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Eigenvalue bounds of the Robin Laplacian
with magnetic field

Georges Habib∗, Ayman Kachmar †

Abstract

On a compact Riemannian manifold M with boundary, we give an estimate for
the eigenvalues (λk(τ, α))k of the magnetic Laplacian with the Robin boundary
conditions. Here, τ is a positive number that defines the Robin condition and α

is a real differential 1-form on M that represents the magnetic field. We express
those estimates in terms of the mean curvature of the boundary, the parameter τ

and a lower bound of the Ricci curvature of M (see Theorems 1.3 and 1.5). The
main technique is to use the Bochner formula established in [3] for the magnetic
Laplacian and to integrate it over M (see Theorem 1.2). As a direct application,
we find the standard Lichnerowicz estimates for both the Neumann and Dirichlet
Laplacian, when the parameter τ tends to 0 or to ∞. In the last part, we compare
the eigenvalues λk(τ, α) with the first eigenvalue λ1(τ, 0) (i.e. without magnetic
field) and the Neumann eigenvalues λk(0, α) (see Theorem 1.7) using the min-max
principle.

1 Introduction and Results

Let (M, g) be a Riemannian manifold of dimension n and let α be a smooth real differential
1-form onM. Given two vector fields X, Y in the complexified tangent bundle TM⊗C, the
magnetic covariant derivative is defined as ∇α

YX = ∇M
Y X + iα(Y )X, where ∇M denotes

the Levi-Civita connection on M. It is shown in [3, Lemma 3.2] that ∇α satisfies the
Leibniz rule and the compatibility property with the Riemannian metric g, and is also
used to define the magnetic Hessian by Hessαf(X, Y ) = 〈∇α

Xd
αf, Y 〉. Here and in all the

paper, the product 〈·, ·〉 will denote the Hermitian inner product extended from the metric
g to the tangent bundle TM ⊗ C or to the cotangent bundle T ∗M ⊗ C. We will also use
the natural one-to-one isomorphism between T ∗M ⊗C and TM ⊗C by w(X) = 〈X,w#〉
for any X ∈ TM ⊗ C and w ∈ T ∗M ⊗ C.

Given any complex-valued function f on M, the magnetic Laplacian is defined as being
the trace of the magnetic Hessian

∆αf := −trace(Hessαf) = −divα(dαf)#,
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where dαf := dMf + ifα and divα is the magnetic divergence given for any vector field
X ∈ TM ⊗ C by divαX := divMX + i〈X,α#〉.
The study of the spectrum of the magnetic Laplacian has interested many researchers
[2, 4, 6, 8, 9, 10] during the last years. For example, the authors in [3] gave an estimate à
la Lichnerowicz for the first eigenvalue in terms of a lower bound of the Ricci curvature
(assumed to be positive) and the infinity norm of the magnetic field dMα. In particular,
they deduce a spectral gap between the first eigenvalue (which is not necessarily zero)
and the second one. The main technique used in the paper is to establish a Bochner type
formula for the magnetic Laplacian ∆α, to integrate it over the manifold M and to control
all the integral terms involving dMα by its supremum norm. Indeed, they prove

Theorem 1.1. [3, Thm. 4.1] Let (M, g) be a complete Riemannian manifold of dimension
n. Then for all f ∈ C∞(M,C), we have

−1

2
∆M(|dαf |2) = |Hessαf |2 − ℜ〈dαf, dα(∆αf)〉+ RicM(dαf, dαf)

+ i(dMα(dαf, dαf)− dMα(dαf, dαf))

+
i

2
(〈f̄dαf, δMdMα〉 − 〈fdαf, δMdMα〉),

(1.1)

where δM denotes the formal adjoint of dM on (M, g).

In this paper, we are interested in estimating the eigenvalues of the magnetic Laplacian
with the Robin boundary condition. That means, we assume on a given compact manifold
M with boundaryN there exists a complex-valued function f onM satisfying the equation
∆αf = λf on M and the boundary condition (dαf)(ν) = τf for some positive real
number τ. Here ν denotes the inward unit normal vector field of N. It a standard fact
that the spectrum of such boundary problem is purely discrete and consists of a sequence
of eigenvalues (λk(τ, α))k arranged in increasing order counting multiplicities. In order to
get the spectral gap between the first two eigenvalues, we shall first integrate the Bochner
formula in Theorem 1.1 as in [3] by taking into account the boundary terms. First, we
get

Theorem 1.2. Let (Mn, g) be a compact Riemannian manifold with boundary N and let
α be a differential real 1-form on M. Then, we have

∫

M

|Hessαf +
1

n
(∆αf)g|2dvg =

n− 1

n

∫

M

|∆αf |2dvg −
∫

M

RicM(dαf, dαf)dvg

+

∫

M

ℑm
(
(dMα)(dαf, dαf)

)
dvg +

∫

M

|f |2|dMα|2dvg

− (n− 1)

∫

N

H|〈dαf, ν〉|2dvg − 2

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg

−
∫

N

〈II(dαNf), dαNf〉dvg. (1.2)

for all complex valued function f ∈ C∞(M,C).

2



Here II denotes the second fundamental form of the boundary and H is the mean cur-
vature. Also ∆α

N is a Laplacian defined on functions on N which is associated to some
exterior derivative dαN (see Section 2 for the definition).
We apply Theorem 1.2 to a particular solution of the magnetic Robin boundary problem.
Under some assumptions on τ , the magnetic field dMα, the Ricci curvature RicM , the
second fundamental form II and the minimal mean curvature Hmin = minM H, we get
two universal bounds on the first two eigenvalues of the magnetic Robin Laplacian. Indeed

Theorem 1.3. Let (Mn, g) be a compact Riemannian manifold with boundary ∂M = N

and let α be a differential 1-form on M and τ > 0. Assume that RicM ≥ k (k > 0) and
that II + τ ≥ 0. If α satisfies

k − (n− 1)τHmin ≤ ||dMα||∞ ≤
(

1 + 2

√

n− 1

n

)−1

k, (1.3)

then we have

λ1(τ, α) ≤ a−(k, ||dMα||∞, n) and λ2(τ, α) ≥ a+(k, ||dMα||∞, n),

where

a±(k, ||dMα||∞, n) = n
(k − ||dMα||∞)±

√

(k − ||dMα||∞)2 − 4(n−1
n
)||dMα||2∞

2(n− 1)
,

and Hmin = minM H.

Remark 1.4.

• The assumption in (1.3) on the mean curvature is valid when Hmin > 0, since
(

1 + 2
√

n−1
n

)−1

k < k. Also, when τ is very large, (1.3) becomes an upper bound

on ||dMα||∞, which is a growth condition on the magnetic field with respect to the
Ricci curvature.

• It follows from Inequality (1.3) that (k − ||dMα||∞)2 − 4(n−1
n
)||dMα||2∞ > 0 and

a−(k, ‖dMα‖∞, n) > 0. This is more transparent in the proof of Theorem 1.3.

• As long as τ is chosen bigger than k
(n−1)Hmin

, the first inequality in (1.3) is clearly
satisfied.

In Theorem 1.3, we get the same estimates as in [3, Thm. 1.1] since we shall see that
the eigenvalues satisfy the same inequality in [3]. As an application of this theorem, we
find the lower bound for the eigenvalues of the Dirichlet Laplacian proved by Reilly in
[7]. Indeed, assume that the mean curvature H is nonnegative and consider any closed
1-form α on M. If we let τ tending to +∞ in Theorem 1.3, the inequality (1.3) is clearly
satisfied and therefore, one deduces that limτ→∞λ2(τ, α) ≥ n

n−1
k. As the spectrum of the

Robin Laplacian tends to the Dirichlet one when τ → ∞, the result then follows.
Also, the authors in [1, p.14] gave an estimate for the first eigenvalue of the Robin Lapla-
cian in terms of the infimum value of the mean curvature. In fact, they proved that under
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the conditions RicM ≥ 0 and II+τ ≥ 0, we have the estimate λ1(τ) ≥ τ(n−1)minMH−τ 2.

This estimate is valid when the condition Hmin := minMH ≥ τ
n−1

holds. In the pres-
ence of a magnetic field the same bound continues to hold for the first eigenvalue, since
λ1(τ, α) ≥ λ1(τ) := λ(τ, 0) for any differential 1-form α, by the celebrated diamagnetic
inequality.
Our next result is an estimate of the eigenvalues of the magnetic Robin Laplacian in terms
of Hmin and a lower bound of the Ricci curvature.

Theorem 1.5. Let (Mn, g) be a compact Riemannian manifold with boundary ∂M = N

and let α be a differential 1-form on M and τ > 0. Assume that RicM ≥ k (k > 0), II+τ ≥
0 and Hmin ≥ 1

n
. If k ≥ (n− 1)τHmin and α satisfies

||dMα||∞ ≤ inf

(√
∆2 − (k − 2(n−1

n
)τ)

4n−1
n

− 1
, k − (n− 1)τHmin

)

,

where

∆2 = 4
n− 1

n

(

k2 − 4
n− 1

n
kτ +

n− 1

n
τ 2 − (n− 1)τ 2Hmin(1− 4

n− 1

n
)

)

,

then we have

λ1(τ, α) ≤ b−(k, ||dMα||∞, n) and λ2(τ, α) ≥ b+(k, ||dMα||∞, n),

where b±(k, ||dMα||∞, n) are given by

n
(k − ||dMα||∞)±

√
∆

2(n− 1)
,

with

∆ =

(

1− 4
n− 1

n

)

||dMα||2∞

− 2

(

k − 2

(
n− 1

n

)

τ

)

||dMα||∞ + k2 − 4
n− 1

n
kτ + 4

(n− 1)2

n
τ 2Hmin.

Remark 1.6.

• Note that the assumption on dMα in Theorem 1.5 guarantees that the quantities
∆, b±(k, ||dMα||∞, n) and ∆2 are non-negative. This is more apparent in the proof
of Theorem 1.5.

• In the case where Hmin ≤ 1
n
, we can get the same results as in Theorem 1.5 but

choosing k ≥ 2(n − 1)τ
(

1
n
+
√

1
n
( 1
n
−Hmin)

)

. If we let τ tending to zero, we find

the same bound for the eigenvalues of the Neumann Laplacian proved in [5].

• When we are working with a Riemannian manifold with minimal boundary (that
is, H = 0), the estimate in [1] cited previously does not give any information on the
spectrum of the Robin Laplacian. However, the estimate in Theorem 1.5 does.
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In the last part of this paper, we present two-sided estimates of all the eigenvalues λk(τ, α)
in terms of λ1(τ) := λ1(τ, 0) and the Neumann eigenvalues λN

k (α) := λk(0, α), using
a variational argument (see Theorem 1.7 below). These estimates yield a quantitative
measurement of the diamagnetism (i.e. the quantity λ(τ, α)− λ1(α)).
To state this theorem, we need the quantity C(τ) that we introduce below. Let fτ : M →
R be the first normalized eigenfunction of the Robin Laplacian (without magnetic field)
and let us define the following constant

C(τ) =
min
x∈M

f 2
τ (x)

max
x∈M

f 2
τ (x)

> 0 . (1.4)

Note that C(0) = 1 and lim
τ→+∞

C(τ) = 0 and the function fτ can be selected in a unique

manner so that fτ > 0. We have

Theorem 1.7. For all τ > 0 and k ≥ 1,

λ1(τ) + C(τ)λN
k (α) ≤ λk(τ, α) ≤ λ1(τ) +

1

C(τ)
λN
k (α) .

Remark 1.8.

1. Using the existing estimates on the Neumann eigenvalues λN
k (α) (see e.g. [2]), we

deduce immediately estimates on the Robin eigenvalues λk(τ, α).

2. (Zero magnetic field) Assume that α is closed and not exact. Combining the
result in [8] and the estimates in Theorem 1.7, we deduce that λ1(τ, α) = λ1(τ) if
and only if the flux of α satsifies

Φα
c :=

∮

c

α ∈ Z

for every closed curve c ⊂ M .

The rest of the paper is organized as follows. Section 2 is devoted to the lengthy proof of
Theorem 1.2. In Section 3, we prove Theorems 1.3 and 1.5. Finally, we present the proof
of Theorem 1.7 in Section 4.

2 Proof of Theorem 1.2

In this section, we will prove Theorem 1.2 by integrating all the terms in the Bochner
formula. First, with the help of the Stokes formula the integral of the l.h.s. of Equation
(1.1) is equal to

−1

2

∫

M

∆M (|dαf |2)dvg = −1

2

∫

N

g(dM(|dαf |2), ν))dvg = −
∫

N

ℜ〈∇M
ν dαf, dαf〉dvg.

Now, we will compute the term ℜ〈∇M
ν dαf, dαf〉 pointwise by decomposing the vectors

over a local orthonormal frame {ei}i=1,··· ,n−1 of TxN at some point x ∈ N. Indeed, using
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the definition of the operator dα, we write

〈∇M
ν dαf, dαf〉 =

n−1∑

i=1

(∇M
ν dαf)(ei)〈ei, dαf〉+ (∇M

ν dαf)(ν)〈ν, dαf〉

=

n−1∑

i=1

(∇M
ν dMf)(ei)〈ei, dαf〉+ iν(f)

n−1∑

i=1

α(ei)〈ei, dαf〉

+ if

n−1∑

i=1

(∇M
ν α)(ei)〈ei, dαf〉+ (∇M

ν dαf)(ν)〈ν, dαf〉

=
n−1∑

i=1

(∇M
ei
dMf)(ν)〈ei, dαf〉+ iν(f)

n−1∑

i=1

α(ei)〈ei, dαf〉

+ if

n−1∑

i=1

(dMα)(ν, ei)〈ei, dαf〉+ if

n−1∑

i=1

(∇M
ei
α)(ν)〈ei, dαf〉

+ (∇M
ν dαf)(ν)〈ν, dαf〉.

In the last equality, we just use the fact that the hessian of the function f is a symmetric
2-tensor. We then proceed

〈∇M
ν dαf, dαf〉 =

n−1∑

i=1

ei(ν(f))〈ei, dαf〉 −
n−1∑

i=1

(dMf)(∇M
ei
ν)〈ei, dαf〉+ iν(f)

n−1∑

i=1

α(ei)〈ei, dαf〉

+ if

n−1∑

i=1

(dMα)(ν, ei)〈ei, dαf〉+ if

n−1∑

i=1

ei(α(ν))〈ei, dαf〉

− if

n−1∑

i=1

α(∇M
ei
ν)〈ei, dαf〉+ (∇M

ν dαf)(ν)〈ν, dαf〉

= 〈dN(ν(f)), dαf〉+
n−1∑

i=1

(dMf)(II(ei))〈ei, dαf〉+ iν(f)
n−1∑

i=1

α(ei)〈ei, dαf〉

+ if

n−1∑

i=1

(dMα)(ν, ei)〈ei, dαf〉+ if〈dN(α(ν)), dαf〉

+ if

n−1∑

i=1

α(II(ei))〈ei, dαf〉+ (∇M
ν dαf)(ν)〈ν, dαf〉.

As α is a 1-form on M, we can write it at any point of the boundary by α = αT + α(ν)ν.
We then define the operator dαN by dαNh := dNh + ihαT for any complex-valued function
h ∈ C∞(N,C). Hence, the above equality becomes

〈∇M
ν dαf, dαf〉 =〈dαN(ν(f)), dαf〉+ 〈II(dαNf), dαf〉+ if〈νydMα, dαf〉

+ if〈dN(α(ν)), dαf〉+ (∇M
ν dαf)(ν)〈ν, dαf〉.

Therefore after integrating, we deduce that

−1

2

∫

M

∆M(|dαf |2)dvg =−
∫

N

ℜ(〈dαN(ν(f)), dαf〉+ 〈II(dαNf), dαf〉+ if〈νydMα, dαf〉

+ if〈dN(α(ν)), dαf〉+ (∇M
ν dαf)(ν)〈ν, dαf〉)dvg. (2.1)
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In the second step, we want to integrate the term ℜ〈dαf, dα(∆αf)〉 in the r.h.s. of Theorem
1.1. First, recall the Stokes formula on complex functions: For all h ∈ C∞(M,C) and
smooth complex valued 1-form β, one has

∫

M

〈dMh, β〉dvg =
∫

M

hδMβdvg −
∫

N

h〈ν, β〉dvg.

Therefore according to this formula, one can easily get that
∫

M

〈dαh, β〉dvg =
∫

M

hδαβdvg −
∫

N

h〈ν, β〉dvg,

where the adjoint δα of dα is given by δα = δM−i〈·, α〉 [3, Def. 2.1]. Here we mention that
δαX = −trace(∇αX), where ∇α is the magnetic covariant derivative defined previously.
Hence, by taking h = ∆αf and β = dαf, we deduce

∫

M

〈dα(∆αf), dαf〉dvg =
∫

M

|∆αf |2dvg −
∫

N

(∆αf)〈ν, dαf〉dvg. (2.2)

Now we want to evaluate the term ∆αf in the second integral of the r.h.s. of the equality
above. Using the compatibility equations in [3, Lem. 3.2] and taking an orthonormal
frame {ei}i=1,··· ,n−1 of TN with ∇N

ei
ei = 0 at some point, we compute

∆αf = −
n−1∑

i=1

〈∇α
ei
(dαf), ei〉 − 〈∇α

ν (d
αf), ν〉

= −
n−1∑

i=1

ei(〈dαf, ei〉) +
n−1∑

i=1

〈dαf,∇α
ei
ei〉 − 〈∇α

ν (d
αf), ν〉

= −
n−1∑

i=1

ei(〈dαf, ei〉) +
n−1∑

i=1

〈dαf,∇M
ei
ei + iα(ei)ei〉 − 〈∇α

ν (d
αf), ν〉

= −
n−1∑

i=1

ei(〈dαf, ei〉) +
n−1∑

i=1

〈dαf, II(ei, ei)ν + iα(ei)ei〉 − 〈∇α
ν (d

αf), ν〉

= −
n−1∑

i=1

ei(〈dαNf, ei〉) + (n− 1)H〈dαf, ν〉+
n−1∑

i=1

〈dαNf, iα(ei)ei〉 − 〈∇α
ν (d

αf), ν〉

= ∆α
Nf + (n− 1)H〈dαf, ν〉 − 〈∇α

ν (d
αf), ν〉,

where ∆α
N := δαNd

α
N , with δαN = δN − i(·, αT ). We notice that δαN is the L2-adjoint of dαN

on N. Plugging the expression of ∆αf above into Equation (2.2), we find
∫

M

〈dα(∆αf), dαf〉dvg =
∫

M

|∆αf |2dvg −
∫

N

(∆α
Nf)〈ν, dαf〉dvg − (n− 1)

∫

N

H|〈dαf, ν〉|2dvg

+

∫

N

〈∇α
ν (d

αf), ν〉〈ν, dαf〉dvg.

=

∫

M

|∆αf |2dvg −
∫

N

(∆α
Nf)〈ν, dαf〉dvg − (n− 1)

∫

N

H|〈dαf, ν〉|2dvg

+

∫

N

〈∇M
ν (dαf), ν〉〈ν, dαf〉dvg +

∫

N

iα(ν)|〈ν, dαf〉|2dvg.

(2.3)
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The last step is to compute the term i
2

∫

M

〈f̄dαf, δMdMα〉dvg and its conjugate in Theorem

1.1. For this, we proceed as in [3, p.17] to get

i

2

∫

M

〈f̄dαf, δMdMα〉dvg =
i

2

∫

M

〈dM(f̄dαf), dMα〉dvg +
i

2

∫

N

〈f̄dαf, νydMα〉dvg

=
i

2

∫

M

(dMα)(dαf, dαf)dvg −
1

2

∫

M

|f |2|dMα|2dvg

+
i

2

∫

N

〈f̄dαf, νydMα〉dvg.

(2.4)

Now, we have all the ingredients to integrate Equation (1.1) over M. In fact, using Equa-
tions (2.1), (2.3) and (2.4), we find that

−
∫

N

ℜ(〈dαN(ν(f)), dαf〉+ 〈II(dαNf), dαf〉+ if〈νydMα, dαf〉+ if〈dN(α(ν)), dαf〉

+(∇M
ν dαf)(ν)〈ν, dαf〉)dvg =

∫

M

|Hessαf |2dvg −
∫

M

|∆αf |2dvg +
∫

N

ℜ((∆α
Nf)〈ν, dαf〉)dvg

+(n− 1)

∫

N

H|〈dαf, ν〉|2dvg −
∫

N

ℜ(〈∇M
ν (dαf), ν〉〈ν, dαf〉)dvg +

∫

M

RicM(dαf, dαf)dvg

+
i

2

∫

M




(dMα)(dαf, dαf)− (dMα)(dαf, dαf)
︸ ︷︷ ︸

2iℑm((dMα)(dαf,dαf))




 dvg −

∫

M

|f |2|dMα|2dvg

+
i

2

∫

N




〈f̄dαf, νydMα〉 − 〈fdαf, νydMα
︸ ︷︷ ︸

=−2iℑmf〈νydMα,dαf〉

〉




 dvg.

By writing dαf = dαNf + (ν(f) + ifα(ν))ν at any point of the boundary, the first integral
in the l.h.s. reduces to

∫

N

ℜ〈dαN(ν(f)), dαf〉dvg =

∫

N

ℜ〈dαN(ν(f)), dαNf〉dvg

=

∫

N

ℜ(ν(f)δαNdαNf)dvg =
∫

N

ℜ(ν(f)∆α
Nf)dvg

=

∫

N

ℜ(〈dαf − iαf, ν〉∆α
Nf)dvg

=

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg −

∫

N

ℜ(iα(ν)f ∆α
Nf)dvg.

Using the fact that δαN is the L2-adjoint of dαN and that dαN(f1f2) = f2d
Nf1 + f1d

α
Nf2 for
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any complex valued functions f1 and f2 on N, the above equality becomes

∫

N

ℜ〈dαN(ν(f)), dαf〉dvg =

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg −

∫

N

ℜ〈dαNf, dαN (iα(ν)f)〉dvg

=

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg +

∫

N

ℜ(i〈dαNf, fdN(α(ν)) + α(ν)dαNf〉)dvg

=

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg +

∫

N

ℜ(if̄〈dαNf, dN(α(ν))〉)dvg

+

∫

N

α(ν)ℜ(i〈dαNf, dαNf〉)
︸ ︷︷ ︸

=0

dvg

=

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg −

∫

N

ℜ(if〈dN(α(ν)), dαf〉)dvg.

Therefore, we deduce

−2

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg −

∫

N

〈II(dαNf), dαNf〉dvg =
∫

M

|Hessαf |2dvg −
∫

M

|∆αf |2dvg + (n− 1)

∫

N

H|〈dαf, ν〉|2dvg +
∫

M

RicM(dαf, dαf)dvg

−
∫

M

ℑm
(
(dMα)(dαf, dαf)

)
dvg −

∫

M

|f |2|dMα|2dvg.

The proof of the proposition then follows. �

3 Proof of Theorems 1.3 and 1.5

In the following, we will give a proof of both Theorems 1.3 and 1.5. For this, we consider
an eigenfunction f of the Robin Laplacian associated to the eigenvalue λ(τ, α), that is
∆αf = λ(τ, α)f with ν(f) + ifα(ν) = τf for some positive τ. We then apply Equality
(1.2) to the eigenfunction f . First, we have

∫

N

ℜ(〈ν, dαf〉∆α
Nf)dvg = τ

∫

N

ℜ(f̄∆α
Nf)dvg = τ

∫

N

ℜ(f∆α
Nf)dvg = τ

∫

N

|dαNf |2dvg.

Also, the following inequality

∫

M

ℑm
(
(dMα)(dαf, dαf)

)
dvg ≤ ||dMα||∞

∫

M

|dαf |2dvg,

holds. Therefore, as the r.h.s. of Equality (1.2) is nonnegative, we get after using the
conditions RicM ≥ k and II + τ ≥ 0 that

0 ≤ n− 1

n
λ(τ, α)2

∫

M

|f |2dvg − (k − ||dMα||∞)

∫

M

|dαf |2dvg + ||dMα||2∞
∫

M

|f |2dvg

−(n− 1)τ 2
∫

N

H|f |2dvg − τ

∫

N

|dαNf |2dvg.
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Since f is an eigenfunction of the Laplacian, one has
∫

M

|dαf |2dvg = λ(τ, α)

∫

M

|f |2dvg − τ

∫

N

|f |2dvg.

Hence, the above inequality reduces to

0 ≤ n− 1

n
λ(τ, α)2

∫

M

|f |2dvg − (k − ||dMα||∞)λ(τ, α)

∫

M

|f |2dvg + (k − ||dMα||∞)τ

∫

N

|f |2dvg

+||dMα||2∞
∫

M

|f |2dvg − (n− 1)τ 2Hmin

∫

N

|f |2dvg − τ

∫

N

|dαNf |2dvg.

By grouping the terms and using the fact that the last term is nonpositive, we find at the
end

0 ≤
(
n− 1

n
λ(τ, α)2 − (k − ||dMα||∞)λ(τ, α) + ||dMα||2∞

)∫

M

|f |2dvg

+τ
(
k − ||dMα||∞ − (n− 1)τHmin

)
∫

N

|f |2dvg.

Now two cases occur depending on the sign of the term (k − ||dMα||∞) − (n − 1)τHmin.

If this last term is nonpositive, we deduce as in [3, Eq. 62] the inequality

0 ≤ n− 1

n
λ(τ, α)2 − (k − ||dMα||∞)λ(τ, α) + ||dMα||2∞.

Therefore, the same result holds as in [3, Thm. 1.1] and thus we finish the proof of
Theorem 1.3. To prove Theorem 1.5, we choose α such that k− (n−1)τHmin ≥ ||dMα||∞.

Recall that the condition of k allows to consider such an α. Hence, we find after using∫

N

|f |2dvg ≤
∫

M

|f |2dvg that

0 ≤ n− 1

n
λ(τ, α)2− (k− ||dMα||∞)λ(τ, α) + ||dMα||2∞+ (k− ||dMα||∞)τ − (n− 1)τ 2Hmin.

The discriminant of this polynomial is equal to

∆ = (1−4
n− 1

n
)||dMα||2∞−2(k−2

(
n− 1

n

)

τ)||dMα||∞+k2−4
n− 1

n
kτ+4

(n− 1)2

n
τ 2Hmin,

which in turn has a discriminant equal to

∆2 = 4
n− 1

n

(

k2 − 4
n− 1

n
kτ +

n− 1

n
τ 2 − (n− 1)τ 2Hmin(1− 4

n− 1

n
)

)

.

Since Hmin ≥ 1
n
, this last discriminant is positive (just compute its discriminant again).

Moreover, a straightforward computation shows that
√
∆2 ≥ k − 2(n−1

n
)τ. Therefore, if

we take α such that the following inequality

||dMα||∞ ≤
√
∆2 − (k − 2(n−1

n
)τ)

4n−1
n

− 1
,

holds, we finish the proof of the theorem. �
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4 Proof of Theorem 1.7

Let f be the function defined by f = ufτ , where u : M → C is a complex valued function
on M and fτ is a normalized eigenfunction of the Robin Laplacian associated to the first
eigenvalue λ1(τ). Then, we compute

∫

M

|(dM + iα)f |2dvg =

∫

Ω

|udMfτ + fτ (d
Mu+ iαu)|2dvg

=

∫

M

|u|2|dMfτ |2dvg +
∫

M

f 2
τ |(dM + iα)u|2dvg

+2

∫

M

fτℜ〈udMfτ , d
Mu+ iαu〉dvg

=

∫

M

fτδ
M(|u|2dMfτ )dvg − τ

∫

N

|u|2f 2
τ dvg +

∫

M

f 2
τ |(dM + iα)u|2dvg

+

∫

M

ℜ〈dM(f 2
τ ), ūd

Mu〉dvg

=

∫

M

fτ |u|2δM(dMfτ )dvg −
∫

M

fτg(d
M(|u|2), dM(fτ ))dvg − τ

∫

N

|u|2f 2
τ dvg

+

∫

M

f 2
τ |(dM + iα)u|2 +

∫

M

ℜ〈dM(f 2
τ ), ūd

Mu〉dvg

= λ1(τ)

∫

M

f 2
τ |u|2dvg −

∫

M

fτg(d
M(|u|2), dM(fτ ))dvg − τ

∫

N

|u|2f 2
τ dvg

+

∫

M

f 2
τ |(dM + iα)u|2dvg +

∫

M

ℜ〈dM(f 2
τ ), ūd

Mu〉dvg.

Now, it is easy to see that one has pointwise

fτg(d
M(|u|2), dM(fτ )) = fτ 〈ūdMu+ udMu, dM(fτ )〉 = ℜ〈dM(f 2

τ ), ūd
Mu〉.

Consequently, we deduce that

∫

M
|dαf |2dvg + τ

∫

N
f 2dvg

||f ||2 = λ1(τ) +

∫

M
f 2
τ |dαu|2 dvg

∫

M
|u|2f 2

τ dvg
.

Now the proof follows from the variational min-max principle. Indeed, the definition of
C(τ) in (1.4) yields

C(τ)

∫

M
f 2
τ |dαu|2 dvg

∫

M
|u|2f 2

τ dvg
≤
∫

M
f 2
τ |dαu|2 dvg

∫

M
|u|2f 2

τ dvg
≤ 1

C(τ)

∫

M
|dαu|2 dvg

∫

M
|u|2 dvg

,

which finishes the proof. �
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