Sensors for Health Recording and Physical Activity Monitoring
Guy Carrault, Frédéric Guidec, Jacques Prioux, Di Ge, Juliette Boulanger

To cite this version:

HAL Id: hal-01565010
https://hal.archives-ouvertes.fr/hal-01565010
Submitted on 19 Jul 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
SHERPAM

Sensors for Health Recording and Physical Activity Monitoring

OBJECTIVES

Conceive, implement, and validate experimentally devices allowing biophysical data of mobile subjects to be gathered and exploited in a continuous flow.

Focused application domains:
- Heart failure patient’s monitoring (HF).
- Outdoor assessment of functional limitations and community-based walking programs for rehabilitation in patients with peripheral artery disease.
- Physical activity recognition and energy expenditure estimation.

GENERAL ARCHITECTURE OF THE PROJECT

MAIN RESULTS

1) An open platform dedicated to mobile monitoring built around four criteria:
 - Versatility: to accommodate to a large variety of off-the-shelf sensors
 - Extensibility: to add new sensors and embedded processing easily
 - Confidentiality: to ensure the privacy and the non-disclosure of the data
 - Dependability: to work everywhere by limiting the energy consumption (EC) and by providing a resilience to network disruption
 1) A plugin approach for both sensors and embedded processing
 2) Evaluation of EC of various transmission technologies

IRISA-CASA

1) Develop signal processing tools to:
 - Recognize and classify five ambulatory and sedentary activities (cycling, walking, running, sitting, car-riding) using heart rate and acceleration data fusion.

2) Develop a new experimental protocol for daily-life activities recognition and energy expenditure estimation:
 - Experimental Phase 1
 - Develop mathematical models for activity recognition and energy expenditure estimation
 - Experimental Phase 2
 - Test the strength of developed models in Phase 1 on the basis of semi-standardized activities
 - Acceleration the recognition models if necessary.
 - Experimental Phase 3
 - Test the strength of developed models in Phase 1 and optimized in phase 2 on daily-life activities situation.

3) ECG-Ventilation Extraction

LTSI/M2S

1) Context of Sherpam use understanding
2) User’s profiles and requirements
3) Authentication of primary functions and risks of sensors/gateway/mobile app /web site use
4) Review wearable sensor acceptance and usability