' = " and the production to be ap- (d) The case whereu™' = .

pended iSpPi+i+tiy =

Figure 6 The ith row of the nal geometrical block con guration (the previous and next rows are shaded in blue).
Production index in the label are computed modulo n. Observe that the 2EAD and #OPY in the i-th zig row
correspond readily the i-th line in the annotated trimmed space-time diagram of the simulated SCTS.
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4.3 Production segments: encoding the production index

for all i, [pi] encodes productionp;. The rst module of production segments is written as black lines on
the gures in Section B.

The primary sequence of the oritatami system corresponding to the skipping cyclic tag system with
productions hpp;:::;pn 1i is the in nite sequence with period [po] [p:] [pn 1]

Each block is the result of folding a number of production segments (depending on the block type):

2EAD and !PPEND #2 (u) take one production segment each,
(ALT stops before folding one full production segment,
all other blocks take n production segments each.

We call the internal state of a block B the production index q of the rst (and possibly only, for 2EAD ,
IPPEND #2 (u) and (ALT blocks) production segment[pq] of B.

| Lemma 7. At each step, the internal state of every block is equal to the state variablgin the block
automaton in Figure 3.
Therefore, the block automaton simulates exactly the SCTS.

Proof. In the construction of our blocks, the internal state is increased by one (modulon) each time a
block consisting of one production segment is foldedZEAD or !PPEND #2 ), and is unchanged (modulo
n) otherwise (#OPY , J #OPYor J #OPY,INE&EED The case of (ALT, which stops the entire simulation, is
special.

This is exactly the same as in the block automaton (Figure 3).

Moreover, the zag phase contains only blocks af productions segments (i.e. of widthW), hence does
not change the internal state, again as in the block automaton. J

5 The Structure of the Sequence: the Modules and the Bricks

5.1 Modules

Module (5 beads long) is responsible for the detection of an empty tape word: if it is empty, it folds to
the left and the molecule gets traped in a closed space and the computation halts; otherwise, it folds to
the right and the computation continues.

Module (€ (3h 10beads long) is responsible for the detection of the end of the tape word to start appending
to it the production word.

Modules 'Dgsi| (3W +30 beads long each) encodes each letter of the production word inside the production
segment. It adopts two shapes: compact inside reading and copying blocks, or expanded in appending
blocks.

Module (3W(L a+ P)+8h 1 beads long) ensures by padding that all production segment have
the same length (even if the production word have di erent length). It serves two other purposes: its
presence indicates tc €| and |[B} that the end of tape is not yet reached; and it accomplishes the carriage
return initiating the Zag-phase once the current production word has been appended.

Module (4h beads long) is the sca old upon which folds. It is specially designed to induce two very
distinct shapes on depending on the initial shift of .

Module (6h 1 beads long) is the real brain of the molecule. It implements three distinction functions
which are triggered by its interaction with its environments: in the zig-up phase, it reads the current
letter of the tape word, ignoring the s and moves to the zig-down phase when it reads a; it copies

Module (3h 2 beads long) is the initial sca old upon which the other modules fold.
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the and in the zig-down and zag phases; it accomplishes the line feed when the molecule reaches the
beginning of the tape word at the end of each zag-phase.

The bead-by-bead description of each of these sequences will be given in Section 7.
Each production segment[p;] is split into a sequence of modules: [p;] : € Dol Dom:
D) N ENEN where denotes the concatenation of two bead sequences.

5.2 Bricks

| De nition 8 (Brick). Each module adopts di erent conformations to accomplish each of its tasks. We call
brick every conformation that a given module adopts when folded in a valid environment.

Figure 7 lists all the bricks that adopts the modules in our design and how they are organized inside
each block. The exact geometry of the bricks will be given together with their beads sequence in Section 7.
Bricks are the lowest design level we will consider in this article before going to the beads level. Figure 8
presents the brick automaton which details how the bricks articulates with eachother. The lemma below
shows that if the modules folds into bricks according to this automaton, then our design simulates indeed
the block automaton and thus the SCTS. We are left with proving that each module folds into the expected
brick for every possible environment to complete the proof of our main theorem.

I Lemma 9. Starting from a wellformed seed (see section 7), the brick automaton in Figure 8 simulates the
Skipping Cyclic Tag System.

Proof sketch. Starting from a wellformed seed, we prove by induction that the brick automaton implements
precisely the block automaton which simulates the SCTS by Lemma 7. J

We are left with designing sequences implementing the bricks. We can forget about the simulation itself
and focus on the local folding of each module in every possible environment.

6 Design Toolbox

In this section, we present several key tools to program Oritatami design and which we believe to be generic
as they allowed us to get a lot of freedom in our design.

6.1 Expanding shapes: Glider and Switchback

In our design we need to store many letters in a very compact space inside the blockREAD , #0OPY and

J #OPY and to expand each of them to the width of a block in the!PPEND #2 blocks. This is achieved
using the glider/switchback device illustrated in Figure 9. The key in this design is that both shapes use a
small enough number of bonds so that they don't interfere once the beginning of the molecule is folded in
one way, it keeps folding that way. The design of module<DJ, and is based on this bonding pattern
(see Section 7). This behavior is best observed in the proof-trees (see Section 8.2 or the companion website
of this paper?).

6.2 Implementing the logic

As in [11], the internal state of our molecular computing machinery consists essentially of two parameters:
1) the position inside the primary structure of the part currently folding; and 2) the entry point of molecule
inside the environment. Indeed, depending on the entry point or the position inside the primary structure,
di erent beads will be in contact with the environment and thus di erent functions will be applied as a

4 https://www.irif.fr/ nschaban/oritatami/prooftrees/
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‘ Zig-Upl ‘ Zig-Down | Write | J Zag

IPPEND #2 (u)

J #OPY,INE&EED

2EADI #OPYI J #OPY
2EADI #OPYI #ARRIAGE2ETURN ,INE&EED (ALT J #OPY J #OPY,INE&EED
(ALT ‘ 2EAD #OPY IPPEND #2 J #OPY |J #OPY,INE&EEP
Al :IG5P
(see Figure 13) Al :IG$OWN Al AG
‘ ‘ BI (ALT‘ Bl :IG5Rsee Figure 14) Bl :IG$OWN BJ :AG
Cl :1G $OWN Cl %ND OF 4APE
(see Figure 15(a))
C NA
Cl :IG5P
(see Figure 15(b)) a :AG
DI :IG$OWN
Dyr, NA
DI :IG5P DI 7RITE
(see Figure 17(e)) (see Figure 17) DJ :AG
E #ARRIAGE 2ETURN
NA (see Figure 20)
El :IG5P
(see Figure 18) El :1IG$OWN Bl :AG
Fl :1G $OW!
NA
Fl :IG5P
(see Figure 21) R :AG
Gl 2EAD
(see Figure 22)
Gl IG#OPY
NA (see Figure 24) G :AG#OPY
G ,INE&EED
(see (liilgfriAzDS) (see Figure 26)

Figure 7 The bricks inside each block.
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Figure 8 The brick automaton implementing the block automaton. Note that in the Zig Down-phase, each letter
of the word above is copied by the rst module of the #OPY block and the end of the word is detected by the
rst module [€] of the block. In the Zag-phase however, each letter of the word above is copied by the penultimate
module of the J #OPYblock and the beginning of the word is detected by the last of the block.

Note that this automaton is presented as a transducer producing the block diagram: the variables ¢ and b, which
counts up to n, are introduced only to output the right module at the right time during the zig-down and zag phases
(assuming the seed is wellformed).
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Figure 9 The glider/switchback bond pattern. To the left: the #-rule for the F-beads. In the middle: the strong
binding of the F-beads with the B-beads triangular shape imposes the glider shape. To the right: the strong bonding
of the F-beads to the C-beads imposes the switchback pattern forever.

result of their interactions. Similarly, the memory of the system consists of the beads already placed in the
area currently visited (the environment).

At di erent places, we need the molecule to read information from the environment and trigger the
appropriate folding. This is obtained through di erent mechanisms.

Default folding. By default, during the zig-up phase, is attracted to the left and folds to the right only
in presence o above. This allows to continue the folding only if the tape word is not empty or to halt
it otherwise (see Figure 14).

Geometry obstruction. An typical example is illustrated by . During the zig-up phase where the absence
of environment below the block2EAD allows to fold downward at the beginning (see Figure 22) which
shift the molecule by 7 beads along resulting in to adopt the glider-shape (more details on this
mechanism in the next section). Whereas during the zig-down phas cannot make this loop because
it is occupied by a previously placed. This results in a perfect alignment of with whose strong
attraction forces [G] to adopt the switchback shape.

Geometry of the environment. Figure 10 shows how the shape of the environment is used to change the
direction of in glider-shape. This results in modifying the entry point in the environment and allows
the Oritatami system to trim the leading s in the tape word, switch from zip-up to zig-down phase when
reading a and from zag- to zig-up phase when it has rewind to the beginning of the tape word.

6.3 Easing the design: getting the freedom you need

Several key tools allowed to ease considerably our design, and even in some cases to make it feasible. These
tools are generic enough to be considered ggogramming paradigms One main di culty we had to face

is that the di erent functions one wants to implement tend to concentrate at the same hot-spots in the
molecule. A typical example is the center of@ which is the place where one wants to implement all the
functions: Read, Copy, Line Feed. The following powerful tools allowed to overcome these di culties:

Socks work by letting a glider/switchback module fold into a switchback conformation for some time when
it would otherwise fold into a glider. Examples are shown in Figure 11. They are easy to implement,
since the socks naturally adopt the same shape as turn that part of the module has in the switchback
conformation. They o er a lot of freedom in the design, for several reasons:

First, they simplify the design of important switchback part by lifting the need for implementing the
glider conformation for that part, as shown in Figure 11(a).
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(a) goes straight southwestward in  (b) bounces southeastward in (c) bounces eastward in presence
absence of obstacle. presence of a bump. of a at surface.

Figure 10 The interactions of module in glider -mode with di erent environments result in heading to di erent
entry points to the next area of the folding.

(b) Module : Realigning a pattern

by slowing its folding down at the end

to compensate speeding it at the be- (c) Module DJ: Preventing unwanted

ginning. interactions between the beads out-
lined in red by concealing them on top
of the glider.

(@) Easing the design of switchback-
/glider by letting the switchback (in
green) folds in its natural shape at its
extremities even in glider -mode.

Figure 11 Di erent uses of socks: (a) Easing bond design; (b) Delaying; (c) Preventing unwanted interactions.

Second, a glider naturally progresses at speeii=3. Adding a sock allows us toslow its progression
down to speed 1=5 for some time, as in Figure 11(b), and therefore realign them. We used that
feature repeatedly to shift some modules, by starting them with an initial speed-1 (i.e. straight line)
progression, as in Figure 11(b), and then compensate for that speed by introducing a socket later on,
and realign the brick with others. This is a key point in the design, as it allowed us to separate the
Read and Copy functions into di erent parts of module , and therefore to get less constraints on
rule design. In the speci ¢ case of module[@, the Copy-function occurs at the center of the module,
while the Read-function is implemented earlier in module!

Finally, socks allow to prevent unwanted interactions between beads byoncealing potentially armful
beads in unreachable area as in Figure 11(c).

Exponential coloring is a key tool to allow module to fold into di erent shapes, glider or switchback,
along module, when folding in the 2EAD con guration. This trick is described in greater detail in
Section 7.10. The problem it solves is that in order for to fold into its switchback shape, we need
strong interactions between and neighboring module, whereas in order for to adopt the glider
shape, we want to avoid those interactions. This is made possible because gliders progress at sp&e8l
while switchbacks progress at speed. Using a power-of-3 coloring allows to realise these contradicting
goals altogether (precise construction is analysed in Lemma 15 in Section 8).
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7 The Sequences for the Bricks

We now de ne the primary structure we use to simulate a skipping cyclic tag system. The complete rule
is given in the appendix in Section C.
7.1 Extra notations for sequences

In order to do so, we need a few extra notations to manipulate sequences: ufand v are nite sequences, we
write their concatenation asu v. For any two integers 06 i 6 j < juj, we also write uj;..j j for ujui+ :::u;.
The reverse sequencef u, written as uR, is Ujyj 1Ujuj 2:::U1Uo.

beadi; of u has been replaced by :

_ & ifi=1i; for somej
Wi = .
u; otherwise
By extension, we write uhv@k::li for the sequencew where for alli 2 fk;k +1;:::;lg, the beads at

indicesk to | of u have been replaced by the words (of length |  k+1):

Vi k ifk6i6 I

Wi = .
u; otherwise

J
For an in nite sequence of ( nite) words (u;)i>1, we denote by ., u; the innite word uiu,  u;:::
obtained by containing all the words uy;:::
7.2 More constants: k, and

We also de ne three new constants as helpers for the module sequences:

k= *‘6—3. Note that by the de nition of h in Section 4.2,k is even.
W=2. By the de nition of W in Section 4.2, mod 24 =0.
W=24. By the de nition of W in Section 4.2, is even.

7.3 [Seed¥:Seed for input u.

We rst describe the seed, which is essentially an encoding of the input wordu to the skipping cyclic
tag system we are simulating. As per the de nition of oritatami systems, this is a conformation, thus a
sequence of beadtogether with positions (i.e. all other sequences have their positions de ned by the folding
dynamics). These positions will be encoded incrementally, using the following notation, relative to the axes
de ne in Figure 6:

a 37 b means a bead of typea, followed by a bead of typeb, such that posb=posa + 2
ag%b means a bead of typea, followed by a bead of typeb, such that posb=posa+ 1
a'y, bmeans a bead of typea, followed by a bead of typeb, such that posb=posa+ (1)
aaff’ b means a bead of typea, followed by a bead of typeb, such that posb=posa+ 01
a:’ bmeans a bead of typea, followed by a bead of typeb, such that posb=posa+ 1
1

a 7 bmeans a bead of typea, followed by a bead of typeb, such that posb=posa+
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. o .
For example, a sequence such as3; b!% c37d 7 e, starting at 0 is a sequence of ve beads: a bead

of type a at 0 a bead of typeb at 1 a bead of typec at 1 , a bead of typed at ; , and
a bead of typee at 5
We are now ready to describe moduldSEed), built by combining 4 types of conformation segments, see

Figure 12:
2+ 03
SegSeedTerm= J83;J73 J113,J12 ; J16 7 J17 7 J18
SegSeedPre x = A93;A12 ; BO 7 BL:' B2y B34'B4:" C47 A0 ;7 A0 " ' 37 H8 37 H19 37 H20 5
H21 37 H24 7 115 7 115 7 116 7 117 7 119 7 119 7 J12 ; J16 7 J17 7 J18
SegSeed )= L17 7 L18 ;7 L473,L48:" L49 ; L82 ; L83’ A6
SegSeed )= L17 ; L18 ; L48 ; L82 ; L83:" L84 ; A6

11 k 2 k 2
SegSeedLineFeed= K34 3; K45 37 K40 37 K46 37 K47 37 K57 37 K52 37

k 18 10
K59 57 K60 37 K69 57 K643, K69 37 M20 %.M26 37 M27
7 M28 37 M29 'y, M30:

Each letter a2 f ; gis encoded in the seed by the conformation:

SegSeedLetter(a) = SegSeed ) ;7 SegSeedPre x - " lSegSeeda) 7 SegSeedPre x

Then, the module [SEEQY is:
(O 1
K
[SEEd] = SegSeedTerm ; @  SegSeedLetter(uj,; i) 7A SegSeedLineFeed
i=1

7.4  PAY:Zig-Init.

The rst module, [&Y, is de ned as:

= A0..4 (A5..10)%¢ 1 A5.7 A6 A9.10 Al11.12.

The length of is therefore5+6(3k 1)+3+1+2+2=3 h 2. The proof trees in Section 8.2 prove
that always has heightH =2 +2(3 k 1)+ 3= h, and width 3, and folds as in Figure 13.

7.5 [B): Empty word detector.

The next module is , whose purpose is to test whether the word is empty, and orient the folding either

into a closed connected component of the place, if the word is empty, or to the outside of that connected
component. This module is de ned as = BO0..4, which is of length 5, and its two possible functions are

shown in Figure 14.

7.6 |€: End of word detector.

If does not detect an empty word, the folding goes on tc€}, whose purpose is to detect the end of the
word: if the current position is at the end of the current word, a production segment (encoded by a sequence
of D and Djlf) needs to fold into a word appended at the end of the current word. Else € folds into a
switchback conformation.
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Figure 12 The brick 3EEDuwI .
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Figure 13 The folding of in the zig phase

Figure 14 The folding of in the zig phase. The two possible outcomes of the text are shown in this gure: the
one in dashed lines is what happens when the word is empty, i.e. when the twol 19 beads are absent, and the one in
full lines when the word is not empty

This module is de ned as |G = (C0..2)%¢ (C3.5)k C3 C7 C8 (C6..8) 1 (C9..14)% 1 (C9..10
C15..16 C13.

The length of [€]is3h 10=3 2k+3k+3+3(k 1)+6(k 1)+5.

Its two possible conformations in the zig phase are shown in Figure 15:

The left-hand side gure shows the conformation at the end of the word. Its height iSHey, = % 2,
and its width is Wey, = 2.
The right-hand side gure shows the conformation in the other case. Height (upright): H,, = h 3.
Width (upright): Wy, = 3.

7.7 Di: Letters

Module D! de nes the encoding of the letters in productions of the skipping cyclic tag system. It takes three
parameters:

aletter x 2f ; g,

a parameterr 2 f 0; 1; 2g to indicate whether this letter is the rst letter in the production word (in which
caser = 0), at an odd position in the production word (in which caser = 1), or at an even position in
the production word (in which caser = 2),
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(b) The conformation of [€ when not at the
end of the word.

(a) The conformation of (€] at the end of the
word (before D} folds into the appended pro-
duction).

Figure 15 The folding of [€] in the zig phase.

and a parametert indicates whether that letter is the last letter of the word (t = 1) or not (t = 0).

This module therefore comes in twelve di erent versions, all of the same lengtl8BW +6 5=6( +5)=
6 (12 +5).

We rst describe four helper sequences, each of length+5=12 +5:

SegD0= D23.33 E6.11 (E0.11) I.
SegD1=(E12..23) D49..45.
SegD2 = D34.44 E30.35 (E24.35) .

SegD3 = (E36..47) D54..50.
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7.7.1 Encoding of x =

Then, we de ne two particular versions of |[Dj1, from which the other versions are derived by replacing a few

beads:
D70 = SegD0 SegDl1l SegD2 SegD3 SegD0O SegD1:
D10/ = SegD2 SegD3 SegD0 SegDl1l SegD2 SegDa3:

Module D7) is obtained by modifying the 17 rst beads of [Di50):
D100 = D120 HD016@016|

Then, for all r 2 f 0;1; 2g, the trailing versions D7 of |[D4| are obtained by modifying the 8th and 5 last
beads of|Dj0], as follows:

D = [DIIhD17@(3N +22): D18..22 @ (3N + 25)::(3W + 29)i

7.7.2 Encoding of x =

Forall r 2f0;1;2gand t 2 f 0; 1g, module Dy is obtained by replacing most of the beads in the range
3w+ 1::3w + 13 as follows:

Do = DIIM.17@(3v + 1) ; L18@ (3w + 2) ; D55..62 @ (3w + 6) ::(3w + 13) i

7.7.3 Possible conformations

The possible conformations ol D) are shown in Figures 16 and 17.

7.7.4 Size and alignment of the module

First note that the height of module DI (i.e. the encoding of a single letter of a production), when folded
into its switchback conformation, is Hy, = L=6 = W=2+5, and its width is Wy, =6.
We will now prove a small lemma to make the proofs of a claim in Section 8 easier:

| Lemma 10. The segment of D7 encoding the bump in the expanded conformation is always adjacent
to the same beads 0 €|, when both € and [Dj| are in their switchback conformation.

Proof. Note that w = 6 mod 12, hence indexi = 3w + 1, the rst index of the bump, is such that i
mod 12 = 7. This corresponds to indexj = (11 i)+5=9 mod 12 in the previous column, and hence we
get the following table:

i mod12 j=(11 i)+5 mod12 Neighboring beed in previous and next columns
w+1=7 9 36+9 = E456 L17 6 E21= 12+9
3w+2=8 8 36+8 = E44 L18 E20= 12+8
3w+6=0 4 36+4 = E40 D55 El16= 12+4
3w+13=7 9 36+9 = E45 D62 E21=12+9

This proves the lemma statement.
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Figure 16 Module Dy), during the zig phase, folded in its switchback/upright conformation.

7.8 |EN: Padding with L a extra blanks for 06 a6 L.

The purpose of modul is to make sure that all production segments are of the same length, independently
from the length of production words in the simulated skipping cyclic tag systemS. Recall from Section 4.2
that L is the length of the longest production word of S.

This module has two possible conformations: one in switchback, as shown in Figure 18, and one expanded
at the end of the appended production. An outline of the latter conformation is shown in Figure 19.

We will now de ne the di erent parts of module , composed of 4 parts:

the two rst parts are based on the two in nite sequences:

SegEA= (F0.11) (F12..23) (F24..35) (F36..47)
SegEB= (G0..11) (G12..23) (G24.35) (G36..47)

SegEC = HO0..4 (H5..16)9 ' H5..10 H17.24 of length 5+12(q 1)+6+8 =3 h 2 where
h

1

3
=0 mod 3.

q:
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(a) The blueprint of the [EM-CarriageReturn Brick, made of four bricks EAO, EB, EC and ED.

(b) The blueprint of the [EXZMl-CarriageReturn Brick, made of bricks EA1/2 , EB, EC and ED.

Figure 19 Outline of the four di erent parts of module , when folded at the end of the appended production
word. See Figure 20 for the detailed beads of each part.

the last part is composed of ve sequences:

SegED, = 115 11..5 (10..5) 1 10 I1 118 of length6+6(k 1)+3= h
SegED; = 119 17 18 (16..8)% 1 16 17 115 116 of length 3+3(2k 1)+4= h+1
SegED, = 117 110 111 (19..11)%¢ 1;19 110 119 of length3+3(2k 1)+3= h
SegED; = 118 113 114 (112..14)% 1 112 113119 of length 3+3(2k 1)+3= h
and SegeD, = 119 11 12 (10..2)* of length 3+3 2k = h

We may now de ne the sequence for the modul for06 a6 L by letting K =3W(L a+ P), and:

HeadE, = (SegEA)bpe3c 27 F51 (SegEB)piacin+k 27, Of length K 1, whereb=0 if a is even, and
b=2 if ais odd.
TailE = SegEC SegED, SegED; SegED, SegED; SegED,.

Then the module [EN is:

[EY) = (HeadEo)hF48..49@0:1; F50@11 G48 TailE
and for a> 0: [E)] = (HeadE,) G48 TailE.

The length of module [EY is:

IEN

K+8h 1=6 (L a+P)+8h 1

(? 12 &L a+ Pg+ @ﬁ 1

=0 mod (3 48) =24 mod (2 48)

Therefore, for any word a, j[ERj mod 48 = 23,
We will now prove a lemma, used later in Section 8 to prove that the two conformations (switchback and
expanded) can be obtained at the same time:

| Lemma 11. When folded in the switchback conformation (i.e. as in Figure 18), all beads ofegEC are
far enough from SegEA to be attracted by them.

Hence, the attractions between these two parts can be freely chosen to forc8egECto fold into a straight
line instead of a glider in the expanded conformation.
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_IES 15 _ . .
Proof. Let ¢ = — i and note that ¢ mod 12 = 2. Now, the width of SegEB, when folded in the
switchback conformation isK (3¢ 1). Moreover,3c 1=5 mod 36. Therefore, for any padding length
a

K (3c 1):g(L a+ P) 6h+13:g(L a+P) 12 +6(w+3)+13

> 37P 12 > 45; sinceP > 11

Therefore, the width of SegEB is at least 5 columns, and since the delay of our simulation is3, no bead of
SegEC can ever be attracted to a bead ofSegEA in the switchback conformation. J

| Lemma 12. Bead F51 is never on an edge of bric—CarriageReturn.

Therefore, that bead is not involved in a turn in that brick, which means that the attraction rule can
be decided mostly based on itEAO brick, to initiate the turn at the end of the padding, in the expanded
conformation of [E].

Proof. That bead is at index 3c 1 from the beginning of the module, and moreover between thé&SegEA
and SegEB segments, which are both folded into switchbacks of height in that brick. Now, note that

mod 12 =0, and that ¢ mod 12 = 2. Therefore, (3c 1) mod 12 = 5, which means that beadF51 cannot
be on the edge of the switchback. J
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(@) The subbrick EAO, whena= L.

(b) The subbrick EA1, whenL ais odd.

(c) The subbrick EA2, whenL aisevenanda<L.

(d) The subbrick EB.

(e) The subbrick EC.

(f) The subbrick ED.

Figure 20 The [EN-carriageReturn bricks.
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79 B zag-Init.

Finally, after the end of the padding, module is used to start the copying phase. Moduleﬁ has the some
conformation in the zig and zag phases, up to a rotations 0l80 degrees. The conformation o in the zig
phase is shown in Figure 21.

Figure 21

Module Bl is composed of three parts. The beginning i$HeadF and the end isTailF, de ned as:

HeadF = J0..4 (J5..10)% ! J5.7 J11..23 of length 5+6(3k 1)+3+13=3h+6
TailF = J48 (J51..48)° J51 J52 J49.48 of length 1+4 10 =41

The middle part is made of the following exponential sequence:

for eveni > 2, let SegExp(i) = J24..29 (J30..35)% " loflength6 3 I;
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and for oddi > 3, let SegExp(i) = J36.41 (J42.47)° ' loflength6 3 1;

so as to de ne the following in nite sequence, which is the concatenation ofSegExp(2), SegExp(3),
SegExp(4)...:

K
SegExpF = SegExp(i)
i>2
Finally, the beads sequence fo is:
= HeadF 139.41 SegExpFo.n s1y |« TailF:

Therefore, the length of module[gis 3n+6+(h 50)+3+41=4h,
We claim that for all i, the pattern SegExp(i) starts at index 3 9 of SegExpF. Indeed:
Xt 3 9

1_ — qi
j:2631 =2 3 1—3 9

Finally, notice SegEXpRg.h s;; mMod 12=(h 50) mod 12=1

7.10 [E]: Read-Copy-Line Feed module.

Module is the last module, and the one in charge of reading and copying the information around. This
module can fold into a seven di erent conformations:

Figures 22 and 23 show the module reading the encodings ofand , respectively. These conformations
only happen during the zig phase.

Figures 24 and 25 show the module copying the encodings ofand , respectively. These conformations
are shown on these gures in the zig phase, but are the same in the zag phase, rotated by 180 degrees.
Figures 26 only happens at the end of the zag phase, after copying the word, and before starting the next
step.

Module is of length exactly 6h 1, and consists of six parts, each of length approximatelyh. We
described these parts now:

The rst part is the most sophisticated since it can be folded either in a straight line, and hence progress
vertically at speed 1 (i.e. one row per bead), or in a glider, which progresses vertically at speetl=3 (i.e.
two rows every six beads).

The other parts just contains a small delay loop (a sock) that allow to separate crucial sensing function

3
from basic geometry, as explained in Section 6.3. For the rest of this section, lé&t = =0 mod 2.

Part 1: As for Module [BI we de ne the following exponential pattern:

for eveni > 2, let SegExp'(i) = K4.9 (K10..15)% ' ®oflength 6 3 1;
and for oddi > 3, let SegExp'(i) = K16.21 (K22..27)% ' loflength6 3 1;
S0 as to de ne the in nite sequence:

K
SegExXpG= SegExp'(i)
i>2

As for SegExpF, the pattern SegExp'(i) starts at index 3' 9 exactly in SegExpG.
The rst part of is:

SegGl= L0.6 K3 (K0.3)° K0.2 L7.10 SegEXpGg. s

oflength7+1+9 4+3+4+ h 51 7=h 7. Notethat h 51=0 mod 12and thus the index of
the last bead of the exponential part is a multiple of 12.
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Figure 22 The brick [G}-read .
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Figure 23 The brick [G]-read .

Part 2: SegG2= K32 K33 (K28..33)k 3 K28..32 of length2+6(k 3)+5=h 14=1 mod 12

Part 3: SegG3= K35..39 (K34..39)X * K34 K35 K45 (K40..45)% K40 K41 of length
5+6(k 14)+6+10 6+2=h 14=1 mod 12

Part 4: SegG4= K50..51 (K46..51)% 3 K46..48 of length2+6(k 3)+3=h 13 3=h 16=5
mod 6.

Part 5: SegG5 = K55..57 (K52..57) 6 K52..53 L74 L75 K56..57 (K52..57)? K52..53 of length
3+6(k 6)+2+2+2+2 6+2=h 16=5 mod®6.

Part 6: SegG6= K63 (K58..63)% 19 K58..61 191..99 MO0..19 K67..69 (K64..69)1° M20..30 of length
1+6(k 19)+4+9+20+3+60+11= h 9=6 mod 12

Finally,

: SegGl L11..24 SegG2 L25..38 SegG3 L42.55 SegG4 L56..73
SegG5 L76..90 SegG6

of total length = h 7+14+h 14+14+h 14+14+h 16+18+h 16+15+h 9=6h 1

8 Correctness of the folding

We will now resume and expand the explanation give in Section 3. Here is how we proceeded to ensure the
correctness of our design:

1. Enumerate all the surrounding for each brick of each module

2. Enumerate all possible modules following the module

3. Generate automatically human-readable certi cate of the correctness of the folding for each possibility,
in the form of proof trees.

4. In the few cases where the surrounding may vary, prove that it has no incidence on the folding of the
brick. This happens only for three bricks exactly: when the brick GI 2EADzig-folds along FI :IG5P,
when the top of the brick GI 2EAD folds, and when the zag-bricks folds undeDI 7RITE.
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Figure 24 The brick [G]-copy .
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Figure 25 The brick [G]-copy .
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Figure 26 The brick [G-lineFeed.
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The lemmas in Section 7 have proved that the bead alignment in each brick does not change whenand
L vary. This implies that the gures of the bricks are indeed generic. It follows that with the exception of
the three cases listed in point 4 above, and handled in Section 8.1, it is enough to prove the folding of each
brick only once. And as most of them are made of repeating patterns, only a nite humber of environments
have to be considered. That last case will be treated in Section 8.2 using an automatic procedure which
produces human-readable certi cates calledproof-trees.

8.1 The three bricks with varying environments

The following lemma show that it is enough to proof one folding of the bricks under @Dl 7RITE, all the other
are the same since there are no interaction between the D-write brick and any brick folding immediately
below it.

| Lemma 13 (Zag-folding under D 7RITE). The modules ZAG-folding under the bricksDI 7RITE have no
interaction with DI 7RITE, with the only exceptions of:

the beadsAO and Al of module which have bonds with bead&(2+12i) and L17 for AO, and E(9+12i)
for A1, forall 06 i 6 3.

the beadsL17;L18;D57; D58 (the bump in module Dy ) which bond with the bead4.65;L64;L31 so that
the corresponding module@] folds into the expected brickG :AG #OPY .

Proof. Figure 27 lists all the possible#-interactions between the beads accessible from below thel 7RITE
bricks (to the left) with the beads at the top the modules zag-folding below it that can interact with them
(to the right).

The only possible bonds are thus:

with beads D17 and D22: (in green on Figure 27) these are only present at the junction between the bricks
DI 7RITE and E #ARRIAGE 2ETUR&L the end of the rightmost DI 7RITEbrick. The correctness of the
zag-folding of the KJ :AG brick below is given next in the proof-trees section.

with beads L17, L18, D56, D57, D58, D62: (in blue on Figure 27) these beads are only present in the
spike encoding a in the brick DI 7RITE, and these interactions are the one expected to ensure the copy
of the encoding of by the module [G] that will Zag-fold below.

and nally between beads A0 and Al, and 4 groups of beads: E2, E3, E8, E9, then E14, E15, E20, E21,
then E26, E27, E32, E33, and nally E38, E39, E44, E45 (in red on Figure 27). As the width of a zag-
folded production segment isw+6 =0 mod 12, the beadsA0 and Al are always aligned with the same
beads within each of these groups (see Figure 17), nameB0 with E2, E14, E26 and E38, and Al with
E9, E21, E33 and E45. Furthermore as the interactions of AO and Al are the same with each of them,
it is enough to prove that the module JAY zag-folds correctly betweenone of these groups only, which is
done next in the proof-trees section.

It follows that outside these three cases (each handled by a proof-tree, see later), no interactions are
possible and the modules will zag-fold below thédl 7RITE bricks independently of the exact beads that are
present inside. It is thus enough to show that each module zag-folds correctly at any location to ensure that
it zag-folds correctly anywhere below theDI 7RITE brick. J

| Lemma 14 (Top of GI 2EAD ). During the folding of the brick GI 2EAD , no bead in interacts with the
row above but at its two extremeties, i.e. the 82 top-leftmost beads and the 11 |akt34..L55 and M20..M30
resp. in Figure 23).

Proof. Figure 28(a) lists the only beads exposed and accessible from below abo@ 2EAD . And Fig-
ure 28(b) lists all the possible -interactions between them (to the left) and the beads of the brickGl 2EAD
zig-folding below (to the right).

According to the rule in Figure 28(b), besides the interactions at the 82 rst beads at the very top-
leftmost part of GI 2EAD (K34..L55 in Figure 23, interactions in green in Figure 28(b)) and the 11 beads
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Figure 27 The "-rule between the beads accessible from below of brickDI 7RITE and the beads that will get in
touch with them from all the modules Zag-folding below.
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(@) The beads accessible when the brickGl 2EAD zig-folds itself.

(b) The -rule for the beads accessible by the beads inGl 2EAD as it zig-folds.

(c) The closest bead L74 in brick GI 2EAD can get from one bead L82 above (casen =1 mod 3).
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Figure 29 #-rule between the two exponential segments in and . Note that each bead makes exactly one
bond, with a bead of the same shade, red, blue, yellow or green (see Figure 22 and 23) and of the same rank within
the shade.

at the very end of GI 2EAD (M20..M30 in Figure 23, interactions in blue in Figure 28(b)), the only possible
interaction between GI 2EAD and the already present beads above it isL.82%L74. But L74 appears only
once inGl 2EAD, at coordinates (W +10+4Kk;1 h) (see Figure 23), whileL82 appears aboveGl 2EAD

at coordinates(w+ 1+ i(w+6);2 h)fori=0:n. The minimal x-distance betweenL82 and L74 is thus
MiNj= .n j9+4K i(w+6)]j. But 9+4k i(w+6)=9+4( n 1)(w+6)=6 i(w+6)=9+2( n 1 3i)(2(L+P)+8).
It follows that the minimum di erence in x-coordinate betweenlL82 and L74 is:

17+2(L+ P)> 41 ifn=0 mod 3;
9,if n=1 mod 3; and
1 2(L+P)6 23 ifn=2 mod3.

As a consequencel.74 never gets close enough to interact withL82 above (see Figure28(c) for the closest
situation). It follows that one only need to take into account the environnement for the folding of the top-
leftmost and top-rightmost part of brick GI 2EAD (which is done next using proof-trees), the glider between
them, zig-folds regardless of the beads above in the environment. J

| Lemma 15 (Gl 2EAD along R :IG5P). When [G] folds into the brick GI 2EAD no bead in SegExpG can
make bonds with the beads il :IG5P nearby and thus folds regardless of the beads nearby (as a glider).

Proof. Figure 29 lists the interactions between the beads inSegExpG and the beads in SegExpF. these
are exactly K(4 + i)#J(24 + i) for i = 0::23; in particular red-shaded beadsK4..K9 in (resp. yellow,
K10..K15; blue, K16..K21; and green,K22..K27) can only bond with beads of the same shadd24..J29 in
(resp. J30..J35; J36..J41; J42..J47).

As shown on Figure 21 and 22 they-coordinates explored by these beads are as follows wh zig-folds
into GI 2EAD or Gl 2EAD :

Red : the y-coordinates of beads)24..J29 in [B] belong tof 40 3%;:::; 35 34gforj > 1, while the
corresponding beadk4..K9 in [€] explore y-coordinates inf 38 32*1::::; 34 3 ™*lgforjo> 1

Yellow : the y-coordinates of beads)30..J35 in [H belong tof 34 32*1;:::: 41 3dgforj > 1, while
the corresponding beadsk10..K15 in [G] explore y-coordinates inf 36 32%2;:::; 36 323*1gfor
jo> 1.

Blue : the y-coordinates of beads)36..J41 in [B] belong tof 40 32*l::::; 35 3+*lgforj > 1, while

the corresponding bead$<16..K21 in explorey—coordinates inf 38 34%:::; 34 32 0g forjo> 1.



XX:44 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

Green : the y-coordinates of beadsJ42..J47 in [H belong tof 34 3%%*2;:::: 41 3&*lgforj > 1,
while the corresponding bead2..K27 in [G] explorey-coordinates inf 36 32 “1..::0 36 32 0g for
jo> 1.

Now, as for allj > 1 (with the notation, al bi a6 b 2)

35 34*2| 38 3| 34 3| 40 33
and 36 34*1| 34 3| 41 3P| 36 3P
and 34 34*2| 40 3¥*| 35 3| 33 32
and 41 3@*1| 36 3| 36 3| 34 33

none of the (same-shade) interacting beads ever get close enough to each other and the beads in the segment
SegExpG folds without making any bond (into a glider), regardless of the beads next to them inFl :IG 5P
when [G] zig-folds into brick GI 2EAD J

8.2 Proof-trees

A proof-tree is a compact representation of the enumeration of all the possible paths the molecule explores
as it folds. Figure 30 presents the proof-tree for the folding o when bouncing on a bump encoding a

in Gl 2EAD . For the sake of readability, several paths are drawn in the same ball when they share the
same beginning up to their last bond with the environment; then, as a sanity check, the grey number at the
bottom left of the ball indicates how many paths are drawn in this ball. The black number in the top right
corner of each ball indicates how many bonds are made by the paths with the environment. The ball(s) with
the maximum number of bonds is(are) highlighted in black and go to the next round, together with the balls
that place the rst bead at the same position.

These proof-trees are automatically generated as the molecule folds. Each environment (surrouding + the
three beads currently folding) is given a number (written #xxxx). When an already studied environment is
encountered, the proof-tree is stopped, and the next (already encountered) environment number is written,
allowing easy navigation in the proof note that Figure 30 is an excerpt from a larger proof-tree and does
not show its beginning nor its end, this is why the navigation tag cannot be observed in this gure.

The complete proof certi cates may be found on the website:

HTTPS WWW IRIFFR NSCHABAN ORITATAMI PROOFTREES

—— References

1 R. Agarwala, S. Batzoglou, V. Dangik, S. E. Decatur, S. Hannenhalli, M. Farach, S. Muthukrishnan, and
S. Skiena. Local rules for protein folding on a triangular lattice and generalized hydrophobicity in the hp
model. Journal of Computational Biology, 4(3):275 296, 1997.

2 J. Atkins and W. E. Hart. On the intractability of protein folding with a nite alphabet of amino acids.
Algorithmica, 25(2 3):279 294, 1999.

3 Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP) model is NP-
complete. Journal of Computational Biology, 5(1):27 40, 1998.

4 Matthew Cook. Universality in elementary cellular automata. Complex Systems15:1 40, 2004.

5 Pierluigi Crescenzi, Deborah Goldman, Christos Papadimitriou, Antonio Piccolboni, and Mihalis Yan-
nakakis. On the complexity of protein folding. Journal of computational biology, 5(3):423 465, 1998.

6 K.A. Dill. Theory for the folding and stability of globular proteins. Biochemistry, 24(6):1501 1509, 1985.

7 Kirsten L. Frieda and Steven M. Block. Direct observation of cotranscriptional folding in an adenine ri-
boswitch. Science 338(6105):397 400, 2012.

8 Peter Gacs. Reliable cellular automata with self-organization. InFoundations of Computer Science, 1997.
Proceedings., 38th Annual Symposium onppages 90 99. IEEE, 1997.



C. Geary, P.-E. Meunier, N. Schabanel, S. Seki XX:45

Figure 30 Excerpt from the proof-tree certi cate for the folding of into GI 2EAD when bouncing on a spike
encoding a .



XX:46 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

9 Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Programming biomolecules
that fold greedily during transcription. In  Proc. 41st International Symposium on Mathematical Foundations
of Computer Science (MFCS 2016) volume 58 of Leibniz International Proceedings in Informatics, pages
43:1 43:14, 2016.

10 Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture for cotranscrip-
tional folding of RNA nanostructures. Science 345:799 804, 2014.

11 Cody W. Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. = Programming
biomolecules that fold greedily during transcription. In Piotr Faliszewski, Anca Muscholl, and Rolf Nie-
dermeier, editors,41st International Symposium on Mathematical Foundations of Computer Science, MFCS
2016, August 22-26, 2016 - Krakéw, Polandvolume 58 of LIPIcs, pages 43:1 43:14. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016.

12 Boyle J, Robillard G, and Kim S. Sequential folding of transfer RNA. a nuclear magnetic resonance study
of successively longer tRNA fragments with a common 5' endJ Mol Biol, 139:601 625, 1980.

13  Lila Kari, Ste en Kopecki, Pierre-Etienne Meunier, Matthew J. Patitz, and Shinnosuke Seki. Binary pattern
tile set synthesis is np-hard. In Magnis M. Halldérsson, Kazuo lwama, Naoki Kobayashi, and Bettina
Speckmann, editors, Automata, Languages, and Programming - 42nd International Colloquium, ICALP
2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part | volume 9134 ofLecture Notes in Computer Science
pages 1022 1034. Springer, 2015.

14 Turlough Neary. Small universal Turing machines PhD thesis, NUI, Maynooth, 2008.

15 Turlough Neary and Damien Woods. P-completeness of cellular automaton rule 110. Ifroc. 33rd Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP2006) LNCS 4051, pages 132 143.
Springer, 2006.

16 A. Newman. A new algorithm for protein folding in the HP model. In Proceedings of 13th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 867 884, 2002.

17 M. Paterson and T. Przytycka. On the complexity of string folding. In F. Meyer and B. Monien, editors,
ICALP 1996, volume 1099 ofLNCS, pages 658 669. Springer Berlin Heidelberg, 1996.

18 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled squares (extended
abstract). In STOC, pages 459 468, Portland, Oregon, United States, 2000. ACM.

19 Marcel Schmidt Am Busch, Anne Lopes, David Mignon, Thomas Gaillard, and Thomas Simonson. The
inverse protein folding problem: protein design and structure prediction in the genomic era. In H. Treut-
lein J. Zeng, R. Zhang, editor, Quantum Simulations of Materials and Biological Systems pages 121 140.
Springer, 2012.

20 R. Unger and J. Moult. Finding the lowest free energy conformation of a protein is an NP-hard problem:
proof and implications. Bulletin of Mathematical Biology, 55(6):1183 1198, 1993.

21  Erik Winfree. Algorithmic Self-Assembly of DNA PhD thesis, Caltech, June 1998.

22 Damien Woods and Turlough Neary. On the time complexity of 2-tag systems and small universal Turing
machines. InProc. 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2006)pages
439 448, 2006.



C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

A  Types of blocks

3EED(jsji 1) 2EADI (1 1) 2EADI (1 1) (ALT (0 1)

#OPY! (1 1) #OPY! (1 1)

IPPEND #2 (pg)[d] (jpaj 1)
J #OPY (1 1) J #OPY (1 1)

#ARRIAGE2ETURN ,INE&EED (ALD 3)
J #OPY,INE&EED(1 2) J #OPY,INE&EED(1 2)

Figure 31 The dierent type of blocks. The orange circles locate their anchors on the underlying triangle grid.
The orange chevrons shows where they plug into each other. The current row of each block is shaded in white while
the previous and the next rows are shaded in blue in the underlying triangular grid.

B  Geometry of the blocks

The following gures 32 39 describe the geometry of each block (except for th2EAD blocks presented in
Figure 5). Note that they display an idealized version of the real path inside them, omitting details (mainly,

socks) that are vital for computing but irrelevant to the block general geometry see Section 7 for the exact
geometry of each brick inside each block.
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Figure 33 Geometry of the #OPY blocks. The #OPYI| and #OPY| blocks have both the shape of a parallelogram
with horizontal side length W and vertical side length h. For both, the next block will start folding at the top right
corner, at (W;0). Note that the #OPY| and #OPYI| blocks have identical internal structure apart from the line
joining the two red areas at (w+3;0) and (h+ w +2;h). Indeed, when folding, the part of the molecule located in
the red area, either: (1) detects a spike on top (encoding a ) and then folds into a dent on top which induces spike
at the bottom (copying the  below, the block #OPY1 ); or (2) folds at (encoding a ) on top which induces a at
folding at the bottom, copying the  from the top to the bottom of the Zig-row (the block #OPYI ).

(@) The #OPYI1 block has a dent (an empty position) located at (w+3;0) (w.r.t. to its origin at the top left corner),
in which plugs the spike of the block from the row above it, and which induces (when folding) a spike at the bottom
at (h+ w+2;h), copying the letter from the top to the bottom of the Zig-row.

(b) The #OPYI blockis atat (w+3;0) (w.r.t. to its origin at the top left corner), which, aligned with a at block
above (encoding a ), induces (when folding) a at bottom at (h+ w+1;h 1), copying the letter  from the top
to the bottom of the Zig-row.
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Figure 34 Geometry of the J #OPYblocks. The J #OPY and J #OPY blocks are the horizontal mirror images of
the #OPYI| and #OPYI blocks (see Figure 33).

(@) The J #OPY block is the horizontal mirror image of the #OPYI block (see Figure 33(a)).

(b) The J #OPY block is the horizontal mirror image of the #OPYI block (see Figure 33(b))
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Figure 35 Geometry of the J #OPY,INE&EEDIocks. These blocks adopt the shape of a(W 6) h-parallelogram
prolongated by an southwestbound "arm" hoping to the beginning of the next zig-row. Folding from right to left, the
J #OPY,INE&EEDIocks are identical to the J #OPYblocks until position ( W + 6;0) where it detects that there are
no more blocks (encoding letter) in the row above (the detection of the absence of a block on top is made possible
by the =7 horizontal o set between the zig- and zag-rows). Then, instead of completing a parallelogram, the end
of the J #OPY,INE&EEDIlocks is attracted upwards and then folds into a southwestbound glider pattern to reach the
opening position of the next zig-row. The next block will start foldingat ( W +8;2h 1).

(@) The J #OPY,INE&EEDblock proceeds asJ #OPY to copy the spike encoding a from the row above to the row
below. It has a dent (an empty position) at ( W + w + 9;0) in which plugs the spike (encoding a ) of the block
above. When folding, this dent induces a spike at the bottom at position ( W + w+10;h) w.r.t. to the origin of the

block. Note that the spike below is at position (w+2; h+1) w.r.t. to the beginning of the following block, which

is consistent with the position of the dent in the 2EADI block (see Figure 5(a)).

(b) The J #OPY,INE&EEDblock.
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Figure 39 Geometry of the (ALT block. This block appears at the end of the computation. It starts as a 2EAD

h). But, as there are

no block in the zag-row above, the next beads are attracted to the left and the construction stops there.

block with a 3-beads wide h-beads high southeastbound glider until it reaches position (2;1

C The complete rule

We rst gives the rule in text. Fig. 40 displays it as a matrix.
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D Enumeration of the environments together with their proof-trees

The following tables refer to the proof-trees on the website:
HTTPS WWW IRIFFR NSCHABAN ORITATAMI PROOFTREES

proving the correctness of the folding of our design in every possible surroundings.

ZIG-UP
#0-98 #1286-1312 #- #4995-4997
#99-103 #1313- #- #4998-5000
C
#104-159
#1314-1315
Da
#160-339 #340-384
#1316-1392 #385-749
#750-856 #1393-1401

#857-1285 #1402-1853




XX:62 Proving the Turing Universality of Oritatami Co-Transcriptional Folding

g woJj Buiwod Saul| OM) 8yl U0 JO UONJ8SIaluI 8] 18

i louinq

i @ney am ‘aaueisul 1o} ”oQ wol} pue

1BIINg B Sl aldyl | g g aney am ‘welbelp siy) ul talsAs Iwereo S10S 8yl jo ajni 8yl O ainbi4



C. Geary, P.-E. Meunier, N. Schabanel, S. Seki

ZIG-DOWN
#1854-1874 #4745-4752 #2382-2578 #2745-2755 #2790-2797
#1875-1878 #2579-2580 #2756-
C
#1879-1889 #2798-2838
#2757-2758 #4701-4702
Da
#1890-1913 #1914-1932 same as previous ones
#2581-2599
#2600-2602
#1933-2011 #2603-2632 #2759-2789
#2012-2041 #2633-2643
#2042-2381 #2644-2744
WRITE
Da
#2839-2999 #4753-4786
#4703-4733 #3000-3749
#4787-4945
#3750-3781 #4734-4744

#4946-4959
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ZAG-WRITE
#4994- #3806-3816 , #4059-4069 , #4215-4225
#4310-4320
C
#3817-3827 , #4070-4080 , #4226-4236
#4321-4331 , #4459-4460 , #4475-4476
#4550-4551 , #4605-4606
Da
#3828-3851 #3939-3941 , #4434-4439 , #4525-4527
#4237-4263 #4571-4573 , #4587-4589 , #4595-4597
#4332-4355 #4618-4620
#4081-4176 , #4461-4474 #3852-3924 , #3942-4020 , #4264-4271
#4552-4570 , #4607-4617 #4356-4428 , #4440-4458 , #4504-4519
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