Bounding Average-Energy Games

Abstract : We consider average-energy games, where the goal is to minimize the long-run average of the accumulated energy. While several results have been obtained on these games recently, decidability of average-energy games with a lower-bound constraint on the energy level (but no upper bound) remained open; in particular, so far there was no known upper bound on the memory that is required for winning strategies. By reducing average-energy games with lower-bounded energy to infinite-state mean-payoff games and analyzing the density of low-energy configurations, we show an almost tight doubly-exponential upper bound on the necessary memory, and that the winner of average-energy games with lower-bounded energy can be determined in doubly-exponential time. We also prove EXPSPACE-hardness of this problem. Finally, we consider multi-dimensional extensions of all types of average-energy games: without bounds, with only a lower bound, and with both a lower and an upper bound on the energy. We show that the fully-bounded version is the only case to remain decidable in multiple dimensions.
Type de document :
Communication dans un congrès
FoSSaCS'17, Apr 2017, Uppsala, Sweden. Springer, 10203, pp.179-195, 2017, LNCS. 〈10.1007/978-3-662-54458-7_11〉
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger
Contributeur : Nicolas Markey <>
Soumis le : vendredi 21 juillet 2017 - 09:41:02
Dernière modification le : jeudi 7 février 2019 - 14:22:40


Fichiers produits par l'(les) auteur(s)



Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour, Martin Zimmermann. Bounding Average-Energy Games. FoSSaCS'17, Apr 2017, Uppsala, Sweden. Springer, 10203, pp.179-195, 2017, LNCS. 〈10.1007/978-3-662-54458-7_11〉. 〈hal-01566431〉



Consultations de la notice


Téléchargements de fichiers