
HAL Id: hal-01565795
https://hal.science/hal-01565795

Submitted on 27 Jul 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Which Secure Transport Protocol for a Reliable
HTTP/2-based Web Service : TLS or QUIC ?

Antoine Saverimoutou, Bertrand Mathieu, Sandrine Vaton

To cite this version:
Antoine Saverimoutou, Bertrand Mathieu, Sandrine Vaton. Which Secure Transport Protocol for
a Reliable HTTP/2-based Web Service : TLS or QUIC ?. ISCC 2017 : 22nd IEEE symposium
on International Symposium on Computers and Communications, Jul 2017, Heraklion, Greece.
�10.1109/ISCC.2017.8024637�. �hal-01565795�

https://hal.science/hal-01565795
https://hal.archives-ouvertes.fr


Which Secure Transport Protocol for a Reliable
HTTP/2-based Web Service : TLS or QUIC ?

Antoine Saverimoutou, Bertrand Mathieu
Orange Labs

Lannion, France
Email: {antoine.saverimoutou,bertrand2.mathieu}@orange.com

Sandrine Vaton
Institut Mines Telecom Atlantique

Brest, France
Email: sandrine.vaton@imt-atlantique.fr

Abstract—Web browsing protocols are currently gaining the
interest of the researchers. Indeed, HTTP/2, an improvement
of HTTP/1.1 has been standardized in 2015 and meanwhile,
Google proposed another transport protocol, QUIC (Quick UDP
Internet Connection). The main objective of the two protocols
is to improve end-users quality of experience and communi-
cations security. Current HTTP/2-based web servers rely on
the standardized TLS (Transport Layer Security) protocol, on
top of TCP. Google has developed its own security system,
natively integrated within QUIC, and runs on top of UDP.
If performance issues, comparing HTTP/2 over TLS/TCP and
QUIC/UDP, have been investigated by few researchers, no one
studied the security aspects of the two transport protocols. This
paper aims at filling this gap and proposes a first security analysis
of TLS/TCP and QUIC/UDP. Based on their characteristics,
this paper identifies the vulnerabilities of the two protocols and
evaluates their impacts on HTTP/2-based web services. This study
can enable web servers developers or administrators to either
select TLS/TCP or QUIC/UDP.

Keywords— Security, Encryption, TLS, QUIC, HTTP/2

I. INTRODUCTION

Web browsing is the main Internet service. It is done
with HTTP (Hypertext Transfer Protocol) and HTTP/2, stan-
dardized in February 2015 at the IETF [1] [2], increasingly
implemented by web servers, and now implemented in all
browsers. Even though encrypted and secure connections are
not mandatory in HTTP/2 RFCs, it is strongly recommended
and it is the default (and imposed) behaviour of major web
browsers (Chrome, Firefox and Internet Explorer). Therefore,
security is a de facto standard in HTTP/2 communications. To
meet this need, HTTP/2 relies on the TLS (Transport Layer
Security) protocol, on top of TCP.

Since 2013, Google is investigating another way of deliv-
ering web contents and has proposed the QUIC (Quick UDP
Internet Connections) protocol [3]. QUIC is expected to be
faster and more reliable. QUIC runs on top of UDP and
implements its own encryption system. QUIC cryptographic
system is different from TLS and can establish connections
into only 0 or 1-RTT (Round Trip Time). This is achieved
thanks to its built-in encryption system and being UDP-
based, instead of TCP, the need for the initial TCP handshake
mechanism is removed.

Even if QUIC/UDP is currently used only by Google servers
and Chrome/Chromium browsers, it represents an increasing
part of the network traffic (many people use Google services).

It is thus of prime importance to evaluate the protocol and
identify if other web providers could have an interest to move
to HTTP/2 over QUIC [4]. The interest can be driven by
two aspects : performance and security. Some research studies
such as [5] [6] compare the two protocols for a HTTP/2 web
server in terms of performance (page load time, object size,
server distribution, etc.). But to the best of our knowledge,
there is no paper aiming to compare HTTP/2 on top of
TLS/TCP and QUIC/UDP focused at security. This is the goal
of this paper. We aim at identifying the possible vulnerabilities
of both TLS/TCP and QUIC/UDP, evaluating their impacts
on HTTP/2-based services. Our main goal is to give hints
to web server developers or administrators on whether they
should provide their HTTP/2 web service with TLS/TCP or
QUIC/UDP.

This paper is structured as follows : We first remind in Sec-
tion II the main characteristics of TLS/TCP and QUIC/UDP in
terms of key exchanges and connection establishment. Then,
we list and expose the identified vulnerabilities of the two
protocols and their impacts with regards to the offered services
in Section III. Finally, after presenting some works in relation
to secure network protocols in Section IV, we conclude this
paper in Section V.

II. TLS & QUIC SECURITY ASPECTS

In this section, we first remind the main security aspects
of the TLS and QUIC protocols, mainly in terms of key
exchanges and connection establishment.

A. Overview of HTTP/2 over TLS/TCP security

HTTP/2 over TLS/TCP uses the current version 1.2 of
TLS [7] which is meant to provide cryptographic security,
interoperability, extensibility and relative efficiency on two dif-
ferent levels: the TLS Record protocol and the TLS Handshake
protocol.

TLS Record Protocol: This protocol negotiates a private,
reliable connection between the client and the server, where
symmetric cryptography keys are used to ensure a private
connection. The connection is secured through the use of hash
functions generated by using a Message Authentication Code
(MAC).

TLS Negotiation Protocol: The protocol allows authen-
ticated communication to start between the client and the



Fig. 1. TLS 1.2 negotiation (Ephemeral Diffie-Hellman)

server. The handshake uses asymmetric encryption, where two
separate keys are used, a public key used for encryption and a
private key for decryption, to produce a newly-created shared-
key. The session then uses this freshly produced shared-key
to perform a symmetric encryption, which yields to a feasible
secure connection.

Two types of handshakes are available in TLS 1.2, Static
RSA and Ephemeral Diffie-Hellman. We hereunder give a
description of the main messages (out of 13 messages) sent
during the TLS negotiation with Ephemeral Diffie-Hellman
(DH) key exchange and client authentication as per Figure 1.
The TLS negotiation is made in 2-RTT (full TLS negotiation
for a first-time connection) or in 1-RTT (abbreviated TLS
negotiation for a repeat connection).

1) Client hello: The Client, C, sends a c hello message
(Fig 1-1), m1, to the server, S, in order to identify itself where

c hello = (sslvc, rc, sid, cs listc, ca listc, extc)

• sslvc is the version of Secure Socket Layer (SSL) [8] the
client, C, tries to use for negotiating with the server, S.

• rc is the random bytes generated by C to produce a
master key for encryption.

• sid is a session id used during a repeat connection,
• cs listc is a list of cipher suites, containing all encryption

algorithms that the browser on client side is willing to
support,

• ca listc is a list of compression algorithms supported by
the client,

• extc optional, consists of a list of extensions that can be
used to improve the security of the negotiation.

2) Server hello and Server Key Exchange : The server, S,
responds with a s hello message (Fig 1-2), where:

• m2 has the same structure as m1 except that at most one
cipher suite and one compression method is present,

• m3 may contain a chain of certificates, starting from
the TLS server certificate up to a direct child of a root
certificate,

• m4 is the Server Key Exchange message containing the
Diffie-Hellman key exchange parameters,

• m5 is the Certificate Request message, containing a list
of certificate types that C can use,

• m6 consists of a constant tag with byte value 14 and a
length value 0.

3) Client key exchange and client finished : Having re-
ceived messages (m2, ...,m6), the signature is verified by C.
If verification fails, C rejects and aborts. Otherwise, C is able
to complete the key exchange and compute the cryptographic
keys (Fig 1-3) through (m7, ...,m11) where

• m7 is the Client Certificate and contains a signing cer-
tificate certc with the public key pkc,

• m8 is the Client Key Exchange and contains the Diffie-
Hellman share, Tc,

• m9 is the Certificate Verify which is used to authenticate
the client C,

The client then computes the master secret, ms, stored for
the lifetime of the TLS session. The Client Finished message,
finc, is then derived by using the ms together with two
random nonces. The keys are afterwards handed to the TLS
Record Layer which ensures a private connection between the
client C and the server S through the use of hash functions
where

• m10 is the Change Cipher Spec, signaling the start of
encryption being sent to S,

• m11 consists of an authenticated encryption of the finc
message.

4) Server Finished : The server verifies the signature re-
ceived in m9. If verification succeeds, S calculates its master
secret, ms, and computes the encryption and MAC keys. S can
then decrypt m11, and verify finc. If verification succeeds, the
server computes the Server Finished message, fins over all
plaintext messages. Messages (m12, m13) are then sent to C
(Fig 1-4) where

• m12 is the encoded flag, flagenc,
• m13 is the encryption of fins.
The client, C verifies the fins received from S (by using

its pre-computed encryption and MAC keys obtained before
calculating m10 and m11).

Encrypted Payload Transmission: The keys obtained can
now be used in order to transmit payload data in the TLS
Record Layer by using a stateful length-hiding symmetric
encryption scheme [9].

If the client C has recently connected to the server S and
the certificates are still valid, C uses the session id, sid, stored
in its cache in order to make an abbreviated TLS negotiation.
As per Figure 1, C goes through only steps 1 and 4.

B. Overview of HTTP/2 over QUIC/UDP security

The QUIC-Crypto protocol1 is part of QUIC that provides
transport security to a connection, where two session keys are

1https://docs.google.com/document/d/1g5nIXAIkN Y-
7XJW5K45IblHd L2f5LTaDUDwvZ5L6g/edit



Fig. 2. Initial Key Agreement phase of QUIC

used. To meet the 1-RTT, the parties first agree on an initial
session key during the Initial Key Agreement phase, which can
be used to exchange data until the final exchange key is set,
detailed as follows:

• Initial Key Agreement: Each party sets its initial key
material, ik, which is used for encryption and decryption,

• Initial Data Exchange: Client (C) and Server (S)
exchange their initial data, encrypted and authenticated,

• Key Agreement: Consists of one message. S generates
a new Diffie-Hellman (DH) value and sends its public
DH value to C. C verifies authenticity of the server's new
DH public value and both parties at this point derive the
session key material, sk,

• Data Exchange: Consists of two packets. C and S use
the session key material, sk, to encrypt and authenticate
their remaining data.

We describe hereunder the Initial Key Agreement phase as
per Figure 2 in detail since it is where security flaws appear
because at the very start of that process, the headers are not
encrypted between the client and the server and an attacker,
acting as a MiTM (Man-in-The-Middle) may have access to
that exchanged information on the communication channel. An
overview of the three other phases can be found in [10].

1) Client connection initiation phase: The client sends the
message, m1 (Fig 2-1), to the server he wants to connect to,
where

m1 = (IPc, IPs, portc, ports, cid, 1)

• cid
$←− {0, 1}64, a random generated id by the client C,

2) Server s reject(m1) response: The server, S, responds
to the client with the message m2 (Fig 2-2) by running
s reject(m1) where

m2 = (IPc, IPs, portc, ports, cid, 1, scfg
t
pub, stk)

• stk, is an authenticated-encryption block of the client's
IP and a timestamp, to be used later by C to identify
itself to S during the initial key agreement phase as well
as during additional 0-RTT connection requests,

• scfgtpub contains the server's DH public values with an
expiration date and a signature prof over all the public
values under the server's secret key sk.

At this very stage the 1-RTT connection establishment has
been realized. Initial keys can be derived and the parties can
start exchanging data until the final key is set.

3) Client verifies m2: On receiving m2, C checks that
scfgtpub is authentic and not expired since it possesses the
public key of S. C then generates a nonce and its own DH
values (Fig 2-3) by running c hello(m2), which is sent to S
through m3, where

m3 = (pkt info, cid, 2, stk, scid, nonc, pubc)

4) Initial Key Material derivation: Both C and S derive
their initial key material, ik, which will be used during the
Initial Data Exchange and Key Agreement phase.

If client C already had a connection with server S, in the
time period τt, then C does not need to send a c i hello but
can instead initiate another connection request with S via a
c hello packet. Upon reception, S verifies that the nonce is
fresh, the stk valid and scid known and not expired, leading
to 0-RTT. If these conditions are not met, S goes to the 1-RTT
connection establishment phase.

III. IDENTIFICATION OF VULNERABILITIES AND IMPACT
ON HTTP/2 WEB-SERVERS OVER TLS/TCP & QUIC/UDP

This section lists the identified vulnerabilities of the two
protocols, when being used with HTTP/2, based on an active
or passive attack model, where the threats are classified as
interception, interruption, modification and fabrication. For
each identified attack, we first point out the attack model and
threat, describe the protocol vulnerability which allows the
attack to be feasible as well as how complex it is to be set
up and what are the drawbacks regarding the end-user's QoE
(Quality of Experience) and QoS (Quality of Service) provided
by the service. We take into account attacks for which no
immediate solutions exist.

A. Impacts of TLS/TCP vulnerabilities on service

1) Slow read attacks: This slow-http attack is part of active
attack models, where interruption leads to DDoS (Distributed
Denial of Service) and is defined as being the Slowloris
DDoS [11] coupled to Slow POST method, where the main
objective is to bypass policies that filter slow-deciding clients,
by reading HTTP responses slowly and at the same time open
multiple active connections with a targeted server by sending
partial HTTP requests. Through SYN packets, an attacker
deliberately advertises a small receive window. On request
received, the server generates the response which is sent to
its socket and the server's kernel further delivers the data
to the attacker. The server's sending rate being throttled, the
attacker is asked to increase its receive-window but no action is
fulfilled. Automatic mechanisms being absent on a TLS/TCP
server to auto-tune flow control credits for both stream and
connection flow controllers to adapt the receive-window, the
responses are delivered slowly to the attacker. Concurrently,
with the help of Slowloris DDoS, multiple partial requests
sent by attacker make the server to over-poll its socket for
write readiness which leads to a drastic increase in the server's
resources, inducing a Denial of Service.
The attack's implementation is straightforward and traditional
detection systems are powerless since they allow the partial



packets (which are not malformed packets) to go through their
security policy. If unmitigated or undetected, this attack can
last for long periods of time. During the attack laps time, the
QoS offered by the website is downgraded and the legitimate
client's QoE is impacted due to an unresponsive website.

2) Logjam: Logjam [12] is part of active attack models,
where modification through a MiTM challenges asymmetric
ciphers and relies on a flaw in the way TLS composes
DHE and DHE-EXPORT. To comply with the 1990s-era U.S
export restrictions on cryptography, many TLS servers are
still configured with two groups, i.e. a strong 1024-bit group
for regular Diffie-Hellman Ephemeral (DHE) key exchanges
and a 512-bit group for legacy DHE-export. When the server
selects DHE-EXPORT for a handshake, it proceeds by issuing
a signed Server Key Exchange message. Provided the client
also offers DHE, an attacker acting as MiTM can re-write
the client hello message, m1 (Fig 1-1) which is gamod p to
offer a corresponding DHE-EXPORT ciphersuite, among the
different cipher suites present in cs listc. A spoofed s hello
message (m2, ...,m6)spoofed (Fig 1-2) which is gbmod p
can also be written by the attacker to replace the choosen
DHE-EXPORT ciphersuite. On receipt, the legitimate client
interprets the s hellospoofed message. At this stage both client
and server have different handshake transcripts, and if the
attacker has important computing power resources, he can
calculate b in close real time (i.e. log b from gbmod p), and
can derive the master secret, ms (based on the shared keys
gabmod p exposed in Fig1-3) as well as the connection keys
to complete the handshake with the client and hence read and
write freely application data, pretending to be the server.
Since vulnerable TLS connections can be downgraded to 512-
bit export-grade cryptography, both the client and the server
can be impacted by this attack, where the attacker can read
and modify any data passed over the connection. As long
as no emphasis on downgrade protection is brought in TLS,
any client connecting to a web service (where DHE EXPORT
ciphers are supported) can have his session highjacked, where
access to the desired service is prevented and bears risks
of having his personal information collected and eventually
forged. The server's QoS on the other side is decreased as it
can serve less legitimate clients and the latters experience a
downgraded QoE through an unresponsive webpage.

3) Lucky Thirteen attack: The Lucky 13 attack targets
ciphersuites which use Cipher Block Chaining (CBC) mode
encryption, and first goes through a passive attack model
where an attacker acting as MiTM intercepts in clear text the
TLS handshake message (e.g on an unsecured WiFi network)
between a legitimate client and the server, followed by an
active attack model where interruption is carried out through
modified ciphertext injection (m2 in Fig 1-2 is modified).
The attack succeeds on chosen message lengths and when
the HMAC-SHA1 MAC algorithm is used, where there is an
alignment of the TLS headers, plaintexts and MAC tag bytes
with the blocks ciphers boundary and the hash compression
function's block boundary. TLS messages containing at least
2 bytes of correct padding will be processed slightly faster

than those containing 1 byte of correct padding. By repeating
the attack and use of adequate statistical processing, noise
from the network jitter is isolated and padding conditions
differentiated.
Through this attack's success plaintext of authentication cook-
ies are retrieved and through replay attacks, the attacker gains
access to personal information, or the authentication cookie
can itself be forged (e.g by modifying the session id, sid
(Fig 1-1) used for repeat connection). The client trying to
connect to a particular web service with the forged cookie
although having a valid timestamp will be prevented from
authentication, thus downgrading his QoE. Authenticated data
being able to be recovered through this attack, any exchange
made between the server and legitimate clients can be collected
by third parties, thus decreasing the degree of trust of the web
service itself.

4) Broken RC4 as primary ciphersuite: Rivest Cipher 4
(RC4) is a fast stream cipher for SSL/TLS connections where
it does not need padding, being immune to TLS attacks like
BEAST2 and Lucky Thirteen, being pretty fast and yielding
less computations or hardware requirements. But if a plain-
text is encrypted with many different RC4 keys, an attacker
acting as a MiTM can intercept the plaintext and a bunch
of totally random looking ciphertexts can be obtained. An
attacker having important computing power and making proper
statistical analysis of different portions of the ciphertexts will
obtain frequent appearing values. By getting several different
encryptions of the same message, under different keys, these
small deviations from random can lead the attacker to what
was originally encrypted.
When the client's connection is encrypted with RC4, each time
he makes a fresh connection to a web service, he automatically
sends a new encrypted copy of the same cookie. Furthermore,
if the session is renegotiated by using a different key, the
attacker builds up the list of ciphertexts needed. Having access
to this information, the attacker can perform actions under the
victim's name and gain access to personal information. On the
long run, the QoE of the user will be downgraded since his
personal information can be used to perform unappropriate
actions on his behalf.

B. Impacts of QUIC/UDP vulnerabilities on service

Most of QUIC packet headers and payloads are encrypted
and authenticated, except during the connection establishment
phase and more particularly at the Initial Key Agreement
phase (Figure 2). Considering active attack models where
interruption, fabrication and modification occurs, we take into
account an adversary who acts as MiTM and listens to the
communication channel, being closer to the client. During the
hanshake process, the attacker can learn the server's current
state, scfgtpub, as well as the source-address token, stk. By
replaying these two spoofed-forged values, i.e. the server's
scfgtpub to the client and the client's stk to the server, the

2http://resources.infosecinstitute.com/ssl-attacks/#gref



Impact on Client Impact on Server

TLS/TCP

Slow Read
attack QoE decreased Unresponsive to legitimate requests

Logjam Session hijacked, personal information
collected and can be forged Service access and popularity reduced

Lucky
Thirteen No access to web service Web service trust degree impacted

Rivest
Cipher 4 Forgery of personal information Web service trust degree decreased

QUIC/UDP

Replay
attack Connection establishment failure No impact as server ends connection

Packet
Manipulation Connection establishment failure No impact as connection ends

Crypto Stream
Offset

Deprived from web service access and
fall back to TLS/TCP

No impact, broken byte-stream ends
connection

TABLE I
VULNERABILITIES & IMPACT ON HTTP/2-BASED WEB SERVERS OVER TLS/TCP & QUIC/UDP

core particularity of QUIC putting forth at most 1-RTT can
turn to be a roadmap leading to the protocol's inefficiency.

1) Replay attacks: Replay attacks are part of active attack
models where fabrication occurs when an adversary alters the
information between the client and server in the connection
establishment phase, acting as a MiTM, being geographically
close to the client. After having obtained the scfgtpub and
stk, the adversary waits for the client to connect. When the
client sends a c i hello message (Fig 2-1) to the server,
the adversary sends back a spoofed s reject message (Fig
2-2), m̄2, to the client (before the server responds) with a
stkspoofed. On receipt, the client verifies that scfgtpub is not
expired. The client then generates a nonce and its own Diffie-
Hellman (DH) value, with the stkspoofed value, which is sent
to the server. The server receives the c i hello message, but
since the stk is not legit, the validation fails and the server
sends a legit s reject message to the client, so that the latter
can re-calculate its c i hello message. At this very phase,
the client moves backwards in the negotiation process to re-
calculate the nonce and own DH value.
Through replay attacks, an adversary can prevent a client from
performing the connection establishment phase with the server.
To counter optimistic ACK attacks, each QUIC packet includes
an entropy bit in its header (being UDP-based), together with
a hash of these bits in the QUIC ACK frames. When the
client acknowledges the spoofed s reject message to the
legit server, the entropy bit does not match the server's entropy
bit in its legit response, which prevents the entropy hash in
this ACK to validate and connection with the server will be
ended.
Furthermore, the QUIC-Crypto handshake takes place within a
special byte-stream reserved for connection establishment. All
c hello, s reject and s hello messages (exposed in Figure 2)
occur within the context of this byte-stream having offset and
length attributes. Since the attacker's s reject message size
has a very high probability at being different from the server's
response, the byte-stream is effectively broken. Messages
being at offsets will be dropped or buffered forever, and after
a delay of ten seconds, the client's connection will be ended,
thus having a direct impact on the client's QoE.

2) Packet Manipulation attacks: Non-encrypted QUIC
packets are not protected against adversarial manipulation. If
an attacker has access to the communication channel, acting as
MiTM, bits of unprotected parameters such as the connection
id, cid, or source address token, stk, can be flipped through
fabrication and lead the client and server to derive different
initial keys which would ultimately lead the connection estab-
lishment to fail.
The server automatically proposes the client to re-negotiate
the connection establishment, where the low RTT put forth
by the protocol is doomed, since the adversary can one more
time proceed to packet manipulation and lead to an infinite
connection establishment loop for the client. The client’s QoE
is drastically reduced until the webpage abandonment.

3) Crypto Stream Offset: All handshake messages are part
of a logical byte-stream in QUIC. If an adversary acting as
MiTM has access to the communication channel and can
inject random data to interrupt the byte-stream, the attacker
is able to break the byte-stream itself and prevent further
connection establishment. When further processing of the
handshake messages happen, the legitimate user is found
denied of access to the desired web service and case-wise
forced to fall back to TLS/TCP leading with a higher RTT
than expected. Through both of these scenarios, even if the
server's QoS is not impacted, the client's QoE is reduced.

C. Comparison of TLS/TCP & QUIC/UDP vulnerabilities on
service

Through Table I, a client making use of a web service
being HTTP/2 based on TLS/TCP has its QoE decreased and
personal information can be collected and forged. The server
is impacted upon its responsiveness, leading to a decrease in
number of clients it can serve and may crash.
For a client making use of a web service being HTTP/2
based on QUIC/UDP, although his connection establishment is
impacted and may even fall back to TCP/TLS which shrinks
his QoE, the early connection is safe since no sensitive infor-
mation is exchanged until connection establishment succeeds.
On the server side, connection of the client is ended if any
verification step fails, making the server still fully available
and safe to legitimate visitors, ensuring promised QoE.



IV. RELATED WORK

Some research papers address specific security issues of the
TLS protocol, namely use of SSL to break TLS [13], cross
protocol attacks on TLS [14] and key-encapsulation mecha-
nism extraction from the TLS handshake protocol [15]. We
can find very few presenting the QUIC security aspects, [16]
for multi key exchanges or [10] for a cryptographic analysis.
But all of those papers are different than ours, since they
address specific points. Regarding papers studying security
aspects as a whole, we can mention [17] and [18], which
explore the security aspects, the protocols and different types
of attacks and countermeasures. But these papers focus on
the Internet of Things domain and not the Web. The network
protocols are different: MQ Telemetry Transport (MQTT) and
the Constrained Application Protocol (CoAP), and not TLS
or QUIC. In [19], the authors present the main challenges
for Big Data environments regarding security and privacy, but
encryption and secure communications is only one item, and
only mentions TLS, not QUIC. With the same use-case as us,
we can cite [20] which addresses the websites protection, but
the paper only presents the main attacks and possible actions to
take into consideration to avoid attacks, and do not investigate
the network transport protocols such as TLS or QUIC. In [21],
the author presents an analysis of the vulnerabilities of TLS,
but without relationship upon their impacts on the web server
and QUIC is not addressed. To the best of our knowledge, our
paper is the first one aiming at comparing the two protocols
at the security level and evaluating the impacts for a HTTP/2-
based web service.

V. CONCLUSION

In this paper, we have highlighted the main vulnerabili-
ties of two secure transport protocols, the well-known and
largely used TLS/TCP and the newcomer, proposed by Google,
QUIC/UDP. This analysis is done mainly for a web service,
using HTTP/2 on top of these two secure protocols. Our
analysis shows that QUIC/UDP allows to have a more reliable
server, since the server can not crash or reach a state where the
web service offered to end-users is largely degraded. Although
the QUIC/UDP attacks mainly impact end-users, the impact
on the server is limited, whereas TLS/TCP attacks target more
precisely the server, with the aim to make a DDOS. With
TLS and the current QUIC specification, web designers should
prefer to deliver their contents using QUIC/UDP rather than
TLS/TCP regarding security issues.

ACKNOWLEDGEMENT

This work is partially funded by the French National Re-
search Agency (ANR) BottleNet project, No ANR-15-CE25-
0013-001.

REFERENCES

[1] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer
Protocol Version 2 (HTTP/2),” Internet Requests for Comments, RFC
Editor, RFC 7540, May 2015, http://www.rfc-editor.org/rfc/rfc7540.txt.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc7540.txt

[2] R. Peon and H. Ruellan, “HPACK: Header Compression for HTTP/2,”
Internet Requests for Comments, RFC Editor, RFC 7541, May 2015.

[3] J. Iyengar, I. Swett, R. Hamilton, and A. Wilk, “QUIC: A UDP-Based
Secure and Reliable Transport for HTTP/2,” Internet Engineering
Task Force, Tech. Rep. draft-tsvwg-quic-protocol-02, Jan. 2016, work
in Progress. [Online]. Available: https://tools.ietf.org/html/draft-tsvwg-
quic-protocol-02

[4] R. Shade and M. Warres, “HTTP/2 Semantics Using The
QUIC Transport Protocol,” IETF Draft, IETF, Draft, July
2016. [Online]. Available: https://datatracker.ietf.org/doc/draft-shade-
quic-http2-mapping/

[5] P. Biswal and O. Gnawali, “Does quic make the web faster?” in 2016
IEEE Global Communications Conference (GLOBECOM), Dec 2016,
pp. 1–6.

[6] S. Cook, B. Mathieu, P. Truong, and I. Hamchaoui, “QUIC: Better
For What And For Whom?” in Proceedings of IEEE International
Conference on Communications (ICC), May 2017.

[7] T. Dierks, “The Transport Layer Security (TLS) Protocol Version
1.2,” RFC 5246, Tech. Rep. 5246, Aug. 2008. [Online]. Available:
https://rfc-editor.org/rfc/rfc5246.txt

[8] A. O. Freier, P. Karlton, and P. C. Kocher, “The Secure Sockets Layer
(SSL) Protocol Version 3.0,” RFC 6101, Tech. Rep. 6101, Aug. 2011.
[Online]. Available: https://rfc-editor.org/rfc/rfc6101.txt

[9] T. Jager, F. Kohlar, S. Schäge, and J. Schwenk, “On the security of
tls-dhe in the standard model,” in Advances in Cryptology – CRYPTO
2012: 32nd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 19-23, 2012. Proceedings, R. Safavi-Naini and R. Canetti, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 273–293.

[10] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru, “How Secure
and Quick is QUIC? Provable Security and Performance Analyses,” in
Proceedings of the IEEE Symposium on Security and Privacy (SP), May
2015.

[11] E. Damon, J. Dale, E. Laron, J. Mache, N. Land, and R. Weiss,
“Hands-on denial of service lab exercises using slowloris and rudy,” in
Proceedings of the 2012 Information Security Curriculum Development
Conference, ser. InfoSecCD ’12. New York, NY, USA: ACM, 2012,
pp. 21–29.

[12] W. Bokslag, “The problem of popular primes: Logjam,” vol.
abs/1602.02396, 2016.

[13] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel,
J. Steube, L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni,
E. Käsper, S. Cohney, S. Engels, C. Paar, and Y. Shavitt, “Drown:
Breaking tls using sslv2,” in 25th USENIX Security Symposium (USENIX
Security 16). Austin, TX: USENIX Association, 2016, pp. 689–706.

[14] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel,
“A cross-protocol attack on the tls protocol,” in Proceedings of the
2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 62–72. [Online].
Available: http://doi.acm.org/10.1145/2382196.2382206

[15] H. Krawczyk, K. G. Paterson, and H. Wee, On the Security of the TLS
Protocol: A Systematic Analysis. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 429–448.

[16] M. Fischlin and F. Günther, “Multi-stage key exchange and the case
of google’s quic protocol,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’14.
New York, NY, USA: ACM, 2014, pp. 1193–1204.

[17] I. Andrea, C. Chrysostomou, and G. Hadjichristofi, “Internet of things:
Security vulnerabilities and challenges,” in 2015 IEEE Symposium on
Computers and Communication (ISCC), July 2015, pp. 180–187.

[18] J. Granjal, E. Monteiro, and J. S. Silva, “Security for the internet
of things: A survey of existing protocols and open research issues,”
IEEE Communications Surveys Tutorials, vol. 17, no. 3, pp. 1294–1312,
thirdquarter 2015.

[19] Y. Gahi, M. Guennoun, and H. T. Mouftah, “Big data analytics: Security
and privacy challenges,” in 2016 IEEE Symposium on Computers and
Communication (ISCC), June 2016, pp. 952–957.

[20] D. Gillman, Y. Lin, B. Maggs, and R. K. Sitaraman, “Protecting websites
from attack with secure delivery networks,” Computer, vol. 48, no. 4,
pp. 26–34, Apr 2015.

[21] M. S. Haque, “Web server vulnerability analysis in the context of
transport layer security (tls),” IJCSI International Journal of Computer
Science Issues, vol. 13, no. 5, pp. 11–19, 2016.


