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Abstract

It was recently proved that the decay of the solution of the ODE associ-
ated to the Nesterov Fast Gradient Algorithm with a parameter b < 3 was
0(—5 ). In this note we prove that this decay is achieved for the solution of

t3

the associated monotone inclusion for a specific function.

1 Setting

We study the following inclusion
b
Z(t) + gx(t) +O0F(z(t)) 20 (1)

for t > ty > 0, where F' is the absolute value defined by F(z) = |z| and b €
(0,3). This monotone inclusion for a general convex function F' is associated
to the optimization Algorithm FISTA of Beck et al. [4] and the Fast Gradient
Descend Method of Nesterov [6] as it was remarked by Su et al in [7].

It was proved in [2] and [3] that for
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where F is a differentiable convex function and b € (0, 3) that if 2* is a minimizer
of F,

. 1
Fat) - £ =0 () )
In this note, the main result is the following: we prove that this decay is actually
optimal in the sense that it is achieved for (1) with F'(x) = |z|. More precisely

Proposition 1. Let b < 3, if x(ty) # 0, for any solution x of (1)

1. 1t exists Ky such that for any t > tg,

[z()] < =, (4)

3

2. it exists Ky > 0 such that for any T > 0, there exists t > T such that

2(8)] > — (5)
t3
Notice that for the case of the ODE (2), it was proved in [3] that the rate of (3)
is asymptotically optimal by considering F(z) = |z|1*# with 3 > 0. The ideas
presented in this note are an adaptation to the differential inclusion case of the

results presented in [3]. In the first part, preliminaries results are given and in a
second part the Propostion 1 is proved.

2 Preliminaries

We consider the inclusion
b
Z(t) + Zx(t) +0F(z(t)) 20 (6)

with F(x) = |z|, and with initial condition z(ty) = x¢, (to) = vo. Notice that F
admits a unique minimizer x* = 0.

Let I = [ty, +00). In [1], it is proven that there exists a weak solution z of (1),
with z in W2>(I;R) N CY*(K;R), where A € (0,1) and K is a compact subset
of I, such that z(ty) = x¢ and 2(ty) = vg. In particular, & is continuous and 7 is
bounded.

We recall that if F' is a convex one homogeneous function, then we have F'(z) =
zx for any z in OF (x).



We also give the following lemma that will prove useful. If F'is a proper lower
semi continuous convex function, then there exists z(¢) in dF(x(t)) such that for
almost every ¢ (see Lemma 3.3 in [5]) for more details).

d

(@) = 2(t)a(?) (7)

Moreover, t — F(z(t)) is an absolutely continuous function. We recall here that
an absolutely continuous function is differentiable almost everywhere. Notice that
in particular, if the derivative of an absolutely continuous function is non positive,
then this function is non decreasing. See Lemma 4.1 in [1] for more details. These
properties will be used intensively in the rest of this note.

Notations If A € R and z a solution of (1) we denote :

u(t) = tlz(t)] + %M(fv(t)) +ti(t)[? (8)

and .
o(t) == Q—tlx(?f)l2 (9)

The analysis is based on Lyapunov functions. Following Su, Boyd and Candes [7],
for any (), &) € R? we define

§

1 :
Ene(t) = la(t)] + 5IMx(0) + (O + S |=(0)]" (10)
One can observe that this energy can be defined using the functions u and v
E(t) = tu(t) + Eto(t). (11)

As usual, we need to compute the derivative £} .. We will need two different
expressions of the derivative.

Lemma 1.
S/’\é(t) =(2 — Mt|z(t)] +t(A+ 1 = b)|@(t)|? (12)
+ (AA+1=0) +&)x(t)x(t) (13)
for almost every t.

Proof. We differentiate and we use the recalls of the preliminary section to get the
following computations that hold for almost every t :

EL(t) =2t|x(t)] + t22()a(t) (14)
F () + 3 () + 2N (b)) + ti(t) + Ei(t)x(t) (15)



with z(t) € OF (z(t)). We now make use of the differential inclusion:
Exe(t) =2t|x(t)] + £22()i(t)
+Aﬂﬂ+¢(—z—§ﬂﬂ)+i@M@@»+tﬂﬂ+§ﬂwdﬂ
Ee(t) =2t|z(t)] + t22(t)i(t)
+ A+ 1=0b)x(t) — tzA(z(t)) + ta(t) + Ex(t)x(t)

Ere(t) =2tz (t)| + x(t) (A + 1 — b)a(t)
—dx(t)z + A+ 1= b)t|a(t)]* + Ei(t)x(t)

Ere(t) =2 = Ntz(t)| +t(A+1 - b)|&(t)]?
+ (AA+1=0) +&)x(t)x(t)

Lemma 2.

Ene(t) =2 = Ntlz(t)] + (€ = AN +1 = b))a(t)x(t)

_ Mu(m?
+ 20 + ()P

Proof. We start from the result of Lemma 1. Observing that
1 A2
A (= (1) + ti(t))? = tla(t)]* + 222 (t)z(t) + Tyx(t)F
we can write for almost every ¢
Exe(t) =(2 = Nt (t)| + (AN + 1 =b) + &)i(t)x(t)
2

— 2+ 1= b)i()z(t) — (A +1— b)%\w(t)\z

+(A+1-— b)%|/\(x(t)) +ta(t)[?



Notations Now, we choose A = %b and £ = A(A+1—b) and we denote ¢ = £.
For these parameters one can observe that A+1—-b=1— g > 0. We can define

2b
c:=2- 3 (34)
Notice that ¢ > 0. We introduce the new Lyapunov energy:
H(t) :=t7°E(t). (35)
Lemma 3. We have for almost every t:
E't) = cu(t) — dv(t). (36)
where d > 0 is defined as:
2
RO
Proof.
£/(6) =2~ DIl (0)] + (1~ 2)3 2 w(0) + (1) (38)
2
(%) a-pior (39)
Using
u(t) = tlx(t)] + % 2gb(:c(t) — %) +ti(t)), (40)
the definition of v(t), ¢ and d, we get the result. O

Proposition 2. Ifb € (0,3), if A\ = %b and £ = %b(?) —b), then for almost every t
it holds

H'(t) = =26 “v(t) < 0. (41)
and H 1s an absolutely continuous function.

We can observe that for b = 3, we have, c =0, £ =0, £ = H and H is constant.

Proof. H is an absolutely continuous function as a sum of absolutely continuous
functions.
We have for almost every ¢

H(t) =t It (t) — cE(t)). (42)

Using Lemma 3, we deduce that for almost every ¢:
H'(t) = =2 “v(t) < 0. (43)
O



Lemma 4. If z(tg) > 0 then lim;_,, . H(t) = ¢ > 0.

Proof. The function H is non-negative and from Proposition 2,  is non-increasing,
thus H(t) converges to a limit ¢ > 0.
Moreover for all ¢ > t5 we have

tE(t) = H(t) < H(to) (44)

which implies that
H(to) _ Hto)

(o) < 20 - 2 (49
We recall that ¢ := 2 — 2 and then ¢ € [0,2) when b € (0, 3]. From (43)
H(t) = =&t~ Ha ()] = =& | () [~ a(1)]. (46)
and from the definition of H we have H(t) > t*~¢|z(¢)| which implies that
H(1) >~ a(t) (1) (47)
Unsing the decay of H we have H(ty) > t>~¢|z(t)| and thus
H (1) = —Et H (L) H(t). (48)
If we denote ¢ the function defined from [to, +00] to R by
H(to) e s
= ¢ 4
olt) = €240, (49)
we have
(1) = EH(to)t (50)
and defining G by
G(t) == H(t)erD (51)

which is an absolutely continuous function as a product of an absolutely continuous
function by a continuous and bounded function, we have

G'(t) := eV (H'(t) + ¢ (M (1)) (52)

which is non negative from (48).
It follows that G is a non-decreasing function and thus that for all t >

H(t) = Hto)e? =0 > 3 (t)ef) > 0 (53)

which ends the proof of the lemma. n



3 Proof of Proposition 1

The first point of the Proposition was proved in (45). To prove the second point
of Proposition 1 we observe that

E(t) =t*x(t)| + %Mx(t) +ta(t)|* + §|x(t)12. (54)

Let K1 H(to)e? ™), from (53), Vt > to, £(t) > Kit*~5. We can notice here that

— g > 0. There are some cases where the conclusmn holds directly.

_2
1. If for ty > T, 3| Ax(t2) + 252)|2 5|x(z€2)|2 < %tﬁ 3 we have t3|z(ty)] >

_2b 2b
Kty * —Egms > Ko

and thus we can conclude.

2. If there exists t > T such that @(t) = 0, using the fact that £(t) = t?|x(¢)| +
A2_; S|z(t)[? and the fact that lim, . %\x(tw = 0, we can conclude using
the previous point.

3. If there exists ¢t > T such that z(t) = 0, since lim,_, |z(u)| = 0, there exists
t; > t such that #(¢;) = 0 and we can use the previous point.

We now suppose that z(7') > 0 and the sign of & is constant on [T, +00). Since
lim; o 2(t) = 0 we deduce that Vt € (T, +00), &(t) < 0.
For any ¢; > T" we have

+(t1) — 2(T) = / _IT (t)dt (55)

Since x(t;) converges to 0, we deduce that for any & > 0, there exists to > T
such that [ted@(t2)| < €’. Hence for any € > 0, there exists to > T such that
HAz(t2) + ti(t2)]? + §]7(t2)]? < € and we can conclude since we are back to case
1. This concludes the proof of the Proposition. O
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