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a b s t r a c t

The role grain boundaries play in the diffusion of hydrogen in polycrystalline alloys has

long been debated. Some researchers have found that grain boundaries have an acceler-

ating effect on the transport of hydrogen across a metal membrane, while others have

stated this network of sites may slow the diffusion of hydrogen or have a mixed effect

depending on grain size and orientation. Thermal desorption mass spectroscopy (TDS) was

used to study the diffusion of deuterium, from 294 K to 550 K, in model single crystal and

polycrystalline nickel base alloy, alloy 600, having a grain size of several tens of micro-

meters. Using a numerical routine, solving Fick's second law of diffusion, TDS spectra were

fit or simulated. The derived diffusion constant parameters (D0 ¼ (1.0 ± 0.5)$10�2 cm2 s�1

and ED ¼ (45 ± 4) kJ mol�1) for the polycrystalline alloy adequately predict and simulate the

deuterium desorption from the single crystal during TDS testing. Furthermore, in the

temperature range and for the grain size studied no significant effect of grain boundaries

on the diffusion of deuterium in alloy 600 was observed. Consequently, the measured

diffusion parameters are representative of interstitial diffusion in the alloy.
Introduction

For over five decades researchers have observed the cracking

of nickel base alloy 600 (A600) during exposure to high
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temperature water environments [1,2]. This alloy, which

normally presents good corrosion resistance, is often used as

the structural material of the Steam Generator (SG) tubes

found in Pressurized Water Reactor (PWR) nuclear power

plants. These tubes serve as the barrier between the primary
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(high temperature, high pressure aqueous medium, hydrogen

gas overpressure (25e50 cm3 kg�1 NPT)) and secondary cir-

cuits (saturated steam).

The cracking of these tubes has since been referred to as

Stress Corrosion Cracking (SCC) and the role hydrogen (H)may

play in this phenomenon has been explored [3e10]. Numerous

researchers have stated that H may affect the material's
sensitivity to this type of degradation and furthermore affect

the initiation and propagation of these cracks. Among the

roles hydrogen may play in SCC, an effect on the local me-

chanical properties of the alloy was proposed in literature

[5,11e13]. Before H can play this type of role in SCC phenom-

enon, it must first be absorbed by the material. After absorp-

tion, the hydrogen will be transported across the alloy. As a

general approach, this process can be described by Fick's
second law of diffusion:

vcH
vt

¼ D
v2cH
vx2

(1)

where cH, t, D, and x represent respectively the local molar

fraction of hydrogen, time, the interstitial diffusion coeffi-

cient, and position in the material.

However, during the diffusion process occurring in “real”

alloys, the hydrogen atoms will interact with both (i) inter-

stitial lattice sites and (ii) crystallographic heterogeneities

intrinsically present in the material (i.e. vacancies, disloca-

tions, grain boundaries, etc.). There is a large debate sur-

rounding the nature of these sites and the possible effect they

may have on the H transport process. These sites could “trap”

H and therefore have a relative slowing effect on its [apparent]

diffusion coefficient or even act as “short-circuits”, especially

along grain boundaries (GB), and therefore enhance the rela-

tive transport of hydrogen across the metal.

While most researchers consider the nature of some sites,

such as precipitate interfaces, to be identified as traps sites

(TS) for hydrogen (for example chromium carbides are

considered to be trap sites) [14,15], the role of some sites or

networks of sites, such as grain boundaries, is not so clear.

Experimental and numerical studies have resulted in mixed

results in both pure and alloyed materials. Some researchers

have observed a short-circuit effect of grain boundaries

[16e22], whereas others have noted a trapping effect [23,24]

and again others reporting a “mixed” effect dependent on

numerous material parameters (i.e. grain size [21], number of

triple junctions [25], Geometrically Necessary Dislocations

(GND) [25] and/or GB orientation [26]). Based upon these very

mixed findings, it would seem that this subject needs to be

handled on amaterial-to-material (i.e. depending on chemical

composition, microstructure, etc.) basis and looking at the

effect GBs may have on H transport in the concerned material

before drawing any conclusions on the H-material

interactions.

In the body of this article, the role grain boundaries play in

H diffusion and/or trapping in nickel base alloy 600, having a

grain size of several tens of micrometers, will be discussed.

The diffusion of hydrogen and its isotopes (deuterium (2H) and

tritium (3H)) in A600 has been studied in previous works in the

temperature range of 423 Ke675 K [27] and 573 Ke973 K [28].

The D0 and ED values obtained in these two studies for H, 2H

and 3H are relatively close; this seems to demonstrate that the
isotopic effect is negligible with regards to the uncertainty

associated with the measurement and determination of the

diffusion coefficient. Unfortunately, grain size was not speci-

fied in either publication [27,28] and therefore it is impossible

to evaluate the effect of grain boundaries based solely upon

these previous works.

As to better address the role of grain boundaries on the

diffusion of hydrogen, the transport of an isotopic hydrogen

tracer, deuterium (2H) will be experimentally assessed in

polycrystalline A600 andA600-like single crystal specimens by

thermal desorption mass spectroscopy (TDS). These results

will then be analyzed using the numerical simulation of Fick's
second law of diffusion, Eq. (1), and spectral fitting approach

described in a previous article [29]. Using this coupled exper-

imental and numerical approach the deuterium diffusion co-

efficient in A600 was determined and the role grain

boundaries may play in the H diffusion phenomenon in this

specific material is addressed.
Materials and method

Model materials and sample preparation

As the objective of this paper was to address the role of grain

boundaries in the H diffusion process, it was necessary to

work with (i) a model material containing [almost] only grain

boundaries, as heterogeneities liable to interact with H, and

(ii) a model material free of grain boundaries, in which H

transport is governed by interstitial diffusion. Therefore, two

materials were chosen: (i) a polycrystalline nickel base alloy

600 (A600-pc) and (ii) a single crystal1 (A600-sc) with a chem-

ical composition close to that of the polycrystalline alloy, see

Table 1.

Polycrystalline A600
Material observations were carried out on the as-received

material. This highlighted the presence of inter- and intra-

granular chromium carbides, identified as Cr7 C3, and some

titanium carbonitrides (TiCN) in the industrial (as-received)

A600 (respectively the smaller and larger black forms in

Fig. 1a) along with an inhomogeneous grain structure char-

acterized by bands of small (55 ± 7 mm) and large (120 ± 5 mm)

grains.

To eliminate the large majority of precipitates and the re-

sidual cold working from the polycrystalline material, the as-

received A600 slabs were treated in a similar way to [30]. First,

the slabs were maintained at 1453 K for 1 h under vacuum

then rapidly quenched in water. This thermal treatment

aimed at eliminating the residual cold working and solutio-

nizing the majority of chromium carbide precipitates.

Following this treatment the slabs were tempered at 573 K for

15 h and slow air cooling in order to eliminate the thermal

vacancies possibly retained in thematerial during the quench.

The resulting microstructure can be seen in Fig. 1b and c.

These heat treatments resulted in successful elimination

of chromium carbides as well as the large majority of

http://dx.doi.org/10.1016/j.ijhydene.2016.07.038
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Table 1 e Chemical composition (wt.%) of the polycrystalline Ni-base alloy 600 (A600-pc) and of the A600-like single crystal
(A600-sc) studied.

Element C Mn Si S P Ni Cr Cu Co Fe Ti Al

A600-pc 0.06 0.82 0.31 <0.001 0.008 base 15.8 0.01 0.01 9.6 0.196 0.164

A600-sc n.s.a 0.01 0.08 0.01 0.01 base 16.99 0.02 0.01 5.57 <0.01 e

a Non-specified.

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 1 ( 2 0 1 6 ) 1 7 1 4 5e1 7 1 5 3 17147
dislocations. After analyzing several images obtained by

transmission electron microscopy (TEM), example in Fig. 1c,

the average residual dislocation density was evaluated as

(3.6 ± 0.1)$108 cm�2 which may be considered fairly low.

Regarding the grain size, scanning electron microscopy (SEM)

and optical microscopy (OM) (images not shown) have

revealed that the banded grain structure, while being less

pronounced, was still present after thermal treatments.

Larger and smaller grains were on the order of 127 ± 9 mm and

68 ± 9 mm respectively. The thermal treatments did not result

in the elimination of the TiCNs, indicated by the white arrows
Fig. 1 e Observations of the A600-pc in its (a) as-received

state by OM and its heat treated state by (b) SEM and (c)

TEM. The white arrows in (b) indicate the TiCN which were

not eliminated by the series of thermal treatments.
in Fig. 1b. Nevertheless, considering that (i) very few of these

precipitates were present and (ii) the residual dislocation

density is very low, the possible effects of these heterogene-

ities on the diffusion (and trapping) of hydrogen in this ma-

terial can be supposed negligible. Therefore, all H-material

interactions taking place in this “model” (i.e. heat treated)

polycrystalline A600 specimens may be attributed to intersti-

tial and/or grain boundary diffusion.

A600-like single crystal
The microstructure of the A600-like single crystal (A600-sc)

was observed microscopically. This revealed a homogeneous

material with no observable grain boundaries nor pre-

cipitations (i.e. chromium carbides or TiCN) even after TDS

testing.

Sample preparation
The A600-pc and A600-sc slabs were then sectioned into

smaller samples measuring 1.3 cm � 1.3 cm with a

0.3 cm � 0.5 cm tab and a starting thickness of 0.11 cm by

electrical discharge machining. Sample edges were first

ground down to 1200 grit SiC paper, then both sample faces

were mechanically polished from SiC 800 grit paper down to a

mirror finish using a 0.04 mm aluminum oxide colloidal sus-

pension, with a final preparation step of 2 h on a vibrating

table in the suspension.

This finishing step minimized the surface cold working

induced during the mechanical polishing process, see Fig. 2.

While the single crystal model material is softer on the sur-

face, as compared to the polycrystalline model material, the

“core” hardness is very similar. After surface preparation,

sample thickness ranged from 0.07 cm to 0.09 cm and the

width remained nearly unchanged; the final dimensions of

each sample were carefully recorded.

Cathodic deuterium charging
Deuterium (2H) is used as an isotopic tracer for hydrogen and

has been shown to result in amuchmore stable an unpolluted

signal when using the TDS experimental technique whichwill

be presented in more detail in the next subsection. Before

charging, a thin copper wire was welded by resistive spot

welding to the specimen tab. Only one sample face was left

exposed to the solution; the rest, including the Cu wire and

tab, was protected from solution exposure by a Lacomite™

varnish.

Deuterium (2H)was introduced into the sample by cathodic

charging in a deaerated (Ar bubbling) 2H2 O (99.90% 2H) solu-

tion containing 0.1 M NaOH by applying a cathodic current

(�100 mA cm�2) for 30 min at 298 K. After charging, the

Lacomite™ varnish and tab with attached Cu wire is removed

leaving the square sample. Specimen are then either

http://dx.doi.org/10.1016/j.ijhydene.2016.07.038
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Fig. 2 e Nano- and microindentation results for the model

A600-pc and A600-sc after mechanical polishing and 2 h on

the vibrating table in an aluminum oxide colloidal

suspension.

i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 1 ( 2 0 1 6 ) 1 7 1 4 5e1 7 1 5 317148
transferred directly to the TDS set-up or are quickly stored in

liquid nitrogen for testing at a later date. This transfer time is

duly noted and take into consideration in experimental

analysis [29].
Experimental method and data analysis

This study used an approach which coupled experimental

thermal desorption mass spectroscopy analysis with a nu-

merical simulation code to both fit or simulate experimental

results.

Thermal desorption mass spectroscopy
TDS was used to study the H-material interactions taking

place in both the A600-pc and A600-sc model materials. This

analysis method consisted of subjecting a deuterated spec-

imen to either an isotherm or a temperature ramp under dy-

namic vacuum while the 2H2 ionizing current, which is

proportional to the desorption flux of 2H2 molecules from the

sample, was continuously monitored in function of time and

temperature.

A pre-charged sample was transferred from the cathodic

charging set-up to the TDS experimental set-up where it was
Table 2 e Experimental conditions for “traditional” and “hybri
“charging”, “transfer” or “aging”) are the duration and temper
temperature ramp rate.

Analysis type Charging T

tcharging (min) Tcharging (K) ttransfer (m

Traditional 30 298 15 ± 3

Hybrid-294 K 30 298 15 ± 3

Hybrid-409 K 30 298 15 ± 3
placed in a quartz tube which runs through a programmable

circular furnace. A type-K thermocouple was located in the

furnace very close to the specimen, to monitor the tempera-

ture at the sample. When the specimen was inserted into the

system, an incompressible pump down time (from atmo-

spheric pressure to the adequate vacuum for mass spec-

trometer operation) of 15 ± 3 min induced a short room

temperature aging of the specimen duringwhich therewas no

desorption monitoring. This transfer period was also taking

into consideration in numerical analysis [29].

Two types of TDS analysis were undertaken: (i) “tradi-

tional” TDS analysis, which involved imposing a linear tem-

perature ramp on the system or (ii) “hybrid” TDS analysis.

Experimental conditions for these two types of analysis can be

seen in Table 2. The hybrid technique involves subjecting the

specimen to a prolonged isothermal aging period, at a desired

temperature, followed by traditional TDS analysis, i.e. applied

dynamic temperature ramp. During both types of analysis the

desorption flux was monitored along with the sample tem-

perature. The real temperature ramp applied to the sample

was considered in numerical analysis [29].

Two hybrid testing experimental conditionswere imposed:

(i) a room temperature ((294 ± 2) K) aging as low temperatures

are often thought to favor short-circuit diffusion along the

grain boundary network [20] and (ii) an elevated temperature

((409 ± 1) K) aging period which, while grain boundaries may

still play a short circuit role at this temperature [22], ap-

proaches the temperature range where diffusion in volume is

often considered more dominant [31].

Numerical analysis
The resulting experimental TDS spectra were then analyzed

using a numerical code developed and presented in a previous

article [29]. At the present time, this code can only be used to

perform one-dimensional (1D) calculations. This decrease in

dimension of the modeled system (1D), compared to that of

the real system (3D), is expected to have no significant impact

on calculation results, because the thickness of samples used

in this study remains very small compared to their length and

width (see Section Sample preparation). The system can then

be considered finite in one direction and infinite in the two

others.

The system could be defined using three different limiting

cases (assuming grain boundaries play different roles in the

diffusion process).

1. The most simple assuming the system can be described by

Fick's second law (Eq. (1)), therefore making the assump-

tions that:
d” TDS analysis. In this table ti and Ti (i referring to either
ature of each experimental step and f is the imposed TDS

ransfer Aging T ramp

in) Ttransfer (K) taging (min) Taging (K) f (K min�1)

294 ± 2 e e 10

294 ± 2 360 294 ± 2 10

294 ± 2 360 409 ± 1 10

http://dx.doi.org/10.1016/j.ijhydene.2016.07.038
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Table 3 e Pre-exponential constant (D0) and activation
energy (ED) for the diffusion of 1H and its isotopic tracers
(i.e. 2H and 3H) in A600 extracted from literature [27,28]
and measured in this study.

b!
D0 (cm

2.s�1)
ED (kJ mol�1)

1H [27] 1.7$10�2 49.8
2H [27] 2.0$10�2 51.9
3H [28] (1.3 ± 0.5) 10�2 50.6 ± 2.0
2H This study (1.0 ± 0.5) 10�2 45 ± 4
(a) the diffusion coefficient (D) is considered to follow an

Arrhenius relationship (see Eq. (2)), depending on a pre-

exponential constant (D0), activation energy (ED), the

ideal gas constant (R) and temperature (T), the latter

giving D its temperature dependence:

D ¼ D0 � exp

��ED

RT

�
(2)

and

(b) the 2H diffusion along grain boundaries can be neglec-

ted compared to the 2H flux resulting from interstitial

diffusion in the grain volume.

2. A system where grain boundaries play the role of 2H

diffusion short circuits. Therefore the diffusion coefficient

along the grain boundary,DGB, must be considered through

the use of an effective diffusion coefficient [31] in Eq. (1) or

by amore realisticmathematical description of diffusion in

grain boundaries [32,33].

3. A systemwhere grain boundaries act as potential trap sites

for hydrogen. The system could be adapted through the

addition of a trap site density,N (expressed here as amolar

fraction), and trap site occupancy term would be needed.

Therefore simulation and fitting could be made possible by

the McNabb and Foster equations (Eq. (3)) [34]:

vcH
vt

þN
vqGB
vt

¼ D
v2cH
vx2

(3a)

vqGB
vt

¼ cHkð1� qGBÞ � pqGB (3b)

where qGB represents the fraction of occupied TS (grain

boundaries in this case), k the trapping kinetic constant and p

the detrapping kinetic constant at grain boundaries.

Systems 2 and 3 require the determination of many tem-

perature dependent parameters such as, for 2., a grain

boundary segregation factor (s) or, for 3., the determination or

assumption of kinetic trapping and detrapping constants (k

and p) and a trap site density (N) at grain boundaries.

Considering (i) that it is not realistic to determine a plethora of

parameters from a limited amount of experimental results

and (ii) that the parameters mentioned above are not readily

available in literature, the numerical analysis of experimental

results will be attempted using the first system. The validity of

this choice will be discussed based upon the comparison of

results obtained on single crystal and polycrystalline samples.
On top of assumptions (1a) and (1b), additional assump-

tions, regarding initial and boundary conditions, are needed to

numerically solve Eq. (1):

(1c) the sample is free of 2H before cathodic charging,

(1d) a constant 2H surface concentration (c0, charging) is

imposed at the sample face exposed to the solution

during the charging step, whereas

(1e) the 2H surface concentration at the varnished face re-

mains equal to zero.

The applicability of hypothesis (1d) has been verified by

chronopotentiometry measurements for the entire charging

duration as detailed in Ref. [35]. It has been observed for this

work that the measured potential remains quasi-constant

during the cathodic charging and tends to become indepen-

dent of time. Such evolution of the potential for a constant

imposed current shows that the steady state approximation

can be applied to the 2H surface discharge mechanism, lead-

ing to the assumption that the 2H surface concentration re-

mains constant during charging. The hypothesis (1e) is

supported by estimating the 2H characteristic diffusion length

for the charging duration (on the basis of published diffusion

data for H (and its isotopes) in A600 [27,28]), which remains

small, compared to the sample thickness.

Moreover, the numerical procedure takes into consider-

ation the entire specimen history: (i) duration and tempera-

ture of the charging, transfer and aging (if the specimen was

subjected to a prolonged aging period) steps and (ii) the

experimental temperature ramp imposed to the sample dur-

ing TDS analysis. This implies to define initial conditions for

each step, which are detailed in Ref. [29]. Concerning the

associated boundary conditions, as the sample is mainly

exposed to a dynamic vacuum during transfer, aging and TDS

steps, it is assumed that 2H surface concentration for both

sample faces remains constant and equal to zero during this

three steps [29].

Using this set of assumptions, the numerical code was

used to determine the pre-exponential constant and activa-

tion energy associated with the diffusion coefficient through

the fit of “traditional” TDS spectra. This fit uses a numerical

routine constructed in Python™. This Python code uses the

curve fit function (scipy.optimize.curve_fit) which uses the

LevenbergeMarquardt algorithm for least squares curve

fitting [36]. The developed numerical code can also be used for

simulation purposes when the fitting of parameters is not

necessary. This is, for example, the case when the use of the

code aims to validate previously determined parameters (as

discussed in Section Diffusion coefficient validation). In this

last case, an experimental TDS spectrum is compared to its

simulated counterpart, the latter based on parameters deter-

mined from the fit of another experimental TDS results.
Results and discussion

Experimental results

“Traditional” and “hybrid” TDS desorption spectra were ac-

quired for both the [heat treated] polycrystalline and single

http://dx.doi.org/10.1016/j.ijhydene.2016.07.038
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crystal A600 materials, respectively A600-pc and A600-sc. All

specimen were precharged with 2H (30 min at 298 K) before

transferring them to the TDS experimental set-up. The

applied experimental conditions can be seen in Table 2. The

experimental spectra for A600-pc and A600-sc, normalized to

their total spectral integral, are presented in Fig. 3.

The interest of this type of normalized TDS spectra is that

they are independent of the 2H surface concentration applied

during the charging step [35]. This normalization makes thus

possible the comparison between two experimental spectra

even, if the value of c0, charging is not accurately known, as in

the case in this work, or evolves from one experiment to each

other, e. g. due to the aging of the charging solution [35]. This

property of normalized spectra is also useful when comparing

calculated and experimental TDS spectra in order to investi-

gate the effect of D on the spectral shape, as is done in Sec-

tions Diffusion coefficient derivation, Diffusion coefficient

validation and Diffusion in A600-sc: simulations using

derived {D0, ED}.

Some general remarks concerning the experimental A600-

pc and A600-sc TDS spectra are listed below.

1. “Traditional” TDS spectra (Fig. 3a) for both polycrystalline

and single crystal A600 are characterized by one intense

desorption peak at approximately 395 K.

2. “Hybrid-294 K” TDS spectra (Fig. 3b) are characterized by a

non negligible desorption flux at t ¼ 0 which as aging pro-

gresses, weakens until it falls below the detection limit of

the mass spectrometer. Then when a temperature ramp is

applied (f ¼ 10 K min�1 from (294 ± 2) K to above 1273 K) a

significant desorption peak occurs of approximately the

same intensity (4.2$10�4 cm�2 s�1) for both the poly-

crystalline and single crystal model materials.

3. “Hybrid-409 K” TDS spectra (Fig. 3c) are characterized by an

early desorption peak when the system reaches the

elevated aging temperature ((409 ± 1) K). The signal then

weakens as aging progresses before, like for “hybrid-294 K”

testing, falling below the detection limit of the mass

spectrometer. The second temperature ramp

(f¼ 10 Kmin�1 from (409 ± 1) K to above 1273 K) produces a

second very noisy small desorption peak just above the
Fig. 3 e Normalized experimental (a) “traditional” and (b, c) “hy

“hybrid” TDS spectra are displayed here: (b) “hybrid-294 K” whic

“hybrid-409 K” which is subjected to an aging period at (409 ±
evolution of temperature during the associated experiments. (F

legend, the reader is referred to the web version of this article.
mass spectrometer detection limit, which is not visible in

Fig. 3c.

No significant difference between experimental spectra

recorded on both A600-pc and A600-sc samples can be high-

lighted in Fig. 3, even during aging at room temperature,

which is supposed to enhance a possible grain boundary

contribution [31]. These results hint that hydrogen transport

processes are similar in these twomaterials and consequently

that grain boundaries have no, or only a negligible, effect on

hydrogen diffusion in A600 for the grain size and experi-

mental conditions investigated.
Diffusion coefficient derivation

A “traditional” normalized TDS spectrum preformed on A600-

pc and its fit, using the numerical routine presented briefly in

Section Numerical analysis (more details are available in Ref.

[29]), are shown in Fig. 4. The numerical code was used to

simultaneously adjust the pre-exponential constant (D0) and

activation energy (ED) using literature diffusion coefficient

parameters [27,28] (Table 3) as the initial guess input param-

eters. To perform this fit, the value of c0, charging has been

arbitrarily fixed, as TDS spectra, normalized to their total

spectral integral, are independent of this parameter [35].

There is an overall good reproduction of experimental spec-

trum intensity, peak width and form associated with the

derived fit, although some slight differences can be remarked.

This seems to be due (i) to the accuracy of experimental input

parameters (e.g. the measured temperature ramp and/or

sample dimensions) and/or (ii) the effect of residual hetero-

geneities (see Section Polycrystalline A600) and/or grain

boundaries existing in the A600-pc, which are neglected in the

chosen diffusion model. The derived values of D0 and ED, as

well as the related errors estimated statistically on the basis of

three experimental measurements, are given in Table 3.

These values are smaller than those reported in literature

[27,28]. However, using literature diffusion parameters to

simulate the experimental spectrum performed on A600-pc

leads to a quite good reproduction of this spectrum, as it can

be seen in Fig. 4. To verify if the difference between the values
brid” TDS spectra for A600-pc and A600-sc. Two types of

h is subjected to an extended isotherm at (294 ± 2) K and (c)

1) K (Table 2). The red dashed lines in (b) and (c) show the

or interpretation of the references to color in this figure

)
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Fig. 4 e Experimental “traditional” TDS spectrum

performed on 2H pre-charged polycrystalline A600 and its

best fit. Results are compared to simulated spectra based

upon literature data for H, 2H and 3H (Table 3). The red

dashed line shows the evolution of temperature during the

associated experiment. (For interpretation of the

references to color in this figure legend, the reader is

referred to the web version of this article.)
measured in this study and those reported in the literature is

significant and in the objective of validating the derived

diffusion parameters measured, these different parameter

sets were tested by simulating “hybrid” TDS spectra.

Diffusion coefficient validation

The aforementioned validation procedure was carried out by

using the derived parameters to simulate a “hybrid-294 K” TDS

spectra (D0 ¼ 1.0$10�2 cm2 s�1 and ED ¼ 45 kJ mol�1). This

simulation can be seen in Fig. 5 (and is referred to as 2H data

from this study in the figures) along with simulations using

some literature diffusion coefficient parameters [27,28].
Fig. 5 e Experimental and simulated “hybrid 294 K” TDS desorp

simulation can be seen in Table 3; (a) shows the entire “hybrid” s

the non-isothermal TDS part of the spectra. The red dashed line

experiments. (For interpretation of the references to color in thi

this article.)
All three simulated spectra reproduce well the beginning

[isothermal] part of the experimental “hybrid” spectrum for an

aging period of less than 1$104 s. If a closer look is taken at the

(i) isothermal part of the spectra for durations greater than

1$104 s and (ii) non-isothermal TDS spectra some clear dis-

crepancies can be observed.

1. As the isothermal period continues (Fig. 5b) the improved

efficiency of the simulation using the derived values is

highlighted, as this spectrum mimics the [weak] intensity

of the experimental spectrum, while the literature [27,28]

simulated spectra quickly tend towards zero.

2. During the non-isothermal TDS analysis stage (Fig. 5c);

both the intensity and placement of the desorption peak is

much better reproduced using the derived diffusion coef-

ficient parameters (“2H data from this study”) as compared

to those from the literature.

This relatively accurate simulation of an experimental TDS

spectrum using diffusion coefficient parameters derived from

another experimental spectrum (subjected to different

experimental conditions) allows the {D0, ED} combination ob-

tained from the fitting method to be validated. Furthermore,

this shows that the imposed system simplifications, such as

the use of only Fick's second law and the assumption that

grain boundaries do not play a significant role as neither

diffusion short-circuits or trap sites, see Section Numerical

analysis, are applicable for this hydrogen-material system.

Diffusion in A600-sc: simulations using derived {D0, ED}

After the diffusion coefficient parameters for polycrystalline

A600 have been validated, they were used to simulate “tradi-

tional” and “hybrid” TDS spectra for A600-sc.

Fig. 6a shows the “traditional” experimental and simulated

spectra performed on A600-sc, see Table 2 for experimental

conditions. There is an overall very good correlation between

the simulated and experimental spectra, with a very good

reproduction of the (i) low temperature normalized desorption

intensity and spectral form, (ii) the temperature of maximum

desorption and (iii) general peak form. From this first
tion spectra for A600-pc. The diffusion parameters used for

pectra, (b) a zoom at the end of the isothermal period and (c)

s show the evolution of temperature during the associated

s figure legend, the reader is referred to the web version of

http://dx.doi.org/10.1016/j.ijhydene.2016.07.038
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Fig. 6 e Normalized experimental and simulated (a) “traditional”, (b) “hybrid-294 K” and (c) “hybrid-409 K” TDS spectra

(Table 2) for A600-sc. Simulations were carried out using the derived and validated diffusion coefficient {D0, ED} combination

for A600-pc, see Table 3. The red dashed lines show the evolution of temperature during the associated experiments. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
simulation, it would seem as though the derived {D0, ED} pair

from A600-pc adequately describe the diffusion interactions

taking place in the single crystal of A600-like alloy.

Next, the {D0, ED} pair was used to simulate the low tem-

perature (294 K) “hybrid” TDS spectra using all sample history

parameters. The results were compared to their experimental

counterparts for A600-sc, see Fig. 6b. This simulation re-

produces very well the normalized desorption spectra during

both the room temperature isotherm (t � 2.1$104 s) and

“traditional” TDS type analysis (t � 2.1$104 s and

f¼ 10 Kmin)�1. This is extremely evident at low temperature

(T ¼ 294 ± 2 K, t � 2.1$104 s), where grain boundary diffusion is

often considered to be a major contribution [19,20,16,31].

As an overall very good correlation has been achieved for

the previous simulations, one last comparison can be done.

An experimental “hybrid” TDS spectra, having been aged for

6 h at 409 K was simulated. This aging temperature (409 ± 1 K)

is very interesting as it approaches the temperature range at

which volume diffusion is often considered the major

contribution [31] but grain boundaries could still play a short-

circuit or trapping role in deuterium diffusion. This compari-

son can be seen in Fig. 6c. In agreement with the previous

remarks, the reported spectrum is well reproduced by the

derived values seen in Table 3.

The comparison of experimental A600-sc TDS spectra, with

their simulated counterparts using the {D0, ED} combination

derived from A600-pc spectra, seems to confirm that grain

boundaries have no significant effect on the diffusion of 2H in

A600, for the grain size and experimental conditions investi-

gated. Moreover, these results demonstrate that the values of

D0 and ED, determined in this work, are representative of an

interstitial diffusion mechanism.
Conclusion

The goal of this articlewas to address the role grain boundaries

may play on the diffusion of deuterium innickel base alloy 600.

To study this phenomenon, twomodelmaterials were used: (i)

apolycrystallineA600 (after a largemajorityof dislocationsand

precipitates have been eliminated) and (ii) an A600-like single

crystal. Experimental comparisons of “traditional”, “hybrid-
294 K” and “hybrid-409 K” TDS spectra highlighted some clear

similarities in the experimental results obtained on the A600-

pc and A600-sc materials, leading to the conclusion that grain

boundaries do not play a significant role inH transport in A600,

for the grain size and experimental conditions investigated.

This study has been carried out in the framework of better

understanding the interactions taking place between H and

industrial A600, used as the main component of the steam

generator tubes of PWRnuclear power plants. It would then be

important to also study the interactions taking place at the

other types of sites, intrinsically present in the industrial

material, for example chromium carbides, dislocations and

vacancies. This study on the influence of grain boundaries on

the diffusion of hydrogen in nickel base alloy 600 serves as a

first step towards the understanding of more complicated H-

material interaction systems. The obtained results concerning

the diffusion of 2H in this alloy could serve as input data for

more in-depth analysis of interactions between H and crys-

tallographic heterogeneities (i.e. vacancies, dislocations, car-

bides, etc.) in A600 as suggested in Ref. [29].
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