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Abstract
We give a probabilistic analysis of parameters related to α-gapped repeats and palindromes in
random words, under both uniform and memoryless distributions (where letters have different
probabilities, but are drawn independently). More precisely, we study the expected number of
maximal α-gapped patterns, as well as the expected length of the longest α-gapped pattern in a
random word.
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1 Introduction

In this article, we are interested in the combinatorial aspects of the notion of α-gapped repeat
and α-gapped palindromes [10, 7, 4]. An α-gapped repeat in a word is a factor of the form
uvu, where u and v are words with |uv| ≤ α|u|. More precisely, such a pattern is essentially
a repetition of u, but the second occurrence is not too far away from the first one. The
definition for palindromes is similar, as we are looking for factors of the form uvu instead,
where u is the reverse of u. The study of gapped patterns (see also [1, 12]) finds most of its
motivation in bioinformatics. Recent works show that these patterns can be found in linear
time [11, 17, 6], and there cannot be more than a linear number of them [2, 7]. Note that
α-gapped repeats are also called fractional powers [16]: uvu is an α-gapped repeat if and
only if it is a fractional power of uv with exponent at least 1 + α−1.

When looking at patterns in words, there are usually two main categories of questions:
providing efficient algorithms to find a specific set of patterns and studying the combinatorics
of words with a focus on the appearance (or avoidance) of these patterns. These two points
of view are of course directly related, as insights on the combinatorial properties often yield
ideas for building new efficient algorithms.

In the sequel, we propose a probabilistic analysis of parameters related to α-gapped
repeats and palindromes; more precisely, we answer the following questions:

What is the expected number of α-gapped patterns in a random word?
What is the expected length of the longest α-gapped pattern in a random word?

This only makes sense if one specifies what is meant by a random word, i.e., what the
distribution on words is. We first consider the uniform distribution, which often serves as
an introductory example for the techniques we use and can provide, for instance, useful
elements for average analysis of algorithms, while still being mathematically tractable. We
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21:2 Gapped Pattern Statistics

also consider memoryless sources, which give a more general, yet simple distribution where
all letters are not constrained to have identical frequencies. In this model, each letter is
drawn independently following a fixed, but possibly biased, distribution on the alphabet. In
particular, we exhibit a noteworthy behavior on the longest α-gapped repeat: if each letter
ai has probability πi, then a long random word of length n has about πin occurrences of
each letter ai; however, in a long α-gapped repeat uvu, the frequencies of the letters in the u
parts of the factor do not follow this typical distribution (see section 4.2).

Our work follows several other combinatorial and probabilistic results obtained for different
kinds of patterns in words, such as the expected number of runs [14], the expected total
run length [8], the expected number of distinct palindromic factors [15], etc. We use both
techniques from analytic combinatorics, based on the definition of generating series for gapped
patterns in words, as in [13], and classical discrete probabilities.

2 Preliminaries

For any two nonnegative integers i, j, let [i, j] denote the integer interval {i, . . . , j}. By
convention, [i, j] = ∅ if j < i. Let also [i] denote the integer interval [1, i].

In the sequel we consider words on a finite alphabet A, of cardinality k ≥ 2. We assume
the reader is familiar with the classical definitions on words [3], such as prefixes, suffixes,
and factors. For w ∈ A∗ of length n and i ∈ [n], let wi (or w[i]) denote the i-th letter of w,
with the convention that positions start at 1. The last letter of w is therefore w|w|. Let also
w[i, j] = wi · · ·wj denote the factor of w that starts at position i and ends at position j, with
w[i, j] = ε if i > j or if i or j is not in [n]. The factor of w of length ` that starts at position
i is w[i, i+ `− 1]. For a given length `, a position i in w is valid if i+ `− 1 ≤ n.

A gapped repeat in a word w of length n is a triple (i, u, v), where i ∈ [n] and u and v
are nonempty words, such that the factor of w of length |uvu| starting at position i is uvu.
For a given real α ≥ 1, it is an α-gapped repeat if |uv| ≤ α|u|. A gapped repeat (i, u, v) of
w is maximal if, when the positions exist, wi−1 6= wi+|uv|−1 and wi+|uvu| 6= wi+|u|, i.e., the
gapped repeat cannot be extended to the left or to the right.

Similar notions can be defined for palindromes. Under the same conditions for i, u and v,
a triple (i, u, v) is an α-gapped palindrome if the factor of length |uvu| starting at position i
in w is uvu, where u = u|u| · · ·u1 denote the reverse of u. It is an α-gapped palindrome if
|uv| ≤ α|u| and maximal if wi−1 6= wi+|uvu| (when they exist) and either |v| = 1 or v1 6= v|v|.

I Example 1. Consider w = aababbbabab and α = 2. The triple (4, ab, bb) is an α-gapped
repeat, but it is not maximal since it can be extended to the left to form (3, bab, b).

I Remark. In the sequel, we only consider α-gapped patterns (repeats or palindromes) for
rational α ≥ 1. This really matters for Section 3 only, as the other results hold for any real
α ≥ 1. It is also convenient to consider β := α− 1 in most computations, as it changes the
condition into |u| ≤ β|v|, and we therefore use this notation from now on.

The uniform distribution on a finite set E is the probability π defined for all e ∈ E by
π(e) = 1

|E| . By a slight abuse of notation, we will speak of the uniform distribution on A∗ to
denote the sequence (πn)n≥0 of uniform distributions on An. For instance, if A = {a, b, c},
then each element of An has probability 3−n under this distribution.

Another very classical distribution on An is the memoryless distribution of probability π,
where π is a probability on the alphabet A. Under this distribution, the probability of a
word w = w1 · · ·wn ∈ An is Pn(w) = π(w1) · · ·π(wn). This distribution can also be seen as
generating each letter of the word independently, following π.
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It is convenient to fix a total order a1 < . . . < ak on A and to define πi = π(ai), for
all i ∈ [k]. We also see π as a vector ~π = (π1, . . . , πk) of [0, 1]k. This notation will be used
repeatedly in the sequel.

3 Number of gapped patterns

In this section, we compute the average number of maximal α-gapped patterns (repeats or
palindromes) in random words of length n under a memoryless distribution. Our main tool
is writing exact generating functions, which happen to be rational fractions; the asymptotic
behavior is then obtained by using standard theorems of analytic combinatorics [5].

3.1 Framework
Let A = {a1, . . . , ak} be an alphabet and, for every i ∈ [k], let zi be a formal variable
(associated with the letter ai). To each word w ∈ A∗ we associate a monomial c(w) =
z
|w|1
1 . . . z

|w|k
k , where |w|i is the number of occurrences of the letter ai in w. In other words,

the mapping c allows us to consider words as in the abelian world, where letters commute.
Let ~z = (z1, . . . , zk). If X is a set of words, its formal power series X(~z ) is defined as the
formal sum of the monomials associated with its words: X(~z ) =

∑
w∈X c(w). As we shall

see, this power series is a tool of choice to study the probabilistic properties of the set X .
First, the symbolic method [5] can be used to build X(~z ), directly from a nonambiguous

regular description of X : if X , Y and Z are three sets of words whose respective series are
X(~z ), Y (~z ) and Z(~z ), then

if X is the disjoint union of Y and Z, then X(~z ) = Y (~z ) + Z(~z );
if X is the nonambiguous concatenation of Y and Z, then X(~z ) = Y (~z )Z(~z );
if X is the nonambiguous Kleene star of Y, then X(~z ) = 1

1−Y (~z ) .

Second, for a given probability ~π = (π1, . . . , πk) on A, one can build the formal power
series in a single variable X(z), by substituting πi z to each zi. After the substitution, the
contribution of each word of length n to the coefficient of zn in X(z), in the memoryless
model, is exactly its probability. By marking a certain set of patterns with a copy of the
alphabet, one can effectively multiply the contribution of a word by its number of patterns,
and hence compute the expected number of such patterns using this technique (another
approach is to control the unambiguity of the description [13]). Once X(z) is known, analytic
combinatorics can be used to estimate the quantities under study.

Let us illustrate this technique on a toy example. Assume that we want to compute the
expected number of occurrences of the pattern aba in a random word of length n under the
memoryless distribution on the alphabet {a, b}, with1 πa = 1

3 and πb = 2
3 . Observe that the

word w = bbababaaab contains two (overlapping) occurrences of the pattern. The marking
technique consists in distinguishing these two occurrences by using another alphabet, say {a, b}
for the letters of the pattern. The associated regular language is L = (a+ b)∗aba(a+ b)∗. The
two words w = bbababaaab and w = bbababaaab correspond to w, which therefore contributes
twice, as the pattern occurs twice. Using the symbolic method directly yields that the
generating series of L is

L(~z ) = 1
1− (za + zb)

· zazbza ·
1

1− (za + zb)
= z2

azb

(1− za − zb)2 .

1 For readability, we use πa, πb, za and zb instead of π1, π2, z1 and z2.

CPM 2017
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Then, we compute L(z) by performing the substitutions za 7→ πaz and zb 7→ πbz:

L(z) = π2
aπbz

3

(1− πaz − πbz)2 = π2
aπbz

3

(1− z)2 = 2z3

27 (1− z)2 .

The coefficient of zn in L(z) is the expected number of occurrences of the pattern in a random
word of length n. The expression above is amenable to the analytic technique presented
below (see Section 3.3), yielding the (natural) estimate of 2n

27 occurrences on average.

3.2 Generating series for the expected number of patterns
We now use this general framework to compute the expected number of maximal α-gapped
patterns. To simplify the notations, for any positive integer i and any vector ~z, let Ni(~z ) =
zi1 + . . .+ zik. In particular, N1(~z ) = z1 + . . .+ zk.

A gapped pattern is equivalent to a triple of words (u, v, u′), with a condition u′ = u (for
gapped repeats) or u′ = u (for gapped palindromes), and a length condition 1 ≤ |v| ≤ β|u|,
which we rewrite into the equivalent |u| ≥ |v|/β and |v| ≥ 1. Because we are ultimately
interested in maximal patterns, we need to keep track of the first and last letters of v; this,
in turn, forces us to distinguish between the subcases |v| = 1 and |v| ≥ 2.

In the simpler case |v| = 1, a pattern is just given by a single letter a ∈ A, and an
arbitrary word u of length at least d1/βe. The generating series for words of length at
least ` is N1(~z)`/(1−N1(~z)). In our patterns, the letters of u are to be counted twice,
once in u and once in u′. This is taken into account by just changing N1(~z) into N2(~z)
into the formula. Hence, the generating series for α-gapped patterns with v = ai is
ziN2(~z )d1/βe

1−N2(~z ) .
We now want to add a prefix and a suffix (both possibly empty) to the patterns. To
avoid ambiguity in the description, we duplicate the alphabet and consider that patterns
are written using this newly introduced copy. We are therefore considering words with
one marked pattern, clearly identified. We also want the marked patterns to be maximal;
this adds a condition on the prefix (resp. suffix) when it is not empty. This condition
is slightly different for gapped repeats and gapped palindromes; we deal with gapped
repeats first. Then the condition is that both prefix and suffix can be empty, but if they
are not, the last letter of the prefix and the first letter of the suffix must be different
from ai. The generating series for both the possible prefixes and suffixes are the same,
and equal to (1− zi)/(1−N1(~z )). Summing over all possible i, the generating series for
all words with a marked maximal α-gapped pattern having a gap of length exactly 1 is
therefore

Uα(~z ) = (N1(~z )− 2N2(~z ) +N3(~z ))N2(~z )d1/βe

(1−N1(~z ))2(1−N2(~z )) .

For gapped palindromes, there is a condition on the prefix and suffix when they are both
nonempty: the last letter of the prefix must be different from the first letter of the suffix.
This leads to multiplying the generating series for all patterns by the generating series
for this set of pairs of words, which is 1−N2(~z )

(1−N1(~z ))2 . We thus get as the generating series for
all words with a marked maximal α-gapped palindrome having a gap of length exactly 1,

Uα(~z) = (1−N2(~z ))N1(~z )N2(~z )b1/βc

(1−N1(~z ))2 (1−N2(~z )) .
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ai aj

u v u′

Figure 1 A gapped pattern uvu′ with the first and last letters in v distinguished.

We now turn to the case |v| ≥ 2. For any two letters ai and aj , we consider the possible
gapped patterns (see Figure 1) such that v starts with ai and ends with aj (for maximal
gapped palindromes, an additional condition is i 6= j). Let `+ 2 be the length of such a
word v; the α-gapped condition is thus |u| ≥ (`+ 2)/β. Writing β = p/q with positive
integers p and q, and writing the Euclidean division of ` by p as ` = tp+m, the condition
becomes |u| ≥ tq + (m+ 2)/β.
Thus, in the pattern uvu′, u is obtained by concatenation of t arbitrary words of length q,
plus one arbitrary word of length d(m+ 2)/βe, plus an arbitrary (possibly empty) word;
and v starts with ai, concatenated with t arbitrary words of length p, plus one arbitrary
word of length m, and ends with aj . In the pattern composition, the composition of u has
to be counted twice since u′ also contributes and has the same composition. Summing
over all possible values of t and m, we get the generating series for all α-gapped patterns
such that v starts with ai and ends with aj :

Gα,i,j(~z ) = zizjQα(~z )
(1−N2(~z ))(1−N1(~z )pN2(~z )q) , with Qα(~z) =

p−1∑
m=0

N1(~z )mN2(~z )d(m+2)/βe.

Writing the generating functions for all words with a marked maximal gapped pattern
again corresponds to adding a prefix and suffix, but leads to different generating functions
for repeats and palindromes because the conditions on the suffix and prefix are slightly
different.
For gapped repeats, both the prefix and the suffix can be empty, or an arbitrary word that
does not end with aj (for the prefix), or that does not start with ai (for the suffix). This
is done by multiplying the generating series Gα,i,j(~z ) by (1− zi)(1− zj)/(1−N1(~z ))2.
Taking the sum over all possible j yields that the generating series of all words with a
marked maximal α-gapped repeat and |v| ≥ 2 is

Vα(~z ) = (N1(~z )−N2(~z ))2 Qα(~z )
(1−N1(~z ))2(1−N2(~z ))(1−N1(~z )pN2(~z )q) .

For gapped palindromes, maximality induces two conditions. First the last letter of v
must be different from its first letter; this is taken into account by summing Gα,i,j(~z )
over all possible i 6= j. Second, the prefix and suffix must also satisfy the same conditions
as for the case |v| = 1, which leads to multiply by 1−N2(~z )

(1−N1(~z ))2 as before. Hence, the
generating series of all words with a marked maximal α-gapped palindrome and |v| ≥ 2 is

V α(~z ) = (N1(~z )2 −N2(~z ))Qα(~z)
(1−N1(~z ))2(1−N1(~z )pN2(~z )q) .

We can now proceed with the substitution zi → πiz, which changes N1(~z ) into z, N2(~z )
into λ2z

2 and N3(~z ) into λ3z
3, with λj =

∑
i π

j
i .

Let χ(w) (resp. ξ(w)) denote the number of maximal α-gapped repeats (resp. palindromes)
in a word w. Let R(z) =

∑
w χ(w)P(w)z|w| and P (z) =

∑
w ξ(w)P(w)z|w| be the

generating series of the expectations of χ and ξ, that is, the coefficients of zn of R(z)
and P (z) are En[χ] and En[ξ], respectively. These series R(z) and P (z) are obtained by

CPM 2017



21:6 Gapped Pattern Statistics

the previous substitutions zi → πiz from the series Uα(~z ) + Vα(~z ) and Uα(~z ) + V α(~z ),
respectively. From the computations above, we obtain the following statement.

I Theorem 2. For β = α− 1 = p
q , the series R(z) and P (z) for the memoryless model of

probability ~π are given by

R(z) = (z − 2λ2z
2 + λ3z

3)λd1/βe2 z2d1/βe

(1− z)2(1− λ2z2) + (z − λ2z
2)2 Qα(z)

(1− z)2(1− λ2z2)(1− λq2 zp+2q) ,

P (z) = λ
d1/βe
2 z1+2d1/βe

(1− z)2 + (z2 − λ2z
2)Qα(z)

(1− z)2(1− λq2 zp+2q) ,

with

Qα(z) =
p−1∑
j=0

λ
d(j+2)/βe
2 zj+2d(j+2)/βe, λ2 =

k∑
i=1

π2
i , and λ3 =

k∑
i=1

π3
i .

3.3 From generating series to asymptotics
Analytic combinatorics links asymptotic behavior of counting sequences to singularities of
the corresponding generating functions, viewed as analytic functions of a complex variable.
For rational generating series of one variable, as in Theorem 2, the situation is quite simple,
and we use this simplified version of the Transfer Theorem [5] for rational functions:

I Theorem 3 (Simplified Transfer Theorem [5]). Assume A(z) = F (z)(1− z)−`, where ` is a
positive integer, F (z) is a rational function with no pole in the closed disc of radius 1 and
F (1) 6= 0. Then the n-th coefficient of A(z) is asymptotically equivalent to F (1)

(`−1)! n
`−1.

The series R(z) and P (z) of Theorem 2 both have a dominant pole of order 2 at z = 1.
Applying Theorem 3 yields the following statement. Note that, though the generating series
R(z) and P (z) are different, they lead to the same asymptotics for the coefficients; the
difference is in lower order terms.

I Theorem 4. Under the memoryless distribution of probability ~π, and for any rational
α = 1 + p/q, the expected number of maximal α-gapped repeats (respectively, palindromes) in
a random word of length n is asymptotically equivalent to rαn (respectively, pαn) defined by

rα = (1− 2λ2 + λ3)λdq/pe2
1− λ2

+ (1− λ2)
1− λq2

p+1∑
j=2

λ
djq/pe
2 and pα = λ

dq/pe
2 + (1− λ2)

1− λq2

p+1∑
j=2

λ
djq/pe
2 .

In particular, when α is a positive integer, these reduce to

rα = (α− 1)λ2 + λ2(λ3 − λ2
2)

1− λ2
and pα = (α− 1)λ2 + λ2

2.

For the uniform distribution, we have λ2 = 1/k and λ3 = 1/k2, yielding the following result.

I Corollary 5. For the uniform distribution on an alphabet of size k ≥ 2, we have

rα = k − 1
k

(
k−dq/pe +

∑p+1
j=2 k

−djq/pe

1− k−q

)
and pα = rα + k−1−dq/pe.

In particular, if α is a positive integer, then rα = α−1
k and pα = α−1

k + 1
k2 .
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I Remark. As a function of α = 1 + p
q , the value of rα is not very regular. It is increasing, as

expected, but there are some large variations when reaching a value with a small denominator
(typically integers or half-integers). This also gives hints on the difficulty of giving a formula
if α is not rational. Some examples are given in the table below, for k = 4.

α 5/4 3/2 7/4 2 9/4 5/2 11/4 3 13/4 7/2 15/4 4 17/4
rα 0.002 0.05 0.061 0.25 0.252 0.3 0.311 0.5 0.502 0.55 0.561 0.75 0.752

4 Longest pattern

In this section we focus on the typical and expected length of the longest α-gapped patterns
(repeat or palindromes) in a random word. Contrarily to the previous section, our analysis
relies on discrete probabilities rather than on generating series.

Let Ln denote the random variable associated with the length of the longest α-gapped
patterns in a random word of length n. We first focus on the uniform distribution, in
order to introduce the main techniques of this section. For memoryless distributions, the
computations are more involved, but the general idea remains the same.

If Xn is a random variable, we say that it is concentrated around its mean if there exists
a sequence (νn)n≥1 that tends to 0 such that P(|Xn − E[Xn]| > νn E[Xn]) −−−−→

n→∞
0.

In this whole section, whenever we say that some property holds with asymptotic probability
1, the property implicitly depends on some integer n, which denotes the length of the random
words considered; and we mean that, as n goes to infinity, the probability tends to 1. The
details in the text typically make it possible to derive a more explicit bound on the speed of
convergence.

4.1 Uniform distribution
We establish the following theorem. Its proof is obtained by computing tight lower and upper
bounds for the typical value of Ln, for the uniform distribution.

I Theorem 6. For the uniform distribution on words of length n, on an alphabet of size k,
the expected length of the longest α-gapped repeat (or palindrome) is asymptotically equivalent
to (α+ 1) logk n. Moreover, the random variable Ln is concentrated around its mean.

Observe that a longest α-gapped repeat is necessarily maximal. Moreover, the proof is
exactly the same for palindromes, so we focus on repeats only.

To establish the lower bound, we prove that with asymptotic probability 1 there is an
α-gapped repeat of length t0 in a random word of length n, where t0 is a well chosen value,
which is asymptotically equivalent to (α+ 1) logk n. This property is proved to hold by just
looking for α-gapped repeats lying at very specific positions: the word is split into roughly
n/t0 factors of length t0, and we only compute the probability that at least one of these
factors is an α-gapped repeat of a particular |v|/|u| ratio. This fairly rough estimation is
enough to establish a lower bound that is asymptotically tight.

For any ` ≥ 1, let Mβ(`) denote the set of words of the form uvu, with u ∈ A` and
v ∈ Abβ`c. The set Mβ(`) therefore contains all the α-gapped repeats where u has size `
and v is of maximal length. Let `0 = blogk n − 2 logk logk nc. Every word of Mβ(`0) has
length t0 = 2`0 + bβ`0c, and t0 is asymptotically equivalent to (α+ 1) logk n, as required.

The probability for an element ofMβ(`0) to be a factor of a random word of length n is
exactly the probability that, for some i ∈ [n], the factor of length t0 starting at position i
belongs toMβ(`0). Thus, it is at least the probability that the factor of length t0 starting
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21:8 Gapped Pattern Statistics

at position 1 + jt0 is inMβ(`0) for some j ≥ 1 such that (j + 1)t0 ≤ n. For such a given
j, the probability that the factor starting at position 1 + jt0 is in Mβ(`0) is k−`0 , since
|Mβ(`0)| = k`0+bβ`0c and each possible factor has probability k−`0−2bβ`0c. Since the integer
intervals [1 + jt0, (j + 1)t0] do not overlap, the factors they define are independent, and the
probability that none of them is inMβ(`0) is (1− k−`0)bn/t0c. Therefore, with probability
at least 1 − (1 − k−`0)bn/t0c, a random word of length n contains an α-gapped repeat of
length t0.

Straightforward computations yield that (1− k−`0)bn/t0c ≤ exp(− logk n), which tends
to 0 as n→∞. Thus, with asymptotic probability 1, a random uniform word of length n
contains an α-gapped repeat of length t0, which is asymptotically equivalent to (α+ 1) logk n.

We now proceed with the upper bound. Let Rβ(t) denote the set of all words uvu such
that |uvu| = t and |v| ≤ β|u|. The set Rβ(t) contains all the possible α-gapped repeats of
length t. Observe that, by summing over all the possible lengths ` for u, we have

|Rβ(t)| =
b(t−1)/2c∑
`=dt/(2+β)e

kt−` ≤ kt−dt/(2+β)e
∞∑
j=0

k−j ≤ 2k(β+1)t/(β+2).

Let t1 = d(β + 2) logk n + 2(β + 2) logk logk ne + 1. The probability that a random word
contains a factor in Rβ(t1) at a given valid position is |Rβ(t1)|k−t1 ≤ 2k−t1/(β+2). Since the
number of valid positions is no more than n, by the union bound, the probability that a
uniform random word of length n contains an element of Rβ(t1) (as a factor in any position)
is at most 2nk−t1/(β+2). These computations also hold if one substitutes t1 + i for t1. This
yields that the probability that a uniform random word of length n contains an element of
Rβ(t1 + i) is bounded from above by 2k−i/(β+2)

log2
k
n

.
Using the union bound again, we sum these bounds for i ≥ 0, and obtain that, with

asymptotic probability 1, a uniform random word of length n contains no α-gapped repeat
of length greater than or equal to t1, which is asymptotically equivalent to (α+ 1) logk(n).

A bit more is required to estimate the expectation of Ln, but this can be easily done from
the computations above: they yield that the contribution to the expectation of the values
that are not between t0 and t1 is negligible, and t0 ∼ t1 ∼ (α+ 1) logk n. The concentration
around the mean can be proved by taking any sequence νn that tends to 0 and such that
νn logk n

logk logk n
tends to infinity.

4.2 Memoryless sources
In this section, we associate to each letter ai ∈ A = {a1, . . . , ak} a probability πi = p(ai) as
described in Section 2. We assume all these probabilities to be positive (otherwise, reduce
the alphabet size accordingly).

From the probability ~π, we build another probability ~τ proportional to the square of π:
for every i ∈ [k], τi = π2

i /λ2, where λ2 =
∑
i∈[k] π

2
i is the coincidence probability of ~π (as in

Section 3). The result for memoryless sources, which generalizes Theorem 6, is the following.

I Theorem 7. For the memoryless source of probability ~π, the expected length of the longest
α-gapped repeat (or palindrome) in a random word of length n is asymptotically E[Ln] ∼
(α+ 1) log1/λ2 n, where λ2 =

∑
i∈[k] π

2
i . Moreover, Ln is concentrated around its mean.

Though it follows the same main ideas as in the proof of Theorem 6, the proof of
Theorem 7 is more technical. Due to lack of space, we only focus on the main steps in this
extended abstract. We will focus on the most probable words, and the most probable longest
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α-gapped repeat. For this purpose, for a probability vector ~s on A and δ ≥ 0, we consider
the set Wn(~s, δ) of words whose letters roughly follow the distribution of ~s, defined by

Wn(~s, δ) =
{
u ∈ An :

∣∣ |u|a − s(a)n
∣∣ ≤ δ, ∀a ∈ A} .

To establish the lower bound, we define the setMβ(~π, `) of α-gapped repeats uvu where the
letters are distributed following ~π in v and following ~τ in u. More formally:

Mβ(~π, `) =
{
uvu ∈ A∗ : u ∈ W`(~τ ,

√
logn) and v ∈ Wbβ`c(~π,

√
logn)

}
.

The setMβ(~π, `) will play the same role as the setMβ(`) of the previous section. They do
not coincide if the distribution is uniform, but they still have the same order of size.

We now proceed with the lower bound. We define `0 and t0 by

`0 =
⌊

logn
log(1/λ2) −

(logn)2/3

log(1/λ2)

⌋
and t0 = 2`0 + bβ`0c,

then prove that long random words have a factor inMβ(~π, `0) with high probability.
For this purpose, we need to estimate the probability that a factor of length t0 at a given

position is inMβ(~π, `0). The computations are done as follows. Let ~n = (n1, . . . , nk) with
n1 + . . .+ nk = `0 and let ~m = (m1, . . . ,mk) with m1 + . . .+mk = bβ`0c. We are interested
in the set of words E(~n, ~m), with fixed compositions for u and v, defined by

E(~n, ~m) = {uvu : |u|ai = ni and |v|ai = mi, ∀i ∈ [k]} .

Observe thatMβ(`0) can be written as a union of E(~n, ~m) for properly chosen ranges for ~n
and ~m. The probability that the factor of length t0 at a given valid position lies in E(~n, ~m) is

Pt0(E(~n, ~m)) =
(

`0

n1, . . . , nk

) ∏
i∈[k]

π2ni
i

(
bβ`0c

m1, . . . ,mk

) ∏
i∈[k]

πmii .

By estimating this quantity and summing for all ~n and ~m such that E(~n, ~m) ⊆Mβ(`0), we
obtain that the probability of the factor of length t0 at a given valid position not being in
Mβ(~π, `0) is O( 1

log2 n
). At this point, the proof continues exactly as in Section 4.1.

We now turn to the upper bound. As in Section 4.1 let Rβ(t) be the set of all uvu such
that |uvu| = t and 1 ≤ |v| ≤ β|u|. We want to compute an upper bound for the probability
that the factor of length t at a given valid position lies in Rβ(t).

We need to partition the set Rβ(t) for our computations. Let ~̀= (`1, . . . , `k) be a vector
of non-negative integers such that N1(~̀) = `1 + · · ·+ `k = `. Let Rβ(~̀, t) be the set of all
words uvu such that |uvu| = t and |u|ai = `i for every i ∈ [k]. Observe that Rβ(t) can be
written as the following disjoint union:

Rβ(t) =
b(t−1)/2c⋃
`=dt/(β+2)e

⋃
N1(~̀)=`

R(~̀, t).

Moreover, Pt(R(~̀, t)) =
(

`
`1,...,`k

)∏
i∈[k] π

2`i
i . But

∑
N1(~̀)=`

(
`

`1,...,`k

)∏
i∈[k] τ

`i
i = 1, as it is

the sum of the probabilities of all the words of length ` for the memoryless distribution of
probability vector ~τ . Hence, P`(∪N1(~̀)=`R(~̀, t)) = λ`2. Therefore, Pt(Rβ(t)) ≤ t λt/(β+2)

2 . In
particular, for t1 = d(β + 2) log1/λ2 n+ 3(β + 2) log1/λ2 logne, we have

P(Rβ(t1 + i)) ≤ 2λi/(β+2)
2

log2 n
,

and the proof continues as in the uniform case.

CPM 2017
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I Remark. As a byproduct of the proof, we obtain the following interesting result on the
probabilistic nature of the longest α-gapped repeat. Though a sufficiently large random word
in the memoryless model contains roughly a proportion πi of each letter ai, the letters are
distributed differently in the arms (the u’s of uvu) of a typical longest α-gapped repeat: the
proportion of each letter is roughly τi instead of πi. This phenomenon is completely hidden
in the uniform case, where τi = πi = 1/k for every i ∈ [k].

5 A remark on the number of distinct factors

In [15], Rubinchik and Shur estimated the expected number of distinct palindromes in a
random word: these factors are counted only once, even if they have multiple occurrences.
They established that for the uniform distribution, a random word contains Θ(

√
n) distinct

palindromes, and several refinements of this result.
In this short section we explain how their proof can be extended to estimate the expected

number of distinct α-gapped repeats and palindromes, for the uniform distribution. There is
no new idea, one just has to take care of the possibilities for the additional v part in the
pattern. The result, however, is interesting on its own. It is stated as followed.

I Theorem 8. For the uniform distribution over words of length n, the expected number of
distinct α-gapped repeats (or palindromes) is in Θ(nα/(α+1)).

We only consider repeats in our proof sketch; gapped palindromes are treated the same
way. The lower bound is obtained using Guibas and Odlyzko’s result on pattern avoidance [9]:
the number of words of length n that avoid a given pattern w of length m > 3 is equal to
Cwθ

n
w +O(1.7n). In [15], the authors prove that the constants are maximal when w = am:

θw ≤ θam = k

(
1− k − 1

km+1 +O
( m

k2m+2

))
and Cw ≤ Cam = 1 +O

( m
km

)
. (1)

Let §β(n) be the set of all uvu such that |u| = ` = b 1
β+2 logk nc and |v| = bβ`c. Let

m = 2`+ bβ`c. As a direct application of Equation (1), for a given w ∈ §β(n), the probability
that a random word of length n avoids w satisfies

Pn(avoiding w) ≤
(

1− k − 1
km+1 +O

( m

k2m+2

))n (
1 +O

( m
km

))
,

which is at most C for some positive constant C < 1 and n sufficiently large (for our choice of
`, and thus of m). Hence, the probability for w to be a factor in a random word of length n is
at least 1−C, and by linearity of the expectation, the expected number of distinct α-gapped
repeats is greater than or equal to (1− C)|§β(n)| = (1− C)km−` = Ω(nα/(α+1)).

For the upper bound, let Rβ(t) denote all the uvu such that |uvu| = t and |v| ≤ β|u|.
Let also t0 = dlogk ne. We count differently the α-gapped repeats, depending on whether
they are shorter or longer than t0.

We count all the α-gapped repeats of length at most t0 as contributing to the upper
bound. By summing over all possible values for the length ` of the arms, we have

|Rβ(t)| =
b(t−1)/2c∑
`=dt/(β+1)e

kt−` ≤ kt
∞∑

`=dt/(β+1)e

kt−` ≤ 2k(β+1)t/(β+2).

Hence,
t0∑
t=1
|Rβ(t)| ≤

t0∑
t=1

2k(β+1)t/(β+2) ≤ 4k(β+1)t0/(β+2) ≤ 4nα/(α+1).
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To obtain an upper bound for the expected number of patterns of length greater than t0,
we observe as in [15] that the probability for a given α-gapped repeat uvu to be a factor
is at most the expected number of occurrences of uvu. As we shall see, this rough upper
bound is enough to conclude. Let Rβ(t, `) be the set of uvu such that |uvu| = t, |u| = `

and |v| ≤ β`. The probability that there is pattern of Rβ(t, `) at a given valid position in a
random word is k−`. Hence, the expected number of occurrences of such patterns is at most
nk−`, for given t and `. By summing over all t > t0 and all valid ` for each t we obtain the
following upper bound:

n∑
t=t0

bt/2c∑
`=dt/(β+2)e

nk−` ≤
n∑

t=t0

2k−t/(β+2) ≤ 4k−t0/(β+2) ≤ 4nα/(α+1).

Combining both results, for short and long α-gapped repeats, we get that the expected
number of distinct such factors is bounded from above by 8nα/(α+1), concluding the proof.
I Remark. Theorem 8 also holds for maximal patterns. The proof simply needs to be adapted
for the lower bound, and there are sufficiently many of them to obtain the same result.

6 Conclusions

In this article we establish results about some statistics of random words related to the
notion of α-gapped patterns, for both the uniform and memoryless distributions. We propose
different techniques, generating series and discrete probabilities, to provide some tools for
further analysis of statistics of interest. Amongst them, if would be natural to consider
gapped patterns as a whole, i.e. if uvu = u′v′u′ then it is considered as one pattern instead
of two different ones.

The biased distribution on letters in the arms of a typical α-gapped pattern, in the
memoryless model, is something worth noticing (see Section 4.2). It may provide some
leverage for speeding up algorithms, though the difference might be too thin to be exploited.

Finally, generalizing Theorem 8 to memoryless proves quite difficult. This is ongoing
work, and the techniques involved are more advanced than what is presented in this article.
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