A. Palumbo and K. Anderson, Multiple Myeloma, New England Journal of Medicine, vol.364, issue.11, pp.1046-1060, 2011.
DOI : 10.1056/NEJMra1011442

URL : https://hal.archives-ouvertes.fr/hal-01282339

G. J. Morgan, B. A. Walker, and F. Davies, The genetic architecture of multiple myeloma, Nature Reviews Cancer, vol.214, issue.5, pp.335-348, 2012.
DOI : 10.1002/path.2279

J. A. Adam, A simplified mathematical model of tumor growth, Mathematical Biosciences, vol.81, issue.2, pp.229-244, 1986.
DOI : 10.1016/0025-5564(86)90119-7

L. Glass, Instability and Mitotic Patterns in Tissue Growth, Journal of Dynamic Systems, Measurement, and Control, vol.95, issue.3, pp.324-327, 1973.
DOI : 10.1115/1.3426723

D. L. Mcelwain and L. Morris, Apoptosis as a volume loss mechanism in mathematical models of solid tumor growth, Mathematical Biosciences, vol.39, issue.1-2, pp.147-157, 1978.
DOI : 10.1016/0025-5564(78)90033-0

H. M. Byrne and M. A. Chaplain, Growth of nonnecrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.130, issue.2, pp.151-181, 1995.
DOI : 10.1016/0025-5564(94)00117-3

H. M. Byrne and M. A. Chaplain, Growth of necrotic tumors in the presence and absence of inhibitors, Mathematical Biosciences, vol.135, issue.2, pp.187-216, 1996.
DOI : 10.1016/0025-5564(96)00023-5

S. M. Wise, J. S. Lowengrub, H. B. Frieboes, and V. Cristini, Three-dimensional multispecies nonlinear tumor growth???I, Journal of Theoretical Biology, vol.253, issue.3, pp.524-543, 2008.
DOI : 10.1016/j.jtbi.2008.03.027

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472664

T. Stiehl, N. Baran, and A. D. Ho, Marciniak-Czohra, A. Clonal selection and therapy resistance in acute leukaemias: Mathematical modelling explains different proliferation patterns at diagnosis and relapse, J. R. Soc. Interface, vol.11, 2014.

T. Walenda, T. Stiehl, H. Braun, . J. Fröbel, A. D. Ho et al., Marciniak-Czohra, A.; et al. Feedback Signals in Myelodysplastic Syndromes: Increased Self-Renewal of the Malignant Clone Suppresses Normal Hematopoiesis, Biol, vol.10, p.1003599, 2014.

J. C. Panetta, A mathematical model of drug resistance: Heterogeneous tumors, Mathematical Biosciences, vol.147, issue.1, pp.42-61, 1998.
DOI : 10.1016/S0025-5564(97)00080-1

D. Basanta, H. Haralambos, and A. Deutsch, Studying the emergence of invasiveness in tumours using game theory, The European Physical Journal B, vol.3, issue.3, pp.393-397, 2008.
DOI : 10.1080/1027366042000334144

H. Enderling, L. Hlatky, and P. Hahnfeldt, Migration rules: tumours are conglomerates of self-metastases, British Journal of Cancer, vol.63, issue.12, pp.1917-1925, 2009.
DOI : 10.1101/gad.13.18.2388

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714240

M. J. Piotrowska and S. D. Angus, A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth, Journal of Theoretical Biology, vol.258, issue.2, pp.165-178, 2009.
DOI : 10.1016/j.jtbi.2009.02.008

D. Drasdo and S. Hoehme, A single-cell-based model of tumor growth in vitro: Monolayers and spheroids, Phys. Biol, issue.2, p.133, 2005.

A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Poplawski, M. Swat et al., 3D Multi-Cell Simulation of Tumor Growth and Angiogenesis, PLoS ONE, vol.56, issue.10, p.7190, 2009.
DOI : 10.1371/journal.pone.0007190.s003

M. H. Swat, G. L. Thomas, A. Shirinifard, S. G. Clandenon, and J. A. Glazier, Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D, PLOS ONE, vol.26, issue.12, p.127972, 2015.
DOI : 10.1371/journal.pone.0127972.t014

H. Hatzikirou, L. Brusch, C. Schaller, M. Simon, and A. Deutsch, Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion, Computers & Mathematics with Applications, vol.59, issue.7, pp.2326-2339, 2010.
DOI : 10.1016/j.camwa.2009.08.041

M. Aubert, M. Badoual, S. Fereol, C. Christov, and B. Grammaticos, A cellular automaton model for the migration of glioma cells, Physical Biology, vol.3, issue.2, pp.93-100, 2006.
DOI : 10.1088/1478-3975/3/2/001

I. Ramis-conde, D. Drasdo, M. A. Chaplain, and A. R. Anderson, Modeling the Influence of the E-Cadherin-??-Catenin Pathway in Cancer Cell Invasion: A Multiscale Approach, Biophysical Journal, vol.95, issue.1, pp.155-165, 2008.
DOI : 10.1529/biophysj.107.114678

I. Ramis-conde, M. A. Chaplain, A. R. Anderson, and D. Drasdo, Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis, Physical Biology, vol.6, issue.1, 2009.
DOI : 10.1088/1478-3975/6/1/016008

L. Zhang, Z. Wang, J. A. Sagotsky, and T. S. Deisboeck, Multiscale agent-based cancer modeling, Journal of Mathematical Biology, vol.99, issue.Suppl 3, pp.545-559, 2009.
DOI : 10.1017/CBO9780511599798

A. R. Anderson, A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion, Mathematical Medicine and Biology, vol.22, issue.2, pp.163-186, 2005.
DOI : 10.1093/imammb/dqi005

J. S. Fang, R. D. Gillies, and R. A. Gatenby, Adaptation to hypoxia and acidosis in carcinogenesis and tumor progression, Seminars in Cancer Biology, vol.18, issue.5, pp.330-337, 2008.
DOI : 10.1016/j.semcancer.2008.03.011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953714

T. L. Vincent and R. A. Gatenby, An evolutionary model for initiation, promotion, and progression in carcinogenesis, Int. J. Oncol, vol.32, pp.729-737, 2008.

R. H. Chisholm, T. Lorenzi, A. Lorz, A. K. Larsen, L. N. De-almeida et al., Emergence of Drug Tolerance in Cancer Cell Populations: An Evolutionary Outcome of Selection, Nongenetic Instability, and Stress-Induced Adaptation, Cancer Research, vol.75, issue.6, pp.930-939, 2015.
DOI : 10.1158/0008-5472.CAN-14-2103

URL : https://hal.archives-ouvertes.fr/hal-01111271

B. P. Ayati, C. M. Edwards, G. F. Webb, and J. P. Wikswo, A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease, Biology Direct, vol.5, issue.1, p.28, 2010.
DOI : 10.1186/1745-6150-5-28

A. Bouchnita, N. Eymard, T. K. Moyo, M. J. Koury, and V. Volpert, Bone marrow infiltration by multiple myeloma causes anemia by reversible disruption of erythropoiesis, American Journal of Hematology, vol.121, issue.4, pp.371-378, 2016.
DOI : 10.1159/000220331

URL : https://hal.archives-ouvertes.fr/hal-01395624

B. A. Walker, C. P. Wardell, L. Melchor, S. Hulkki, N. E. Potter et al., Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma, Blood, vol.120, issue.5, pp.1077-1086, 2012.
DOI : 10.1182/blood-2012-03-412981

A. Bouchnita, F. E. Belmaati, R. Aboulaich, R. Ellaia, and V. Volpert, Mathematical modelling of intra-clonal heterogeneity in multiple myeloma, Proceedings of the CARI 2016, pp.11-14, 2016.

A. Brioli, L. Melchor, M. Cavo, and G. J. Morgan, The impact of intra-clonal heterogeneity on the treatment of multiple myeloma, British Journal of Haematology, vol.24, issue.4, pp.441-454, 2014.
DOI : 10.1038/leu.2010.50

L. Melchor, A. Brioli, C. P. Wardell, A. Murison, N. E. Potter et al., Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma, Leukemia, vol.100, issue.8, pp.1705-1715, 2014.
DOI : 10.1158/0008-5472.CAN-12-2217

M. Chesi, P. L. Bergsagel, L. A. Brents, C. M. Smith, D. S. Gerhard et al., Dysregulation of cyclin D1 by translocation into an IgH gamma switch region in two multiple myeloma cell lines, Blood, vol.88, pp.674-681, 1996.

J. M. Bouyssou, I. M. Ghobrial, and A. M. Roccaro, Targeting SDF-1 in multiple myeloma tumor microenvironment, Cancer Letters, vol.380, issue.1, pp.315-318
DOI : 10.1016/j.canlet.2015.11.028

K. Vanderkerken, B. Van-camp, C. De-greef, I. V. Broek, and K. Asosingh, van Riet, I. Homing of the myeloma cell clone, Acta Oncol, vol.39, pp.771-776, 2000.

T. Hideshima, C. Mitsiades, G. Tonon, P. G. Richardson, and K. C. Anderson, Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets, Nature Reviews Cancer, vol.108, issue.8, pp.585-598, 2007.
DOI : 10.1007/978-1-4757-3230-6_16

H. Rozemuller, E. Van-der-spek, L. H. Bogers-boer, M. C. Zwart, V. Verweij et al., A bioluminescence imaging based in vivo model for preclinical testing of novel cellular immunotherapy strategies to improve the graft-versus-myeloma effect, Haematologica, vol.93, issue.7, pp.1049-1057, 2008.
DOI : 10.3324/haematol.12349

S. Manier, A. Sacco, X. Leleu, I. M. Ghobrial, and A. M. Roccaro, Bone Marrow Microenvironment in Multiple Myeloma Progression, Journal of Biomedicine and Biotechnology, vol.18, issue.6, 2012.
DOI : 10.1038/nm.2753

URL : http://doi.org/10.1155/2012/157496

H. Kitano, . Systems, and . Biology, Systems Biology: A Brief Overview, Science, vol.295, issue.5560, pp.1662-1664, 2002.
DOI : 10.1126/science.1069492

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.130.7761