A. Zaki, A. Joh, D. Cheng, Z. , D. Barros et al., Gold-Loaded Polymeric Micelles for Computed Tomography-Guided Radiation Therapy Treatment and Radiosensitization, ACS Nano, vol.8, issue.1, pp.104-116, 2013.
DOI : 10.1021/nn405701q

J. Belloni, M. Mostafavi, H. Remita, J. Marignier, and M. Delcourt, Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids, New Journal of Chemistry, vol.22, issue.11, pp.1239-55, 1998.
DOI : 10.1039/a801445k

E. Bentchikou, P. Servant, G. Coste, and S. Sommer, Additive Effects of SbcCD and PolX Deficiencies in the In Vivo Repair of DNA Double-Strand Breaks in Deinococcus radiodurans, Journal of Bacteriology, vol.189, issue.13, pp.4784-90, 2007.
DOI : 10.1128/JB.00452-07

URL : https://hal.archives-ouvertes.fr/hal-00195312

M. Blasius, S. Sommer, and U. Hubscher, : What Belongs to the Survival Kit?, Critical Reviews in Biochemistry and Molecular Biology, vol.5, issue.3, pp.221-259, 2008.
DOI : 10.1186/1471-2180-5-17

O. Bondarenko, K. Juganson, A. Ivask, K. Kasemets, M. Mortimer et al., Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review, Archives of Toxicology, vol.14, issue.3, pp.1181-200, 2013.
DOI : 10.1007/s11051-012-1165-1

R. Brayner, The toxicological impact of nanoparticles, Nano Today, vol.3, issue.1-2, pp.48-55, 2008.
DOI : 10.1016/S1748-0132(08)70015-X

N. Browning, J. Buban, C. M. Gipson, B. Herrera, M. Masiel et al., The Application of Scanning Transmission Electron Microscopy (STEM) to the Study of Nanoscale Systems, Modeling nanoscale imaging in electron microscopy. Nanostructure science and technology, pp.11-40, 2012.
DOI : 10.1007/978-1-4614-2191-7_2

K. Butterworth, S. Mcmahon, F. Currell, and K. Prise, Physical basis and biological mechanisms of gold nanoparticle radiosensitization, Nanoscale, vol.115, issue.4, pp.4830-4838, 2012.
DOI : 10.1021/jp206854s

. Li, Platinum nanoparticles: an exquisite tool to overcome radioresistance, Cancer Nanotechnology, vol.6, issue.22, p.4, 2017.
DOI : 10.1039/c4nr04334k

URL : https://hal.archives-ouvertes.fr/hal-01566483

G. Charest, B. Paquette, D. Fortin, D. Mathieu, and L. Sanche, Concomitant treatment of F98 glioma cells with new liposomal platinum compounds and ionizing radiation, Journal of Neuro-Oncology, vol.53, issue.2, pp.187-93, 2010.
DOI : 10.1017/S0317167100006715

F. Confalonieri and S. Sommer, Bacterial and archaeal resistance to ionizing radiation, Journal of Physics: Conference Series, vol.261, issue.1, p.12005, 2011.
DOI : 10.1088/1742-6596/261/1/012005

M. Daly, E. Gaidamakova, V. Matrosova, A. Vasilenko, M. Zhai et al., Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance, Science, vol.306, issue.5698, pp.1025-1033, 2004.
DOI : 10.1126/science.1103185

M. Daly, E. Gaidamakova, V. Matrosova, A. Vasilenko, M. Zhai et al., Protein Oxidation Implicated as the Primary Determinant of Bacterial Radioresistance, PLoS Biology, vol.104, issue.4, 2007.
DOI : 10.1371/journal.pbio.0050092.sg003

M. Eltsov and J. Dubochet, Fine Structure of the Deinococcus radiodurans Nucleoid Revealed by Cryoelectron Microscopy of Vitreous Sections, Journal of Bacteriology, vol.187, issue.23, pp.8047-54, 2005.
DOI : 10.1128/JB.187.23.8047-8054.2005

F. Escorcia, M. Mcdevitt, C. Villa, and D. Scheinberg, Targeted nanomaterials for radiotherapy, Nanomedicine, vol.2, issue.6, pp.805-820, 2007.
DOI : 10.2217/17435889.2.6.805

J. Hainfeld, D. Slatkin, and H. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice, Physics in Medicine and Biology, vol.49, issue.18, pp.309-324, 2004.
DOI : 10.1088/0031-9155/49/18/N03

J. Hainfeld, F. Dilmanian, D. Slatkin, and H. Smilowitz, Radiotherapy enhancement with gold nanoparticles, Journal of Pharmacy and Pharmacology, vol.169, issue.8, pp.977-85, 2008.
DOI : 10.1667/RR1080.1

J. Hainfeld, F. Dilmanian, Z. Zhong, D. Slatkin, J. Kalef-ezra et al., Gold nanoparticles enhance the radiation therapy of a murine squamous cell carcinoma, Physics in Medicine and Biology, vol.55, issue.11, pp.3045-59, 2010.
DOI : 10.1088/0031-9155/55/11/004

J. Hainfeld, H. Smilowitz, O. Connor, M. Dilmanian, F. Slatkin et al., Gold nanoparticle imaging and radiotherapy of brain tumors in mice, Nanomedicine, vol.8, issue.10, pp.1601-1610, 2013.
DOI : 10.2217/nnm.12.165

E. James and N. Browning, Practical aspects of atomic resolution imaging and analysis in STEM, Ultramicroscopy, vol.78, issue.1-4, pp.1-4125, 1999.
DOI : 10.1016/S0304-3991(99)00018-2

S. Kascakova, L. Maigre, C. J. Refregiers, M. Pages, and J. , Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution, PLoS ONE, vol.7, issue.6, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01490798

B. Kierdaszuk, I. Gryczynski, A. Modrak-wojcik, A. Bzowska, D. Shugar et al., FLUORESCENCE OF TYROSINE AND TRYPTOPHAN IN PROTEINS USING ONE- AND TWO-PHOTON EXCITATION, Photochemistry and Photobiology, vol.65, issue.4, pp.319-343, 1995.
DOI : 10.1111/j.1432-1033.1975.tb03925.x

J. Kim, S. Seo, H. Kim, K. Kim, M. Chung et al., Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles, Physics in Medicine and Biology, vol.57, issue.24, pp.8309-8332, 2012.
DOI : 10.1088/0031-9155/57/24/8309

L. Duc, G. Miladi, I. Alric, C. Mowat, P. et al., Toward an Image-Guided Microbeam Radiation Therapy Using Gadolinium-Based Nanoparticles, ACS Nano, vol.5, issue.12, pp.9566-74, 2011.
DOI : 10.1021/nn202797h

L. Duc, G. Roux, S. Paruta-tuarez, A. Dufort, S. Brauer et al., Advantages of gadolinium based ultrasmall nanoparticles vs molecular gadolinium chelates for radiotherapy guided by MRI for glioma treatment, Cancer Nanotechnology, vol.24, issue.1, pp.4-10, 2014.
DOI : 10.1021/bc4002097

URL : https://hal.archives-ouvertes.fr/hal-01115650

S. Levin-zaidman, J. Englander, E. Shimoni, A. Sharma, K. Minton et al., Ringlike Structure of the Deinococcus radiodurans Genome: A Key to Radioresistance?, Science, vol.299, issue.5604, pp.254-260, 2003.
DOI : 10.1126/science.1077865

S. Mcmahon, W. Hyland, M. Muir, J. Coulter, S. Jain et al., Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles, Scientific Reports, vol.37, issue.1, p.18, 2011.
DOI : 10.1118/1.3455703

I. Miladi, C. Alric, S. Dufort, P. Mowat, A. Dutour et al., The In Vivo Radiosensitizing Effect of Gold Nanoparticles Based MRI Contrast Agents, Small, vol.53, issue.6, pp.1116-1140, 2014.
DOI : 10.1088/0031-9155/53/4/003

URL : https://hal.archives-ouvertes.fr/hal-00968601

B. Moseley and A. Mattingly, Repair of irradiation transforming deoxyribonucleic acid in wild type and a radiation-sensitive mutant of Micrococcus radiodurans, J Bacteriol, vol.105, issue.3, pp.976-83, 1971.

P. Nellist, Introduction to Scanning Transmission Electron Microscopy, Journal of Microscopy, vol.191, issue.1, 1998.
DOI : 10.1046/j.1365-2818.1998.0381a.x

E. Porcel, S. Liehn, H. Remita, N. Usami, K. Kobayashi et al., Platinum nanoparticles: a promising material for future cancer therapy?, Nanotechnology, vol.21, issue.8, pp.957-4484, 2010.
DOI : 10.1088/0957-4484/21/8/085103

E. Porcel, S. Li, N. Usami, H. Remita, Y. Furusawa et al., Nano-Sensitization under gamma rays and fast ion radiation, Journal of Physics: Conference Series, vol.373, issue.1, p.12006, 2012.
DOI : 10.1088/1742-6596/373/1/012006

E. Porcel, O. Tillement, F. Lux, P. Mowat, N. Usami et al., Gadolinium-based nanoparticles to improve the hadrontherapy performances, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.8, pp.1601-1609, 2014.
DOI : 10.1016/j.nano.2014.05.005

URL : https://hal.archives-ouvertes.fr/hal-01115636

E. Porcel, O. Tillement, F. Lux, P. Mowat, N. Usami et al., Gadolinium-based nanoparticles to improve the hadrontherapy performances, Nanomedicine: Nanotechnology, Biology and Medicine, vol.10, issue.8, 2014.
DOI : 10.1016/j.nano.2014.05.005

URL : https://hal.archives-ouvertes.fr/hal-01115636

S. Remita, M. Mostafavi, and M. Delcourt, Bimetallic Ag???Pt and Au???Pt aggregates synthesized by radiolysis, Radiation Physics and Chemistry, vol.47, issue.2, pp.275-284, 1996.
DOI : 10.1016/0969-806X(94)00172-G

L. Sancey, F. Lux, S. Kotb, S. Roux, S. Dufort et al., The use of theranostic gadoliniumbased nanoprobes to improve radiotherapy efficacy, Br J Radiol, vol.87, 1041.
URL : https://hal.archives-ouvertes.fr/hal-01286747

C. Schneider, W. Rasband, and K. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nature Methods, vol.42, issue.7, pp.671-676, 2012.
DOI : 10.2144/000112257

. Li, Platinum nanoparticles: an exquisite tool to overcome radioresistance, Cancer Nanotechnology, vol.6, issue.22, p.4, 2017.
DOI : 10.1039/c4nr04334k

URL : https://hal.archives-ouvertes.fr/hal-01566483

L. Sha, P. Sébastien, K. Linda, H. Anne-catherine, K. W. et al., LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation, Nanotechnology, vol.27, issue.45, p.455101, 2016.

H. Shu, M. Kim, P. Chen, F. Furman, C. Julin et al., The intrinsic radioresistance of glioblastoma-derived cell lines is associated with a failure of p53 to induce p21BAX expression, Proceedings of the National Academy of Sciences, vol.70, issue.6, pp.14453-14461, 1998.
DOI : 10.1016/0092-8674(92)90243-6

I. Shuryak and D. Brenner, A model of interactions between radiation-induced oxidative stress, protein and DNA damage in Deinococcus radiodurans, Journal of Theoretical Biology, vol.261, issue.2, pp.305-322, 2009.
DOI : 10.1016/j.jtbi.2009.08.003

I. Shuryak and D. Brenner, Effects of radiation quality on interactions between oxidative stress, protein and DNA damage in Deinococcus radiodurans, Radiation and Environmental Biophysics, vol.14, issue.4, pp.693-703, 2010.
DOI : 10.1016/j.mrfmmm.2009.06.016

D. Slade and M. Radman, Oxidative Stress Resistance in Deinococcus radiodurans, Microbiology and Molecular Biology Reviews, vol.75, issue.1, pp.133-9100015, 2011.
DOI : 10.1128/MMBR.00015-10

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3063356

L. ?tefan?íková, E. Porcel, P. Eustache, S. Li, D. Salado et al., Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells, Cancer Nanotechnology, vol.82, issue.5, pp.1-15, 2014.
DOI : 10.1021/ac902417s

L. ?tefan?íková, E. Porcel, P. Eustache, S. Li, D. Salado et al., Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells, Cancer Nanotechnology, vol.82, issue.5, pp.6-10, 2014.
DOI : 10.1021/ac902417s

A. Tapias, C. Leplat, and F. Confalonieri, Recovery of ionizing-radiation damage after high doses of gamma ray in the hyperthermophilic archaeon Thermococcus gammatolerans, Extremophiles, vol.5, issue.2, pp.333-376, 2009.
DOI : 10.1007/s00792-008-0221-3

URL : https://hal.archives-ouvertes.fr/hal-00353567

F. Taupin, M. Flaender, R. Delorme, T. Brochard, J. Mayol et al., Gadolinium nanoparticles and contrast agent as radiation sensitizers, Physics in Medicine and Biology, vol.60, issue.11, pp.4449-64, 2015.
DOI : 10.1088/0031-9155/60/11/4449

URL : https://hal.archives-ouvertes.fr/in2p3-01157446

N. Usami, Y. Furusawa, K. Kobayashi, S. Lacombe, A. Reynaud-angelin et al., Mammalian cells loaded with platinum-containing molecules are sensitized to fast atomic ions, International Journal of Radiation Biology, vol.143, issue.3, pp.603-1110, 1080.
DOI : 10.2307/3579218

A. Venkateswaran, S. Mcfarlan, D. Ghosal, K. Minton, A. Vasilenko et al., Physiologic Determinants of Radiation Resistance in Deinococcus radiodurans, Applied and Environmental Microbiology, vol.66, issue.6, pp.2620-2626, 2000.
DOI : 10.1128/AEM.66.6.2620-2626.2000

G. Wagnieres, W. Star, and B. Wilson, In Vivo Fluorescence Spectroscopy and Imaging for Oncological Applications, Photochemistry and Photobiology, vol.34, issue.3, pp.603-635, 1998.
DOI : 10.1117/12.197520

J. Yhee, S. Lee, and K. Kim, Advances in targeting strategies for nanoparticles in cancer imaging and therapy, Nanoscale, vol.8, issue.22, pp.13383-90, 2014.
DOI : 10.1021/nn406584y