Combinatorics for general kinetically constrained spin models

Abstract : Bootstrap percolation is a well-known class of monotone cellular automata, in which sites may be infected or not and, at any step, a site becomes infected if a certain constraint is satisfied. Bootstrap percolation has a non-monotone stochastic counterpart , kinetically constrained models (KCM), which were introduced to model the liquid/glass transition, a major open problem of condensed matter physics. In KCM, the state of each site is re-sampled (independently) at rate 1 if the constraint is satisfied. A key problem for KCM is to determine the divergence of timescales as p → 0, where p is the equilibrium density of infected sites. In this article we establish a combinatorial result which in turn allows to prove a lower bound on timescales for KCM.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01567129
Contributeur : Laure Marêché <>
Soumis le : vendredi 21 juillet 2017 - 17:50:50
Dernière modification le : jeudi 27 juillet 2017 - 01:11:38

Fichier

Trouspectralrooted.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01567129, version 1

Collections

INSMI | PMA | UPMC | USPC

Citation

Laure Marêché. Combinatorics for general kinetically constrained spin models. 2017. 〈hal-01567129〉

Partager

Métriques

Consultations de
la notice

46

Téléchargements du document

14