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A Kullback-Leibler divergence measure of intermittency:
application to turbulence

Carlos Granero Belinchén, Stéphane G. Roux, and Nicolas B. Garnier
Univ Lyon, Ens de Lyon, Univ Claude Bernard,
CNRS UMR 5672, Laboratoire de Physique, F-69342 Lyon, France
(Dated: July 19, 2017)

For generic systems exhibiting power law behaviors, and hence multiscale dependencies, we pro-
pose a new, and yet simple, tool to analyze multifractality and intermittency, after noticing that
these concepts are directly related to the deformation of a probability density function from Gaus-
sian at large scales to non-Gaussian at smaller scales. Our framework is based on information theory,
and uses Shannon entropy and Kullback-Leibler divergence.

We propose an extensive application to three-dimensional fully developed turbulence, seen here as
a paradigmatic complex system where intermittency was historically defined. Moreover, the concepts
of scale invariance and multifractality were extensively studied in this field and, most importantly,
benchmarked. We compute our measure on experimental Eulerian velocity measurements, as well
as on synthetic processes and a phenomenological model of fluid turbulence.

Our approach is very general and does not require any underlying model of the system, although

it can probe the relevance of such a model.

I. INTRODUCTION

Complex systems are omnipresent in day life,
and as a consequence in many scientific fields.
These are as various as: internet traffic [1, 2], hu-
man genome exploration [3], geography [4], finan-
cial markets [5, 6], etc. In recent years, increasing
computational power and storage has fuelled inter-
est in accumulating and analyzing large amounts
of data, and hence in developing new tools to char-
acterize systems where traditional methods are not
relevant. Real world systems are most commonly
nonlinear and their complexity is difficult to model.
Hence, any new tool must be able to probe non-
linear correlations and should preferably be non-
parametric.

A very common characteristic of such systems
is the occurence of quantities that exhibit a power
spectral density (PSD) with a power law, indicat-
ing that multiple scales are present, in a continuous
range. In addition, probability density functions
(pdfs) are most commonly non-Gaussian, suggest-
ing that non-linear interactions are at work. When
one defines and then measures a global or local
quantity which has both a power law power spec-
trum and a non-Gaussian pdf, this quantity is usu-
ally shown to have a fractal nature, with a defor-
mation of its pdf when the scale varies. Again,
very few tools exist to probe such systems cor-
rectly. We propose here a novel measure of the
evolution between Gaussian and non-Gaussian pdf.
Another wide class of problems consider a global
quantity defined as the sum or integral, e.g., over
space or over time, of a local quantity that has non-
Gaussian statistics. Estimating or predicting the
statistics of the global quantity is usually not easy,
because of, e.g., long-range interactions that leads

to long-range correlations. Nevertheless, for large
integration scales — larger than any possible cor-
relation scale —, large deviation theory should re-
duce to central limit theorem and Gaussian statis-
tics are expected. We also aim at quantifying these
transformations of the pdfs.

One paradigm of multiscale complex systems
is fluid turbulence, for which a lot of theoreti-
cal and phenomenological developments have been
proposed to describe very complex behaviours such
as energy cascade and intermittency.

Kolmogorov 1941 theory (K41) [7-9] provided
a powerful framework to describe fully developed
turbulence, and in particular to characterize its
statistical properties. Considering for example Eu-
lerian longitudinal velocity increments §;v at scale
[, K41 theory states that the p-order structure
function S, (1) = ((6;v)") behaves, for any positive
integer p, as a power law of the scale :

S, (1) o< 1) (1)

in the inertial range: n < | < L, where L and 7
are the integral and Kolmogorov scales. The scal-
ing exponent ((p) depends on the order p, and K41
theory, assuming homogeneity and isotropy at the
small scales of the flow, predicts a linear behavior
of the scaling exponents as ((p) = p/3. Using the
relation between the kinetic energy and the second
order structure function Sy(l), this implies the fa-
mous 5/3 law for the distribution of kinetic energy
in the inertial range. The existence of the energy
cascade from larger scales to smaller ones has been
shown by Kolmogorov to be related to the 4/5 law,
which imposes the value of the third order struc-
ture function Ss(1).

Although very satisfying at first, this predicted
linear behavior of the scaling exponents was later



rejected by dedicated experiments [10]. To de-
scribe the observed deviations, Kolmogorov and
Oboukhov relaxed some of the K41 hypothesis and
in particular the homogeneity at small scale [11,
12]. This led to the KO62 theory and the defi-
nition of intermittency in Turbulence: the scaling
exponents ((p) do not depend linearly in p (see
Figure 3).

Intermittency was later related to the multifrac-
tal description of turbulence as stated by Frisch
and Parisi [13]. It is now recognized that the pdf
of the Eulerian velocity increments continuously
deforms from Gaussian at large scales [ 2 L to
strongly non-Gaussian at smaller scales, and we
use this consequence as an equivalent, but more
practical, definition of intermittency.

The deformation of the pdf can be quantified
by the evolution of its flatness [14], measured
as the normalized kurtosis of the distribution:
((6:0)H) /{(61v)%)% = S4(1)/S2(1)%. At larger scales,
about or above the integral scale L, the pdf of the
velocity increments is Gaussian and therefore has a
flatness equal to 3. For smaller and smaller scales,
the pdf is less and less Gaussian as the pdf of the
normalized increments becomes wider and wider;
therefore the flatness increases. Fine evolutions of
the pdf, and hence intermittency, have been stud-
ied with the flatness, such as a rapid increase of
intermittency when the scale is reduced down or
below the Kolmogorov dissipative scale [15]. So
evolves according to the 5/3 law, so, the kurtosis
only involves one higher-order structure function,
namely Sy, and as such it does not describe the de-
viation of all the scaling exponents ((p) from their
linear behavior in p. This is why we propose in
this article a new measure of intermittency that
involves all structure functions.

Shannon founded Information theory in 1948
and introduced entropy as a measure of the total
information of a process [16]. Since then, Informa-
tion Theory has been widely used in very different
fields: biomedical science [17-19], Physics of fluids
[20—22], thermodynamics [23] and others. Shannon
entropy is a functional of the pdf of the process,
and as such it depends on all the moments of the
distribution, see section II.

We provide a new measure of intermittency, in-
terpreted as the deformation of a pdf which is
Gaussian at large scales. To do so, we consider
the Kullback-Leibler (KL) divergence [24] between
the pdf and the Gaussian pdf defined as having the
same standard deviation. We compute this quan-
tity for Eulerian velocity increments, in order to
measure intermittency in turbulence. We do so in
a wide range of scales so that we can observe how
this measure of intermittency behaves in all do-
mains of fluid turbulence. By comparing the pdf

— defined by all its moments — and the Gaussian
approximation of this pdf — defined by the sec-
ond order moment only — we measure not only
the growth of the pth order moment with respect
to the variance, but also the evolution of all the
moments with respect to the variance, i.e., we ex-
haustively characterize the deformation of the pdf.
Measuring the intermittency with a KL divergence
provides a generalization of measures such as flat-
ness (p = 4), hyperflatness (p = 6), etc.

Although we propose to study turbulence as an
application of our framework, our definitions are
very general, and only require a signal to probe
intermittency. Our approach does not require any
a priori knowledge of the signal, neither any un-
derlying model of the system that produced the
signal. As such, it can prove a very powerful tool
to analyze complex systems exhibiting power law
behaviors or multiscale dependencies.

This paper is organized as follow. In section II,
we define our information theoretical measure of
intermittency that involves Shanon entropy and a
well chosen Kullback-Leibler divergence. In sec-
tion III, we compute this quantity for experimen-
tal measurements of the Eulerian velocity field in
several setups and several Reynolds numbers. We
then turn in section IV to some phenomenologi-
cal modelings in order to better understand and
describe our observations.

II. DEFINITIONS

A. Entropy and KL Divergence from
Gaussianity

Shannon entropy, H(X), of a process X of pdf
p(x) is the total information that defines the pro-
cess [16]. It depends on all the moments of the pdf
p(x) except the first order one.

1) == [ o) ogp(@yde. @)

We know that a Gaussian process, X, is defined
only in terms of two-point correlations. Therefore,
its Shannon entropy only depends on its variance
0xq, and we have the analytical expression of the
entropy H(X¢) of a Gaussian process X¢:

H(Xg) = %log(?ﬂ'eag(c) . (3)

For a generic process X which is a priori non-
Gaussian and has the variance 0%, we define the
“entropy under Gaussian hypothesis” Hg(X) as



the entropy that one would get assuming the pro-
cess is Gaussian and using eq.(3):

Hg(X) = % log(2mec?), (4)

where oy is the standard deviation (std) of the
generic process X. So, the "entropy under Gaus-
sian hypothesis” of X is a measure of the entropy of
a Gaussian pdf with same std as the real pdf of X.
If X is Gaussian, obviously Hg(X¢) = H(Xg).

For any process X with probability density func-
tion p(x), we can measure the difference between
the "real” pdf p(xz) of X and the Gaussian ap-
proximation pg(z) using the Kullback-Leibler di-
vergence [24]:

Koplipe (X) :/Rp(w) log (%) dz.  (5)

Using the definitions of H(X) and Hg(X
have:

), we

Kypipe (X) = Ho(X) — H(X) 2 0. (6)

pllpc

Kplipe (X) is a measure of the distance from
Gaussianity of the process X, i.e., the distance be-
tween the pdf p(x) of X, and a Gaussian pdf pg(z)
which has the same std. The maximum entropy
principle [25, 26] states that for a given standard
deviation, the Gaussian pdf maximizes the en-
tropy, see also [27]. So this distance is also a com-
parison between the total information needed to
define the process and the total information defin-
ing the most ambiguous process with same std.
The maximization of the entropy for the Gaussian
case ensures that the difference Hg(X) — H(X) is
always positive, as expected for a KL divergence
and vanishes only when X has a Gaussian distri-
bution.

B. Distance from Gaussianity across scales

We analyse the process X at scale 7 by studying
its increments of size 7:

5, X(H) = X(t+7) — X(t) (7)

We note D, (X) the KL divergence KCp|jp, (6-X)
which measures the distance from Gaussianity of
the increments at scale 7 of a process X:

Dy (X) = Kpjjpe (6:X) = Ho (6, X)~ H(5,X) (8)

pllpa

This quantity measures the deformation of the
pdf of the increment as a function of the size 7 of
the increment: it quantifies the evolution of the

shape of the pdf, which depends on all the mo-
ments of the process, except its mean.

Indeed, at each scale 7, the increment 6. X has a
different standard deviation. The larger the scale
7 the higher the standard deviation. So, chang-
ing 7 changes quantitatively the entropies H (6, X)
and Hg (6, X), which both depend strongly on the
standard deviation. Substracting the two entropies
eliminates most of this quantitative variation be-
cause the std is by construction the same in both
expressions Hg(0;X) and H(6;X)). D,(X) thus
only measures subtle and delicate evolutions of the
shape of the pdf than the trivial rescaling induces
by the std.

In the specific case of Turbulence, the pdfs of the
increments of size equal or larger than the integral
scale L are almost Gaussian. As a consequence, we
expect that the distance from Gaussianity D, (X)
tends to zero when 7 approaches the integral scale.
Conversely, it is expected to increases in the iner-
tial range down to the dissipative scale where it
should increase (even) faster [15]. Our distance
from Gaussianity should therefore be able to probe
intermittency of Turbulence by measuring the de-
formation of the pdf of velocity increments.

C. Methodology

To compute the Shannon entropy H, we
use a nearest neighbors estimator described by
Kozachenko and Leonenko [28, 29]. The only
parameter used in this algorithm is the number
of neighbors k involved in the nearest neighbors
search. We chose the usual value k¥ = 5 which
is large enough to estimate the Shannon entropy
correctly within a reasonable computational time.

Following Theiler [30], we subsample the data in
order to remove spurious correlation effects: when
computing the entropy of §,X (t), we only retain
data points separated in time by a delay time
Tmaz, defined as the size of the largest increment
that we compute. This prescription has two bene-
fits. Firstly, the correlation between two successive
points of the subsampled dataset are uncorrelated,
because increments of size 7 are typically corre-
lated over a time 7 < Tyax. Secondly, the number
N of points used in the computation of the entropy
of ;X is independent of 7, so the bias due to finite
size effects is constant when 7 is varied.

To compute the entropy under Gaussian hypoth-
esis Hg, we estimate the standard deviation of the
process and then use eq.(3).

In the remainder of this article, all quantities are
computed using N = 512 points, Tnax = 4096, so
signals with a total of N7y = 22! points. We
also average our results over independent realisa-



tions, in order to compute the standard deviation
of the quantities and provide error bars to the es-
timations. We use 12 realisations for experimental
signals and 8 realisations for synthetic processes.

In following sections we analyse the evolution
of the pdf along the scales for a longitudinal tur-
bulent velocity signal. We compare the obtained
results with some synthetic and theoretical models
of turbulence.

III. TURBULENCE
A. Experimental signals

We analyse two different sets of experimental
turbulent data, in order to show the ability of our
measures to grasp inherent properties of turbu-
lence.

The first system consists of a temporal measure-
ment of the longitudinal velocity (V') at one loca-
tion in a grid Turbulence setup in the wind tunnel
of ONERA at Modane [31]. The Taylor-scale based
Reynolds numberR ) is about 2700, with a turbu-
lence rate about 8%. The inertial region length is
approximately three decades. The sampling fre-
quency is fs = 25 kHz and the mean velocity of
the wind in the tunnel is (v) = 20.5 m/s. The
probability density function of the data is almost
Gaussian although there is some visible asymme-
try: the skewness is about 0.175 % 0.001.

The second system is a set of temporal veloc-
ity measures at different Reynolds numbers in a
jet turbulence experiment with Helium [32]. The
Taylor-scale based Reynolds number R) is respec-
tively 89, 208, 463,703,929, with a turbulence rate
about 23%.

Using Taylor hypothesis [14] and the mean ve-
locity (v) of the flow, we can interpret these time
series as the spatial evolution of the longitudinal
velocity. The time scale 7 and the spatial scale [
are related by | = (v)7. We note the integral time
scale T" and the integral spatial scale L, and we
have L = (v)T. We present all our results as func-
tions of the ratio 7/T = [/L between the scale of
the increment and the integral scale.

B. Results

In Figure 1, we present the analysis of the
Modane experimental velocity data. In the left
column we report the classical viewpoint and com-
pare it to the information theory viewpoint in the
right column.

8 —6 —4
log(7/T)

—4
log(7/T)
FIG. 1. (a) Power spectrum (b) Flatness (c) Entropies
(d) KL Distance from Gaussianity, for the Modane ex-
perimental data, as functions of log(7/T") = log(l/L),
the logarithm of scale normalized by the integral scale.
In (a) and (c), the straight lines indicate the theoretical
scaling in the inertial region predicted by Kolmogorov
5/3 law.

We first plot the power spectrum S(7) of the
velocity signal V' in Fig. 1,a : it shows the distri-
bution of energy across scales following the well
known 5/3 Kolmogorov law. In order to mea-
sure the deformation of the shape of the pdf of
the velocity increment when the scale 7 is varied,
we follow Frisch [14], and compute the flatness of
the velocity increments normalised by the flatness

of a Gaussian pdf (@) Results are reported
in 1(b). For 7 2 T, i.e., | 2 L, the flatness has
the value expected for a Gaussian pdf. Reduc-
ing 7, the flatness increases. When 7 is smaller
than the dissipative scale [15], the increase of the
flatness is sharper. Three different regions can be
distinguished in both figures: integral, inertial and
dissipative.

The right column of Fig. 1 is devoted to the In-
formation Theory viewpoint on the same charac-
teristics of Turbulence. We first plot the entropy of
the increments in Fig. 1(c) and compare it with the
PSD in Fig. a. We then plot D.(V) in Fig. 1(d)
and compare its behavior in 7 with the flatness.

In figure 1(c) we see that the entropy of the in-
crements (H(d,V)) increases with 7. The larger
the scale, the higher the total Shannon information
needed to completely characterize the increment.
We can distinguish three different ranges with dif-
ferent dependence of the entropy on the scale. For
the large scales, larger than the integral scale, the
entropy reaches its highest value and is then con-
stant. So the most disorganized or complex scales
— the ones requiring more information to be com-
pletely characterized — are the scales in the inte-
gral domain. Within this region, the characteri-
zation of the scale does not require more entropy



when the size of the increment increases . A linear
behaviour of the entropy in log(7/T) is found in
the inertial region, 7 € [10,400]. The complexity
of the scales, as measured by H(J,V), decreases
linearly in log(7/T) between the integral and the
Kolmogorov scales. For the smallest scales, below
the Kolmogorov scale — which we can measure
at log(7) = 2 — we observe a steeper decrease of
the disorganization of the scales with the decrease
of the scale. So, using the entropy of the incre-
ments, we are able to recover the three different
regions. Moreover, we can state that H(0,V) in-
creases from the smallest scale to the integral scale,
and then remains constant. In addition, the evo-
lution of H(4,;V) in the inertial region is linear in
log(7/T).

Both entropies H(§,V) and Hg(6,V) in Fig. 1,c
are indistinguishable in the integral domain. The
distance between them starts to increase when we
enter in the inertial region. In figure 1,d, we
plot the difference between these two entropies,
which according to equation(8) is the distance from
Gaussianty D, (V). Starting from 0 at scales larger
than the integral one, it increases when the scale
decreases. The vanishing of D.(V) for largest
scales implies that the pdf of the velocity incre-
ments is almost Gaussian, which is the expected
behavior in Turbulence at scales equal or larger
than the integral scale. Below this integral scale
the pdf starts to deform, and becomes less and less
Gaussian when the scale decreases. The evolution
of D, (V) is almost linear between the integral and
the Kolmogorov scales. Finally in the dissipative
range, we observe an abrupt deformation of the
pdf, in perfect agreement with the rapid increase
of the flatness in figure 1,b. [15] The distance from
Gaussianity D, (V) across scales 7 is a measure of
the deformation of the pdf of the turbulent velocity
increments, and, as such, a measure of the inter-
mittency.

In the four sub-plots of figure 1, the three differ-
ent domain of turbulence are distinguishable: in-
tegral, inertial and dissipative. Figure 1(c) allows
us to interpret these three domains in terms of or-
ganization and complexity of velocity increments.
Figure 1,d shows that the KL divergence allows us
to quantify the evolution of intermittency amongst
scales 7. We do not only recover the three different
ranges with our new measure based on Information
theory, but also the qualitative behavior of inter-
mittency in each domain is in perfect agreement
with previous studies. Moreover, our measure of
intermittency doesn’t depend on a specific ratio
between selected moments of the pdfs like the kur-
tosis. D.(V) takes into account all the moments
defining the pdfs: this makes our KL distance from
Gaussianity across scales a good candidate for a

quantitative measure of intermittency.

We have compiled Information Theory results
for all experimental signals in Figure 2, in order to
study the influence of the Reynolds number. The
entropy as a function of the scale is reported in
Figure 2(a); we observe how the size of the inertial
range varies with the Reynolds number, with the
Kolmogorov scale increasing when the Reynolds
number decreases. This classical behaviour of the
Kolmogorov scale is also recovered with the KL
divergence, represented in Fig. 2(b). The steeper
slope — that indicates the dissipative domain —
appears at higher scales when the Reynolds num-
ber is lower; we recover the dependence of the Kol-
mogorov scales with the Reynolds number.

The behaviours of both the entropy and the
distance from Gaussianity are qualitatively the
same for different experimental setups and for any
Reynolds number. The dependence of the entropy
H(6,V) of the increments is, at first order, in
agreement with the K41 theory: we recover the
scaling law in the inertial domain [33]. The KL
divergence D, (V') then enlightens the deformation
of the pdf across scales, which is qualitatively com-
patible with the K062 theory and hence the inter-
mittency in Turbulence.

H(5,V)

0.08

0.02

0 L L L L . .

log(7/T)

FIG. 2. a) Entropy H(6-V) of the Eulerian velocity
increments as a function of log(7/T) = log(l/L). b)
KL divergence D, (V) = Hg(6-V)—H (0, V). Different
experimental signals with various Reynolds numbers
have been used.



IV. MODELLING

In order to get some insight on the quantita-
tive results obtained with our Kullback-Leibler di-
vergence D, we now turn to some theoretical de-
scriptions of the inertial domain of fully developed
turbulence.

First, we study different processes. Amongst
the simplest, popular and most important is frac-
tional Brownian motion (fBm) [7, 34] which, as a
monofractal process, doesn’t display intermittency.
We also explore multifractal processes, which ex-
hibit intermittency: Multifractal Random Walk
(MRW) [35, 36], Random Wavelet Cascade (RWC)
with Log-normal [36, 37] or Log-Poisson distri-
bution of multipliers [36-38]. We then examine
the propagator formalism [39], a phenomenologi-
cal model that provides an analytical expression of
the pdf of the velocity increments [40].

A. Description of turbulence

We briefly introduce the models that we have
used. All are characterized by the set of their
scaling exponents, ((p), as they appear in eq.(1).
One of the very few exact results of Kolmogorov’s
framework is the 4/5-law which imposes ((3) = 1;
this should be respected by any model or process
representing turbulence, see Fig. 3.

A linear behaviour of the scaling exponents with
p characterizes a monofractal process. On the con-
trary, a non linear behaviour reveals multifractal-
ity, see Fig. 3.

From these scaling exponents, one can define
the log-cumulants from the following Taylor ex-
pansion [41]:

2 3
C(p)zclp—@%—i—c;g%... (9)

So, the existence of non-zero log-cumulants ¢, of
order p > 2 indicates the multifractal nature of a
process.

By taking the Legendre transform of the scaling
exponents we estimate the singularity spectrum of
the process [13]:

D(h) = miny,[ph — ((p)] (10)

where h is called the Holder exponent and de-
scribes the local regularity of the signal. The singu-
larity spectrum D(h) is related to the probability
of finding the Holder exponent h.

a. For a monofractal process there is only one
possible value for the Holder exponent h, which is
noted H, the Hurst exponent. The scaling expo-
nent are linear in p (see Fig. 3): ((p) = Hp so only

Monofractal
—LN
—LP
1.5 I o Modane

=1
o
0.5
0 1
1 2 3 4 5 6 7
p
FIG. 3. Scaling exponents ((p) versus order p for

three different models of turbulence in the inertial do-
main, together with an experimental Eulerian velocity
measure (Modane, black). Models are: monofractal
fractional Brownian motion (cyan), multifractal log-
normal (blue) and multifractal log-Poisson (red).

the first log-cumulant ¢; is non zero: ¢; = H. In
that case, the scale invariance implies the follow-
ing relation between the probability distributions
ps.x and Doy X of the increments of scales 7 and

T0:
i x0.3) = (2) s ((2) o)

H(5,X) = H(6-,X) + Hlog(r/m). (1)

This relation is valid for all couple of scales (7, 79),
and although there is no integral scale T" in a mono-
fractal description, we further note the reference
scale 1o = T. Following K41, we set H = ¢; =
1/3 to model turbulence, although this is not very
satisfying for larger p, see Fig. 3.

b. Intermittent log-normal model for tur-
bulence was introduced by Kolmogorov and
Oboukhov in 1962. It was the first intermittent
model of turbulence, with the following scaling ex-
ponents: ((p) = c1p — @%.

The non-linear dependence of the scaling expo-
nents in p indicates the multifractal nature of the
model, which is quantified by c¢o. All log-cumulants
cp of order p > 2 are zero. Its singularity spectrum
is:

(12)



This multifractal process offers a satisfying rep-
resentation of the scaling exponents of Turbulence
for ¢ = 0,025 and ¢; = 1/3 + 3/2co = 0.37 (see
Fig. 3).

c. Intermittent log-Poisson model was intro-
duced by She and leveque [38]. This heuris-
tic model leads to scaling exponents of the form
C(p) = —yp — A(BP — 1). Tt has later been inter-
preted as a log-Poisson model with a singularity
spectrum

D(h)=1- A+ li;g_(g) (log (%> ! 1()1:%.)

The corresponding log-cumulants are:

c1 =+ Alog(p) (14)
em = Alog(B)™, m>2 (15)
This model imposes A = 2, § = (%)(1/3) and v =

—1/9 [38], and it describes the scaling exponents
¢(p) as satisfyingly as the log-normal model does
(see Fig. 3).

B. Synthetic processes

We now briefly present the different processes
that we have numerically generated, according to
the above prescriptions.

a. Fractional Brownian motion is the only
scale-invariant process with Gaussian statistics
and stationary increments. This monofractal pro-
cess was introduced by Kolmogorov [7] and studied
by Mandelbrot [34]. The Hurst exponent H = 1/3
and oy (the variance at ¢ = 0) define completely
the process. Fractional Brownian motion exhibits
a 5/3 scaling, identical to the one of the energy
in the inertial region of turbulence, in agreement
with K41 [7]. We use the procedure presented by
Helgason to synthesize fBm [42].

b. log-Normal multifractal processes We use
two different synthetic processes with log-normal
statistics: a Random Wavelet Cascade (RWC) [36,
37] and a Multifractal Random Walk (MRW) [35].
Multifractality requires the existence of an integral
scale T', from or towards which the pdf evolves. For
both processes, the synthesis we use imposes the
integral scale T to be equal to the size of the signal.

¢. log-Poisson multifractal process We use a
RWC with log-Poisson statistics [37]. Again, our
synthesis fixes the integral scale T to the size of
the generated signal.

d. Classical multifractal analysis offers a way
to estimate the log-cumulants ¢; and ¢y, but fails
to estimate c3 and higher order log-cumulants. It

-2 r *H((s,.X) (a)
4+
—~ 6|
gl
-8t
—10
—12
0.16
(b)
0.12
50408 r
<
Q
0.04
0 1 1 t 1 1 1 ; 1
—16 —14 —12 —10 -8

log(7/T)

FIG. 4. a) Entropy H and entropy under Gaussian
hypothesis He for mono- and multifractal processes.
Black lines are the theoretical slope of information in
the inertial range of turbulence. b) Distance D, (X) =
Hg(6:X) — H(0-X) from Gaussianity. Four different
models are used: fBm (cyan), MRW (magenta), log-
normal RWC (blue) and log-Poisson RWC (red).

can therefore be interpreted as projecting the dif-
ferent models onto their log-normal approxima-
tion, with varying (c1, c2). For example, the mul-
tifractal analysis of a realistic log-Poisson model of
turbulence leads the couple of values given in ta-
ble I, and no additional higher order log-cumulant.
As a consequence, such an analysis is not able to
discriminate which process — log-normal or log-
Poisson —better represents Turbulence. For this
reason, we compute in the next section the KL di-
vergence D, which takes into account all moments
of the pdf of increments, and hence higher order
log-cumulants [43], in order to obtain a finer anal-
ysis of the inertial domain of turbulence.

C. Results

In figure 4(a) we plot for the four synthetic sig-
nals the entropy H (6, X) as a function of log(7/T),
the log of the scale. We also plot the entropy under
Gaussian hypothesis, Hg(6,X), but it is undistin-
guishable from H (0, X).

For any process, the entropy under Gaussian hy-
pothesis Hg is computed using eq.(4). It involves
the second order moment So(7) only, which we ex-



press using eq. (1) as

73 ¢(2)
Sy(1) = 02 = 0% (f) .
We then obtain the dependence of Hg on the scale

T:

<@
2
In figure 4(a), we observe that the slope of the
curves, which should be @ is very similar for all
processes: we report in table I the different values
we measured, and compare them to the prescribed
value (1/3 for fBM and 0.345 for all three mul-
tifractal processes). The distribution of informa-
tion along the scales for the four different models
is in agreement with the prescribed Kolmogorov

5/3 law [33].

Hg(0-X) = Hg(0rX) + log (7/T) . (16)

fBm MRW log-N log-P
c1 1/3 0.370 0.370 0.381
c2 0 0.025 0.025 0.036
¢(2)/2 1/3 0.345 0.345 0.345
é1 0.333 0.42 0.372 0.382
[ le™* 0.038 0.026 0.035
£(2)/2 0.332 0.363 0.353 0.356
Ajog(r)Ha(6-X)]0.3340.01]0.37£0.010.354-0.01|0.354-0.01

TABLE 1. The first three lines indicate the values of
parameters (c1 and c2 and hence ¢(2)) used in the gen-
eration. Estimates ¢, é; and (2) are obtained by clas-
sical multifractal analysis. Last line reports the slopes
Arog(ryHa (0-X) of the entropy Ha(6-X) as a function
of log(7/T), for the four different models, which ac-
cording to eq.(16) provides another estimate of {(2)/2.

Up to this point, looking at the entropies,
the four models cannot be distinguished in the
inertial domain. In figure 4(b) we plot the
Kullback-Leibler divergence D,(X) as a function
of log(7/T) = log(l/L), for scales ranging from
/T = 1/2% to 7/T = 4096/2%** where the inte-
gral scale is T' = 2%4.

For a monofractal process, the entropy is given
by eq.(11), and the entropy under Gaussian hy-
pothesis is given by eq.(16) with H = ((2)/2, so
D, (X)=Hg(6:X)—H(,X) is constant and does
not depend on the scale 7. If the monofractal pro-
cess has Gaussian statistics — which defines the
fBm — D, (X) = 0 by construction. Looking at
Fig. 4(b), D, for the fBm is not exactly zero;
this is due to the bias in the estimation of H(,X)
and Hg(0,X). This bias is constant across scales,
because our procedure was built to use a constant
number of points in the range of 7 we use.

For the three multifractal processes, D,(X) de-
creases monotonically when 7 increases, and tends

to zero when the scale tends to the integral scale.
So in the three multifractal models, the pdfs
of the increments deform into a Gaussian pdf
when approaching the integral scale. Moreover,
in Fig. 4(b), we observe that the three processes,
which indeed have different statistics, do not con-
verge to zero in the same way. The distance from
Gaussianity D, by involving all the moments of
the probability distributions, is able to reveal fine
differences between processes.

The synthetic processes used above are good rep-
resentations of the inertial range only. They do not
properly take into account either the dissipative
nor the integral scales. Nevertheless, the synthesis
imposes an effective integral scale that corresponds
to the size of the generated signal. In order to
study more precisely the deformation of the pdfs
at large scale, we now turn to descriptions that
explicitly involve the integral scale.

D. Phenomenological model : the propagator
formalism

First introduced by Castaing [39], the propaga-
tor formalism describes the statistics of the Eu-
lerian velocity increment 6;v as identical, in the
probabilistic sense, to the statistics of the prod-
uct of two random variables: the large scale fluc-
tuations o780 and the propagator (I/L)*. The
large scale fluctuations are supposed Gaussian,
with standard deviation o, and ¢ is therefore a
Gaussian variable with unit variance. The prop-
agator deforms the large-scale statistics when the
scale [ is reduced below the integral scale L. In
the simple situation where no dissipative scale is
taken into account, and where the propagator is
supposed independent of large scale statistics, one
can write formally the pdf of the Eulerian velocity
increments §;v = o, (I/L)"J as [40]:

v [ (2) [ ()
(17)

where h is the Holder exponent. We have noted
Ps(0) and Py (h) the probabilities of the indepen-
dent random variables § and h. The pdf Pp(h)
depends only on the singularity spectrum D(h).
See [40] for a detailed explanation.

We integrate numerically eq.(17) to get the pdf
of the increments §;v, and then compute the KL di-
vergence D, for several singularity spectra, either
log-normal or log-Poisson.

a. log-normal model . We varied the value of
the log-cumulant ¢; and didn’t observed any de-
pendence of D, on ¢;. On the contrary, varying
co strongly changes the convergence. Results are

Pr[h]dh
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FIG. 5. Kullback-Leibler divergence D, for the log-
normal propagator model, for varying values of the log-
cumulant ¢z, as a function of log(7/T") = log(l/L) (a)
or as a function of ¢z log(7/T) (b).
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FIG. 6. Kullback-Leibler divergence D, as a function
of calog(7/T) for the log-Poisson propagator model,
for varying values of A\ (a) and 3 (b).

presented in Fig. 5(a). We observe and report in
Fig. 5(b) that curves for different values of ¢y can
be collapsed into a single curve when plotted as a
function of ¢g log(7/T) = ¢ log(l/L).

To understand this scaling behavior, we per-
formed a saddle-node expansion of expression (17)
in the log-nomal case, and obtained the following
simplified expression for the pdf of the normalized
increments y = 0;v/0; at scale [:

3 _2w4w?
22 o 8cow

P = W

where we have noted x = —log(l/L) the logarith-
mic scale, and W the value of the Lambert W-
function of argument 2cozyZe*2®. Eq.(18) is a
non-Gaussian pdf which converges to the Gaussian
pdf of variance 02 when z — 0. From eq.(18), the
pdf of the increments only depends on log(l/L) =
log(7/T) and co via the product colog(l/L). As
a consequence, the entropy of the increments de-
pends on the scale [ as ¢aInl/L only. This implies
that the KL divergence D, for the log-normal pro-
cess has the scaling observed in Fig. 5(b).

b. log-Poisson model We varied indepen-
dently v, A and 5. We didn’t observed any change

(18)

of D, when v was varied. This can be understood
as v only changes the value of ¢1 (see eq.(14)),
which does not impact D,. Varying A\ changes
the convergence, as this amounts to change ¢y (see
eq.(15)), but we observe again that D, depends
only on cylog(7/T), see Fig. 6(a). This can be
understood by noting that all log-cumulants are
linear in A; thus varying A amounts to a change of
co while keeping higher order cumulants within the
same ratio. On the contrary, varying § has more
impact on the convergence, and the re-scaling in
colog(7/T) is then not perfect, albeit still relevant,
see Fig. 6(b). This can be understood by noting
that changing £ will not only change ¢, but also
the ratio of all higher order cumulants.

c. Comparison between models and Turbulence
data Amongst open questions regarding statis-
tical descriptions of Eulerian Turbulence is the
choice of a log-normal or log-Poisson modelling of
its multifractal nature. We of course want to adress
this issue, and propose in Fig. 7(a) a comparison of
the KL divergence of the two models in function of
colog(7/T). We have used in each case the ¢y value
expected for turbulence (see table I). The rescal-
ing in cglog(r/T) — which absorbs most, if not
all, the dependence of D, on co —- allows a direct
comparison of models. The obtained curves are
clearly different, which probably results from the
presence of higher order log-cumulants ¢,, p > 2 in
the log-Poisson propagator.

In Fig.7b, we compare the two models with
Modane experimental data. To do so, we remove
the bias estimated from fBm measurements, see
Fig. 4(b). As the ¢y value for turbulence is a priori
unknown, we do not rescale the x-axis with co. Let
us remark though that the cy value we have used
in the log-normal propagator (co = 0.025) is ex-
actly the one measured on the experimental data,
using multifractal analysis [40]. Our results show a
(much) better agreement of the experimental data
with the log-normal model. Although this may be
due to the very appropriate choice of ¢y, the log-
Poisson model does not allow such a choice and
fixes all the log-cumulants [38]. As a consequence,
we can state that the deformation of the experi-
mental velocity increments pdf is better modelled
by a multiplicative cascade with log-normal multi-
pliers.

In the dissipative range, i.e. , for smaller scales,
we observe a rapid increase of D, in the experi-
ments, very different from the predictions of the
two models. This is expected as both models used
here do not incorporate any modelling of the dis-
sipative scales.
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FIG. 7. (a) Comparison of the evolution of D, as a
function of the re-scaled scale c2log(7/T) for the log-
normal (cz = 0.025) and log-Poisson (c2 = 0.036) mod-
els of turbulence. (b) Comparison of the two mod-
els with Modane experimental data, as a function of

log(7/T).

V. DISCUSSION AND CONCLUSIONS

We have measured the Shannon entropy of the
Eulerian turbulent velocity increments, and stud-
ied its dependence on the scale of the increments.
We have recovered three different behaviors in the
integral, inertial and dissipative domains, in per-
fect agreement with the classical analysis using
the power spectrum. In particular, in the inertial
range, a scaling law for the entropy is observed,
reminiscent of K41 theory, similar to what was ear-
lier reported for another Information Theory quan-
tity [33]. A closer look at the entropy, and espe-
cially a comparison with its Gaussian approxima-
tion, which only takes into account the variance of
the signal — exactly as the PSD does — allows a
much finer description and in particular a measure
of intermittency, as introduced in KO62.

We have proposed a quantitative measure of in-
termittency. Although some quantities were al-
ready used as an intermittency coefficient, most,
if not all, were ratios of structure functions [14],
and as such, they were depending on the cho-
sen ratio: flatness, hyper-flatness [10] or higher
order ratios. We interpret intermittency as the
distance from Gaussianity, and measure it as D,
the Kullback-Leibler divergence between the com-
plete pdf p(6,V) and its Gaussian approximation
pa(0-V); the first involves all the statistical mo-
ments while the second one only depends on the
variance. Our measure of intermittency, by com-
paring complete pdfs, takes into account all the
moments of the distributions, which leaves no room
for ambiguity on the choice of the moments.

We have checked the robustness of our approach
by analyzing several experimental datasets, from
two different experimental setups, and with vary-
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ing Reynolds numbers.

The quantity D, is not only able to measure
intermittency in turbulence, but also to discrimi-
nate very easily monofractal from multifractal pro-
cesses. Furthermore, the evolution of D, with
the scale depends on the process: this provides a
much more precise characterization of the process
than the bare set of log-cumulant values (c1,c2)
given by a regular multifractal analysis. This may
be exploited to discriminate log-Poisson from log-
normal models of intermittency in turbulence.

We have investigated the dependence of D, on
the log-cumulants. D, does not depend on c¢;
and we have captured its dependence on co, and
especially how it affects the convergence to 0 at
large scales. Because D, appears to depend on
colog(7/T), we can state that the speed of the de-
formation of the pdf, starting from a Gaussian at
large scale L, depends on cy. For a given scale
l/L, or equivalently 7/T, the deformation of the
pdf, and hence the intermittency, is an increas-
ing function of cy. Conversely, for a fixed value of
co, the influence — or reminiscence— of the inte-
gral scale persists down to scales [/L smaller and
smaller when c¢s is reduced. Because the typical co
of turbulence is small, the influence of the integral
scale persists in the inertial domain, down to the
dissipative domain, unless the Reynolds number
tends to arbitrarily large values. We have shown
that D, depends on higher order log-cumulants c,,
for p > 2, by looking at the special case of log-
Poisson statistics (Fig. 6). The dependence seems
weak, but is nevertheless present, and could be ex-
ploited.

Although we have put a strong emphasis on tur-
bulence, we want to point out that our approach is
extremely general and should find successful appli-
cations in many other fields. It should prove par-
ticularly interesting for non-Gaussian processes,
the most common in Nature and Society. Any
multifractal process, or process that may be con-
sidered multifractal in some range of scales can be
analyzed with D,. The local intermittency mea-
sure that D, provides can be used to characterize
the process at any scale.
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