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Charge conservation in a gravitational
field in the scalar ether theory

Mayeul Arminjon
Univ. Grenoble Alpes, CNRS, Grenoble INP , 3SR, F-38000 Grenoble, France

Abstract

A modification of the Maxwell equations due to the presence of a
gravitational field was formerly proposed for a scalar theory with a
preferred reference frame. With this modification, the electric charge
is not conserved. The aim of the present work was to numerically
assess the amount of charge production or destruction. We propose
an asymptotic scheme for the electromagnetic field in a weak and
slowly varying gravitational field. This scheme is valid independently
of the theory and the “gravitationally-modified” Maxwell equations.
Then we apply this scheme to plane waves and to a group of Hertzian
dipoles in the scalar ether theory. The predicted amounts of charge
production/destruction discard the formerly proposed gravitationally-
modified Maxwell equations. The theoretical reason for that is the
assumption that the total energy tensor is the sum of the energy ten-
sor of the medium producing the electromagnetic (e.m.) field and the
e.m. energy tensor. This means that an additional, “interaction” ten-
sor has to be present. With this assumption, the standard Maxwell
equations in a curved spacetime, which predict charge conservation,
are compatible with the investigated theory. We find that the inter-
action energy might contribute to the dark matter.

1 Introduction and summary

Since the standard Maxwell equations apply in special relativity i.e. in a flat
Minkowski spacetime, any theory of gravitation with a curved spacetime has



to modify them, while ensuring that the modification reduces to the stan-
dard form in the particular case of flat spacetime. In a foregoing work [1],
such a modification of the Maxwell equations in a gravitational field has been
proposed for a scalar theory with a preferred reference frame, or (in short)
with an “ether”. (That theory is compatible with special relativity, however,
and has passed a number of tests; see the Introduction of Ref. [I], where
the motivations for the theory are also displayed.) It turns out that this
modification leads to a violation of charge conservation if the gravitational
field is time-dependent in the preferred frame [I]. However, the amount of
that violation, which is the really important thing, could not be assessed at
that stage.

The purpose of the present work, therefore, was to provide such assess-
ment on a solid basis. To begin with, Section [2| summarizes the equations
for the electromagnetic (e.m.) field in the theory, as given in Ref. [I]. Then
Section [3| establishes the exact equations for charge production/destruction
which result from those equations. In Section [, we build an asymptotic ap-
proximation scheme for the electromagnetic field in a weak and slowly-varying
gravitational field. This scheme has a general value, its main equations be-
ing valid for quite any theory of gravitation with a curved spacetime and the
corresponding modification of the Maxwell equations. By using this scheme,
in Sect. |b| we obtain an explicit expression for the charge production rate
that results from the investigated modification of the Maxwell equations in a
gravitational field. We assess the time variation of the Newtonian potential
and gravity acceleration, which enter that expression. We apply this to a
plane wave in Sect. [6] and to a group of Hertzian dipoles in Sect. [7], thus
getting figures. To do that, we follow a domain close to the source of the e.m.
field in its motion through the “ether” of the theory and we integrate the
charge production rate in small subdomains, using Lorentz transformations
forth and back between the moving frame and the ether. It turns out that,
for a reasonable velocity through the ether, the amounts thus assessed seem
much too high to be compatible with the experimental facts.

In Sects. [§ and [0, we find the theoretical reason for this failure of the
formerly proposed modification of the Maxwell equations in the investigated
theory of gravitation: it is the assumption that the sum of two energy tensors,
that of the charged medium and that of the e.m. field, is the total energy
tensor which obeys the dynamical equation in a gravitational field. This as-



sumption indeed leads to theoretical conclusions which cannot be generally
true. Thus the only solution to this problem is to abandon this assumption,
which means to introduce an additional, “interaction” tensor (Sect. [J). Then,
the Maxwell equations in a gravitational field are not determined any more
by the equation for continuum dynamics satisfied by the charged medium
subjected to the Lorentz force. In particular, one may assume the standard
gravitationally-modified Maxwell equations used in general relativity, which,
we show in Appendix [A] have a simple interpretation in the framework of
the investigated theory. Section [J] ends by showing that, very generally, the
gravitationally-modified Maxwell equations remain compatible with the geo-
metrical optics of the theory, i.e., with the dynamics of a photon subjected to
a gravitational and a non-gravitational force, which is detailed in Appendix
Bl Section [10] discusses the meaning of our findings. In particular, we sug-
gest that the “interaction” tensor, which we find to be necessarily present
according to the present theory, should at least contribute to the “missing
mass” which has been invoked to explain motion at a galactic scale.

2 Main equations for the e.m. field in the
scalar theory

In Ref. [I], the equations have been written in the Gauss system of units,
for simplicity. However, due to the fact that in the Gauss units the Coulomb
law is written as

qud;, (1)

in these units the charge dimension is Q = (M L3T~2)2, where M, L and
T represent mass, length, and time, respectively. This would introduce an
undesirable coupling when writing weak-field asymptotic expansions, for in
fact charge varies independently of mass, length, and time. Therefore, while
presenting now the main equations [I], we rewrite them in the so-called SI
units, i.e., in the “meter, kilogram, second, Ampere” (MKSA) system. The
electromagnetic field is defined by the antisymmetric space-time tensor F':

F,, = —F,,, that obeys the standard first group of the Maxwell equations:

F)\/L,V+F;LV,)\+FV)\,/L:F)\/L;V—i_FMV;)\—i_FVA;IU,:O' (2>



The expression of the Lorentz force is [[]

: F vl - da
F' = 0 F*'.— )\ =qgF* —. 3
q0(6+]0) s (3)
Here v/ = dz’ /dt, (j = 1,2,3) is the velocity of the particle, measured with
the local time t,, with

dt

Cx _ Bt 4

o _ at.x) ()
where t = 2°/c is the coordinate time in a coordinate system (x#) adapted to
(or bound with) the preferred reference fluid £ assumed by the theory, and
such that the synchronization condition vo; = 0 is true [I]; x = (2%); and (in

any such coordinates)
5 = V00 (5)
Equation may be rewritten in space-vector form as
P i i 1k

F=q(E+vAB), (anb) =e'al b, (6)
where the electric and magnetic vector fields are the spatial vector fields with
components A

cF" 1 ..

= TO, Bk = —§€ZJkEj. (7)
In Eqs. @ and , eijr 1s the usual antisymmetric spatial tensor, its indices

being raised or lowered using the spatial metric g in the preferred frame &;
in spatial coordinate systems whose natural basis is direct, we have

ijk 1

€ijk = \/9 Eijk, eV = — ey, (8)
J \/_ J \/g J

Ei

with €;;, the signature of the permutation (i j k) and

g = det(gi;). 9)
For a continuous charged medium, the electric charge density is defined as

pa = 0q/0V, (10)

1 Greek indices vary from 0 to 3, Latin ones from 1 to 3 (spatial indices). Semi-colon
means covariant derivative using the connection associated with the “physical” (curved)
space-time metric, the latter being denoted by ~. Indices are raised and lowered with the
help of this metric, unless explicitly mentioned otherwise.

4



where 0V is the volume element measured with the physical volume measure:

6V = /gda'dz*da®. (11)

The 4-current is
JH = padat/diy. (12)

The Lorentz force density is written, in accordance with , as

_SF
oV

f =F, J" (13)

Dynamics of a test particle is defined by an extension to curved spacetime
of the special-relativistic form of Newton’s second law [2]. This applies to
the non-interacting particles that constitute a dust. The following dynamical
equation for a continuous medium with velocity field v, subjected to a non-
gravitational external force density field f, has thus been derived for a dust
from Newton’s second law, and has been assumed to stay valid for a general
continuum [IJ:

f.v
e’
where T cqgium 18 the energy-momentum tensor of the continuous medium
and

Tlgllédium o bO(Tmedium) + rinyedium o bl (Tmedium) + fi7 (14>

1 g , 1 .
V(T = 3 Y0 giio T, V(T) = 59”9k T, (15)
For a charged continuum, f*is given by Eq. , and the energy-momentum
tensor T'charged medium Das to be substituted for T'yeqgiuvm- Then Eq. for
this medium can be rewritten as:

T'uy - bM(Tcharged medium) + FMV JY. (16)

charged medium ;v

It seems natural, almost obvious, to assume (i) that the total energy-momentum
is the sum
T= Tcharged medium T Tﬁelda (17>

where T'ge1q i the energy-momentum tensor of the electromagnetic field [3 [4]:

v 1% 1 4
135, = (—F S 1) (15)



or

field YV

Thaa = (T" ) = [F2 - i(trFQ)I} Jpwo, F = (F"); (19)

and (ii) that the total tensor T obeys the general equation for continuum
dynamics, without any non-gravitational external force:

™ =b(T). (20)

These two assumptions have indeed been made in Ref. [I]. Combining Eqs.
and using Eqs. and , one derives

FH,\ FAV;I/ = Ho [bu (Tea) — Fu,\ JA] ) (21)

where b (T'ge1q) is given by Eqs. and . Under the two assumptions

right above, this is the second group of the gravitationally-modified Maxwell

equations in the investigated theory — at least for the generic case where the

field tensor F is invertible (det F' = det (F* ) # 0). Indeed, if the matrix
(F* ) is invertible, is equivalent to

F*, = o (G* b (Tgaa) — J*), (G*,) = (F",)7". (22)

(Note that G, like F', is an antisymmetric tensor, G,, = =G ,.)

3 Charge balance: exact equations

Due to the antisymmetry of F', we have F") = 0, and we get from Eq.
22):

p= ("), = (G", b (Thaa)),, - (23)
Thus, J/, = 0 — which, as is well known, means exact charge conservation
— is not true in general, according to Eq. . To relate p with the charge
production or destruction in some “substantial” domain 2 of the charged
continuum, we note that, in coordinates adapted to (or bound with) this

continuum C, we have
\/g_C =V UO; (24>

with gc = det(g;j¢), go being the spatial metric in the reference fluid C,
v = det(y), and U¥ = da#/ds the four-velocity field of the continuum.
(We used the well-known general relation [3]

¥ = —Y009-) (25)
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Therefore, noting p} = dq/0Ve the proper charge density, we have

%( /Q 6q) _ /Q %d% e /Q (05, UMY /=7 3. (26)

The two equalities are true (only) in coordinates adapted to C. However,
the rightmost integral is invariant under any change of the spatial coordi-
nates, i.e., ' = (2%, (27)). Also the time coordinate z°, with ¢t = 2°/c, is
arbitrary. Thus we have in any coordinates z*:

%(/Q(sq) - /Q[)\/—_yd?’x. (27)

Of course the domain €2 as well as its boundary depend on ¢ in general spatial
coordinates z°.

4 Weak field approximation

We assume that the system of interest, S, e.g. the solar system or even only
the Earth, has a weak and slowly varying gravitational field. To take bene-
fit of this, we use a post-Newtonian (PN) approximation scheme that is in
accordance with the general principles of asymptotic analysis. See Ref. [5],
Sect. V, and references therein. To do this, we conceptually associate with S
a family (S,) of gravitating systems, depending smoothly on a parameter A,
so that the fields can be assumed to have asymptotic expansions as A — 0. In
fact we need only low-order Taylor expansions at A = 0, which necessarily ex-
ist if the fields indeed depend smoothly on A. Our assumption of a weak field
then amounts to say that S corresponds to a small value of A, say \g < 1,
so S = S,,. Thus we can use the asymptotic expansions to approximate the
values of the fields in that system by neglecting the remainder term. Each
system is made of perfect fluids. The orders in A of the corresponding fields:
pressure, density, velocity, and the scalar gravitational field V = —c2Log/
with 8 = /900, are the same as in a remarkable Newtonian similarity trans-
formation [0} [7]. It follows that by adopting [M]y, = A[M] and [T], = [T]/ N2\
as the new units for the system Sy (where [M] and [T] are the starting units
of mass and time), all these fields become order A\°, and the small parameter
A is proportional to 1/c¢?; indeed A = (cp/cy)?, where ¢ is the velocity of
light in the starting time unit [T], and ¢ or ¢, is with the time unit [T],. It



thus becomes easy to derive asymptotic expansions. In particular, we have
[5]:

B=\A0=1-U/+0(c™). (28)
where U is the zero-order term in the expansion of V. Moreover, the expan-
sions are written in these A-dependent units, in particular with the time T
(the preferred time of the theory [, [5]) being counted with the unit [T], for
the system Sy, thus should be written more precisely:

BT, x) = 1 — U(T,x)/& + 0(c; ). (29)

Note that U(T,x) is a coefficient in this asymptotic expansion and thus does
not depend on A. One may differentiate the PN expansions like with
respect to the corresponding time variable, here T = 2°/c (as well as with
respect to the spatial coordinates x?) [5]. This automatically accounts for
the slow time variation. By doing this in the assumed wave equation for V,
we obtain that U in Eq. or obeys the Poisson equation with, on its
r.h.s., the zero-order term in the expansion of the active mass density, hence
U is the Newtonian potential [5]. We obtain also that for the spatial metric,
assumed in the theory to have the form

g=p5"g" (30)
(with g° an invariable Euclidean metric), we have:
99ij - -
G_TJ =2c¢20rUd;; + O(c™) (31)

(adopting Cartesian coordinates for the Euclidean metric g° until the end of

Sect. @

Regarding now the electromagnetic field: we assume that the field tensor
F', as well as the current 4-vector J, also depend smoothly on A, hence they
too admit low-order Taylor expansions at A = 0 — but a priori we cannot
say anything about the order of the main terms, hence we simply set (in the
A-dependent time and mass units, see above):

F=c" (1?? bt F 4 0(0_4)) (32)

and . .
J=c" (J +c 2T+ 0(c—4)> : (33)
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for some integers n and m (positive, negative, or zero). Moreover, in contrast
to the case with the gravitational field, we do not assume that F' is slowly
varying (nor weak, as witnessed by the arbitrariness of n). This means
that the expansions (32)—(33)) are not PN ones but post-Minkowskian (PM)
expansions. We developed an asymptotic PM approximation scheme [8] using
the same method as the one we developed for the PN approximation [5, [7],
in particular the time 7" is counted with the unit [T], for the system S,
as is the case with PN expansions, but the time variable now is 2° = ¢T'. E|
One may differentiate PM expansions with respect to that new time variable.
Therefore, in the modified Maxwell equation , the term F’\V;V is of order
c" as is also the term F*,. On the r.h.s., we note that y has dimension
MLQ™2, hence with the mass unit [M], = A[M] we have py = pgoA ™", with
oo the value of pg in the starting units. That is,

if we take ¢y = 1 for the simplicity of writing. Thus the r.h.s. of is of
order ¢"™™*2 while the Lh.s. is of order ¢**, hence we must have

m+n+2 = 2n, or m=n-—2. (35)
From , , and , we get without difficulty
0 .. 0 .
pobu(Thiea) = "2 07U x {T“ (u=0) or =T (u=1)| +0(c*?),
(3
0
where, in accordance with , the matrix of the mixed components T' =
0
(T?*)) is

D
~—

0 0 1 0
T=F"— (xF’)I. (37)

By entering the expansions f of F and J into using this, we get
the lowest-order term in the weak-field expansion of as

OM 0)\1/ OM O)\
FU PN = g By T (38)

2 Let S be a self-gravitating system of perfect fluids producing a weak gravitational
field. The PM approximation associates with S a family (Sy) of systems for which the
velocity field u® is order zero in A, not order v/\, hence it does not fit with the Newtonian
limit. Nevertheless, it can be applied to a given such physical system S even if the fields
really are slowly time-varying: the latter assumption just is not used. See the discussion
in Ref. [8], §4.1. However, in the case of an e.m. wave, we expect that it really is not
varying slowly, of course.



(We used also the identity F*, = (y/=7F",)/y/=7 [3] and the fact that,
from and , we have

V= =1+0(c?).) (39)

0
Equation is an exact equation for the expansion coefficient fields F' and
0
J, as is usual with an asymptotic expansion [7]. Hence, when the field matrix

0 0
F = (F?)) is invertible, that field is an exact solution of the flat-spacetime
Maxwell equation:

0 0
FY = —pgJ . (40)
On the other hand, using , , and in gives us
~ n—>5 -1 0 ©0 0 33 0 ni 9 02 n—7
P =7c" "l GHTV7 —GHT™ ) orU|l +0("), (41)

I

0 0 0 0 0 0 0
where G = (G*,)) = F~!. Due to 1)1) F, G, T and J do not have
the physical dimensions of the corresponding fields F', G, etc.. Therefore, in
accordance with —, let us define

0 0
Fi=c"F and J,=c"J. (42)

In view of and , F, and J; are solutions of the flat-spacetime
Maxwell equation with the correct dimensions in the SI units:

(F1) /\V,u = _NO(Jl))\‘ (43)

0
Obviously, the matrix F'; is invertible when F' is, and its inverse is G; =

0
¢ "G. Also, from and , the e.m. T-tensor T'; associated with F'y
by is
0
T = pgy ™ *T. (44)
With this, we can rewrite as

p=c[(GI" T 7 =G T ") 0rU] |+ O(c™). (45)

Note that this is independent of the integers n and m in Eqgs. —.
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Also note that, substituting into the first group H one finds that 107’
and hence F'; are also exact solutions of . To use the result So as to
assess the charge production that could be expected as a consequence of the
modified second group , we have conversely to assume the following: Let
F{ and J; be solutions of the complete flat-spacetime Maxwell equations,
i.e., the first group and the second group . (Note that the first group
is the same independently of the presence or absence of a gravitational
field.) In a given weak gravitational field, to any such pair (F';,J;) there
corresponds a unique solution (F', J) of the first group and the modified
second group (21), such that (F'1,J;) be the first terms in the PM expansion
of (F,J), i.e., we have (42)). This is expectable from perturbative arguments.

5 Explicit expressions

To use (45)) we need explicit expressions, in terms of the components E¢ and
Bt of the electric and magnetic fields, for the field matrix F = (F?)), the
corresponding T-tensor T, the inverse matrix G = (G*)) = F', and the
4-vector e with [

er=GMTI —GrTY, (46)
(We omit the index 1 used in (43)-(45]).) We have

0 Ey/c EyJc Es/c
E1/C 0 Bg —BQ
EsJe =By 0 B
EsJc By, —B, 0

F=(Fr*) = (47)

When detF # 0, the inverse matrix G = F~! has a known expression for a
general 4 x 4 matrix:

_ 1 1 3 2 3 1 2 9 9 3
= o |5 (WF) =3 Fu PP+ 2w F) I — o (0 F)* — tr F¥) + F o F' — F7)
(15)

3 Like in Sect. the equations in this section are valid in spatial coordinates that
are adapted to the frame £ and, more specifically, are Cartesian for the Euclidean spatial
metric g°; and with the time coordinate being z° = ¢T, the preferred time coordinate of
the theory. However, Eqgs. f are valid more generally in any Cartesian coordinates
for the flat spacetime metric 4° that is built [5] with g° and T. We use E; = E' and
B; = B?, which means lowering the index i for E and B with the spatial, Euclidean part
of metric 4° in such Cartesian coordinates.
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Here, F' has the following block structure:

() (49)

where [ is a 1 X 3 matrix (row) and a is a 3 x 3 antisymmetric matrix. Clearly,
tr F = 0. After computing F* in terms of this block structure, one finds that
F? has all diagonal terms zero, so tr F* = 0, too. Using this in and
(48), with Matlab Symbolic Toolbox we obtain for G' = (G*") the following
matrix:

0 . Bic o Bac _ Bsc
By E1+B2 E2+Bs E3 By Eq +%2 E>+Bs3 E3 By Eq +B%E2+Bs E3
Bic O 3 _ 2

By E1+B§ E>+B3 E3 By E1+B> E>+B3 E3 By Erf—%z E>+Bs E3
2C _ B3 0 1

By Eq +B§ E>+Bs3 E3 By Er —H%z E>+Bs3 E3 By E1+B2 E2+Bs E3
3¢ 2 _ by

By E1+B2 E>+B3 E3 By E1+B> E>+B3 E3 B1 E1+B2 E>+B3 E3 ( )

50

(We checked that the product F'.G is exactly the identity matrix I.) For the
combinations of the T-tensor , we get from (47) well-known results:

T Yo = Wheld, (51)
0
03 __ __BayFE3—B3FEy Bi1E3—B3FEy _ Bi1Ey—BsF,
™" = < c 1o c 1o c 1o ) . (52>

Putting this in (46)) using gives us

0

B13 24 By Bo2 24+ By B3? >+ B1 E1?—B1 E2?—B1 E3%24+2 By E1 E342 B3 E1 Es
wo_ 2cpo (B1 E1+B2 E>+Bs E3)
€ = B12 By c?+2 By E1 B2+ B23 c?+Bs B3? c?—Bo E124+ By B2 —Bo E32+2 B3 B B3
2cpo (B1 E1+ B2 E2+Bs E3)
B12 B3 c>+2 By E1 E3+B22 B3 c?+2 By Es E3+B3® ¢>— B3 E12— B3 F2?4 B3 E3?
2cpo (B1 E1+B2 E>+Bs E3)

(53)
Note that € = 0 comes simply from the fact that B.(E AB) = 0. Thus
rewrites as

p=c"(e0rU) it O(c™). (54)

To assess OpU and Or(VU), we note that these time derivatives must be
evaluated in the preferred reference frame £ assumed by the theory, and that
the system of interest producing the e.m. field is expected to have a motion
through that “ether”, with a velocity field v whose modulus may be in the

12



range 10-1000 km/s. In that situation, the main contribution to 0rU is that
which is due to the mere translation motion of the relevant astronomical
body — say the Earth — through £. Indeed, from the well-known integral
giving U in terms of the Newtonian (i.e., zero-order PN) mass-energy density
p, one gets exactly

dU/dT = orU +v.VU =0 (55)

if the system producing U has a rigid motion. In particular, it is exact for the
self potential of a body whose motion is rigid. This is true for the Earth to
a very good approximation, moreover the potential due to the Sun is nearly
constant also on Earth; the most important departure from dU/dT = 0
should come from the Moon. For a rigidly rotating spherical body, we have
moreover

v.VU = V.VU, (56)

with V = a, a(T') being the center of the body. Thus to a good approxima-
tion (except for an unexpectedly small velocity V'), largely sufficient to get
an order-of-magnitude estimate, we may consider the Earth as an isolated,
rigidly moving, spherically symmetric body. For such a body we have:

ol = —V.VU = G]‘i(r)v.er, r=lx—a(T)|, e =(x—a(T)/n
(57)
where .
M(r) = 47r/0 u?p(u) du. (58)

Let us compute 0r(VU), with VU = —G]\fz(r) e,. To do that we may assume
that a(T') = VT'. We then get

VU = —G { [(VQT ~Vx) (mﬂ = %)} e, — M(f)v} - (59)

r r4 73

On the r.h.s., the two terms inside the large parentheses have the same order
of magnitude as the last term inside the braces. Moreover those two terms
cancel one another if the rotating spherical body is homogeneous. In that
case we thus have:

GM(r)
r3
We shall use this approximation to get an order-of-magnitude estimate. On

the Earth’s surface, gives

OrU ~ gV, S 10V ~ 10° (MKSA) for V = 10km/s (10* MKSA),  (61)

orVU =

V. (60)

13



and gives
OrVU ~ gV /R, |0rVU|~1.5x 1072 (MKSA) for V = 10km/s. (62)

6 Case of a plane wave

Let us consider a general plane e.m. wave, whose propagation direction may
be assumed parallel to the Cartesian basis vector i = 0;:

E'=0, E=E(z'), B'=0, B=B('), cB=iAE. (63)

This is a solution of the flat Maxwell equations in wvacuo. The electric
and magnetic fields are orthogonal for such a wave. For the field ma-
trix F = (F* ), most generally, the condition det F' # 0 is equivalent to
E.B =g(E,B) # 0 [1]. It follows that F' is not invertible for a plane wave.
But the e.m. field

(E,B)=(E+E,B+B), (64)

with (E/, B’) any constant e.m. field, is still a vacuum solution of the flat
Maxwell equations depending only on ! — in fact, it is still a “plane wave”
to the same extent as . For that field, generically, F' is invertible. In
that case, €' [Eq. 1} is well defined and has €/, = 0, because (imposing
E" = B" =0) ¢! =0 and ¢’ = ¢'(z'). Neglecting the term ¢3¢’ (07U); in
view of and the extreme smallness of the ¢=3 factor, we thus get from

for the field (64):
p=0 (Plane wave, ¢ ¢’ (9rU) ; neglected). (65)

Since this is independent of the constant e.m. field (E’, B'), it remains true at
the limit of a “pure” plane e.m. wave (63)), for which ¢B = iAE. However, the
value of the neglected term does depend on the constant e.m. field (E', B’),
and can be large if that field is very strong.

7 Case of a group of Hertzian dipoles

Hertz’s famous oscillating dipole is the electric charge distribution

pel = Tap, = —€ “'d. V4, (66)
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(more exactly, pe is the real part of the r.h.s.). Here: b is the dipole’s
position; d is the dipole vector, and dy, is Dirac’s measure at b. The associated
3-current is (the real part of the r.h.s. in):

j= —iwde ™5y, (67)

and the corresponding conserved 4-current is J = (cpea,j). The following
electric and magnetic fields (or the associated field matrix (47))) provide an
exact solution of the flat Maxwell equations in the distributional sense, for
that current J: [

E=a {k—z (d — (£.d)E) cos g + [3(2.d)F — d] (COW + ksmw) } . (68)

r r3 72

cosp  sing

w
. _k:TQ)’ k:E’ o =kr—wt. (69)

Here, o = 7= =9 x 10%, o/ = £ ~ 2.39 x 107 (MKSA). Thus, EB = 0
since E is in the plane containing d and = (x—b)/ |x — b|, while B o< rAd.
However, we may consider a group of dipoles with different b’s and d’s, and
by adding the corresponding fields — we get exact solutions of the

flat Maxwell equations for which, generically, we have E.B # 0.

B = o/k3(f /\d)(

We thus consider a group of dipoles that all are at rest in a common frame
&v moving uniformly at 'V with respect to the preferred reference frame £.
To calculate p in the vicinity of those moving dipoles, we consider successively
each cube C in a regular mesh of small cubes at rest in &,. Each cube C is
defined by |z* — a’| < h/2, where 2 (i = 1,2, 3) are Cartesian coordinates for

4 This solution can be easily found in the literature, e.g. Jackson [9], McDonald [10],
but whether or not it is an exact solution does not appear clearly. We can prove that it is an
exact solution; here is a summary. In the Lorenz gauge, the vector potential A obeys the
wave equation: OA = p0j ([9], Eq. (6.16)). For the case of a stationary source, the integral
solution A simplifies to Eq. (9.3) in Ref. [9]. The potential (9.3) rewrites exactly as (9.11)
[9]. When applied to the “Dirac current” (67)), we may easily show that (9.11) rewrites
also ezactly as (9.13). In turn, (9.13) leads to the solution (68)—(69) [9]. That (9.3) applies
to the singular current , can be checked from the general formula A = pgE*xS, with E
the elementary solution of the wave operator that has support in the half-space 2° > 0 of
R* — that is the distribution given by (E, h) = [os h(|x|,x)dx/(47 [x|), h e D(R*) [11].
That general formula for A is here applied Wlth S the current @: as a distribution acting
on functions in D(R?), this current must be more precisely defined as S = —iwd U ® 6y,
with U the distribution on R associated with the function ¢ — e~*¢.

15



the Euclidean metric g’° that is the spatial part of the flat Minkowski metric
~° (Note [3)) in the inertial frame £y. (We mean inertial in the Minkowski
space (V,~°), with V the spacetime manifold. The uniformity of V is meant
in the same sense.) Neglecting the O(c¢™®) remainder in (54)), we have:

/ pT,X)d*X =c° / (e'orU), X =¢7° / g°(e,n)opU dS,
Ce(T) Ce(T) ’

OCe (T)

(70)
where Cg(T) is the cube C, as it appears at the time T in the frame &,
the latter being endowed with Cartesian coordinates X* (i = 1,2,3) for the
Euclidean metric g° (that is the spatial part of metric 4° in the inertial frame
£); we denote X = (X*); n is the external normal (for the metric g°) to the
boundary dCg(T"), and dS is the Euclidean surface element. The Cartesian
coordinates (X*) = (X,Y, Z) and (2') = (z,y, 2) that we consider are such
that the Ox axis coincides with OX and is parallel to V, so we are in the
conditions of a special Lorentz transformation Ly from & to &Ev:

Ly i t=w(T-VX/?), 2=%w(X-VT), y=Y, 2=2, (71
with ¢ the inertial time in the frame & and 7y the Lorentz factor.

Let x = (z,y,z) be a given point of the domain C that is at rest in
the frame &y. At the time T of the preferred inertial frame, that point
corresponds in the frame £ to a spatial position X = (X, Y, Z) such that

(t,x) = Ly (T, X). (72)

The unknowns are X and the value ¢ of the time of &y. (Here Y = y and
Z = z from , so the unknowns are ¢t and X.) Equation leads to

t=—— —. (73)
Knowing ¢ and x we compute the sum of the fields (68)—(69) from the different

dipoles, which is thus got in the moving frame &y, say E',B’. We then
transform the field to the frame £ by the inverse Lorentz transformation:

Bl = Biv BQ = VV(BQ - VEé/CQ)v B3 = fYV(Bé + VE;/C2)7 (75>
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and hence can compute the components e’ of e by Eq. (53). We can thus
calculate the surface integral on the r.h.s. of . From (70]), the value of
the field at the center a of the cube C is then approximately [’

pTa) = [ cnon ds/ (), (76)
dCe(T)

since h3yy is the Euclidean volume of the rectangle parallelepiped Cg(T),
deduced from the small cube C by Lorentz contraction.

For three dipoles with d = 100nC.m, » = 100MHz (A = 3m), situ-
ated at < A from one another, we get fields with moduli £ 5 a few 10° V/m,
B £ 15T (in the moving frame). With V' = 10km/s, p(7,x) (counted in elec-
trons per period per cubic meter) then has peaks at ~ 42 x 10% e/m? /period.
(The peaks are very sharp and their values depend somewhat on the dis-
cretization. We also integrated in time and the values keep very high.)
This seems untenable, even though the sign of the predicted charge pro-
duction alternates in space. Therefore, the version proposed in Ref. [I] of
the gravitationally-modified second group of Maxwell equations, Eq. (21)
here, looks like being discarded.

8 The reason for the problem

So it seems that Eq. is not the right Maxwell second group of the the-
ory. Why does this happen? As explained in Sect. , Eq. has been
deduced [I], under two assumptions, from the general dynamical equation
for a continuum subjected to a non-gravitational external force density field
fi, Eq. — when the latter is applied to the case that the continuum is
a charged one and the external force density f* is the Lorentz force density
(13). Those two assumptions are:

> We approximate the integral of w.n (with w a spatial vector field, here w/ = e/97U)
over an i face of the rectangle parallelepiped Cg(T) as I ~ £hh/(w(S1) + ... +w'(Sy))/4,
where h and h' are the rectangular face’s sides and Sy (k = 1,...,4) are the vertices of
that face. This algorithm has been tested by applying it to simple vector fields, e.g.
w(z,y,z) = (—ay,zy,2%). As expected, we found that [, w'n; dS/h?, thus calculated,
approximates closely the value of divw = wJJ at the centre a of a small cube C with side
h.
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(i) The total energy-momentum tensor is the sum T" = T charged medium + L field-

(ii) The total tensor T' obeys the general equation for continuum dynamics,
without any non-gravitational force, Eq. .

As it has been noted in Ref. [1], Eq. applied to the charged con-
tinuum, plus Assumptions (i) and (ii), lead straightforwardly, in view of the
linearity of the dependence b* = b0*(T'), to

T8 o= (Toad) = o Tiia o =V (Toa) — £ (7D
It is precisely this equation which, combined with Eq. giving the Lorentz
force density and with the expression of the energy-momentum tensor,
leads to the second group [1]. Now we observe that Eq. 2 has
exactly the form of 2 as applied not to the charged medium but to the
electromagnetic “field continuum” itself, if and only if the density field of the
non-gravitational external force on the field continuum is given by

fféeld = _fi = _fciharged medium * (78)

In addition, we observe that Eq. 1 has exactly the form of 1 as applied
to the “field continuum”, if and only if the velocity field of that continuum
is well-defined and verifies the following relation:

fﬁeld-Vﬁeld =—fv= _fcharged medium - Vcharged medium (79>
that is, with Eq. , if and only if
fcharged medium - (Vﬁeld - Vcharged medium) = 0. (80)

The force density fiq should represent the reaction of the charged continuum
to the Lorentz force exerted by the field continuum. Thus means the
opposition of action and reaction. Poincaré has shown that this does not
apply to “matter” (the charged medium, e.g. a Hertz oscillator), but this
was in the sense that matter emitting e.m. radiation does not conserve its
momentum unless one counts also the momentum of the emitted e.m. field,
i.e., the total momentum is in fact conserved [12]. In the present case, the
actio-reactio opposition suggested by Eq. 2 concerns the charged medium
on one hand and the e.m. field on the other hand, thus it means that there
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is no net force on the combined medium: “charged medium plus e.m. field”
(except for gravitation). This is consistent with the conservation of the total
momentum (in the absence of gravitation). ﬂ As to the velocity of the field
continuum: there is one situation for which it can be naturally deduced from
its energy-momentum tensor, namely the case that the energy-momentum
tensor is a tensor product, i.e. has the bilinear form

T = VY, (81)

Equation is true for a dust made of ordinary matter (that is composed
of non-interacting particles with non-zero rest mass, and that behaves as a
perfect fluid with zero pressure): for such an “ordinary dust” we have

™ = p*UrU", (82)
where p* > 0 is the proper rest-mass density, and where
Ut =da*/ds (83)

is the four-velocity field, so that applies with V# = /p* U*. For ordinary
dust we deduce from that the coordinate 3-velocity is
da’ B dzt ds Ut

a  dsdat ‘oo (84)

uz’

hence from (82))

TOi

700
The latter relation is not generally true for a continuous medium, e.g. it
does not apply to a perfect fluid if the pressure is not zero; simultaneously,
in that case, Eq. is not true either. But it is natural from the case of
a dust to assume that (85 applies to a continuous medium when Eq.
is true. If one applies to the energy-momentum tensor T'geq of an e.m.
field for which Eq. is true, then one finds from tr T4,q = 0 that the
velocity vgeq defined with physical clocks, with components v} 4 = %ui, has
modulus ¢ as determined with the physical space metric g ([1], Eq. (70)):

(85)

ut=rc

Vioa = 9(Veield, Veieta) = ¢ (86)

6 See §III.C in Ref. [5] for a discussion of the total momentum in the presence of
gravitation in the present theory.
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In turn, this is consistent with the fact that when is true we have a
“dust of photons”, which behaves so also dynamically [1] (see Sect. @ below).
Moreover, it can be proved that, in order that an e.m. field verify Eq. , it
is necessary and sufficient that this be a “null field”, i.e., that both invariants
be zero [1I, 13]:

E.B =0, E? = *B% (87)
In a coordinate system adapted to £ and such that, at the event X considered,
we have 5(X) = 1 and ¢,;(X) = §;;, the tensor F' has the form (47)). It follows

that T is given by [in which now the indices of the components E* and
B" have been lowered with the “physical” spatial metric g|, and we get from

this by :
Vield = C(E AN B)/ |E A B| = ck. (88)

Thus, vgag = ¢ for an e.m. field whose T-tensor has the form . Surpris-
ingly, for such a “null field”, both vgeq = ¢ and Eq. are true, although
Ucharged medium < € and €Ven Ucharged medium <K € in usual conditions. To see
this, remember that f = fharged medium 18 the Lorentz force density, given by

f=pa(E+vAB) (89)

(now we note again v = Vcharged medium 10 shortness). We get from this and
from (88)):
fv=paE.v, f.Vhaa=cpa(vAB).k. (90)

By and (88), we can take (at the event X) a spatial basis (i, j, k) which
is orthonormal for g and such that

E =c¢Bi, B = Bj. (91)
Setting v = v1i + v9j + v3k, we thus get:
E.v =c¢Bv;, vAB=B(vnk—uwvsi), c(vAB).k=cBu. (92)

That is, from (90)), we have Eq. . Clearly, the foregoing proof depends
in an essential way on the assumption that the e.m. field is a null field, so
if that is not the case Eq. has no reason to apply. In fact for a gen-
eral e.m. field it is not clear at all how one should define its velocity field vgeq.

In summary: the equation of continuum dynamics applied to the
charged continuum, together with Assumptions |(i)| and above, imply Eq.
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(77) — from which the discarded second group follows. Equation 2
has the form of the equation of continuum dynamics 2 as applied to the
“field continuum” having the energy-momentum tensor , with the force
density on the field continuum being the opposite of the Lorentz force ex-
erted on the charged continuum by the field continuum, Eq. . Moreover,
Eq. 1 also has the form of the equation of continuum dynamics 1 as
applied to the “field continuum”, if the velocity of the field continuum is well
defined and its projection on the direction of the Lorentz force is the same
as that of the velocity of the charged continuum, Eq. . While Eq.
turns out to apply in the case of a “null field”, it has no reason to be true
for a general e.m. field, for which one does not even know how to define the
velocity field vgaq. So Eq. 1 has no reason to be true for a general e.m.
field.

The latter is one conceptual reason, admittedly not very strong, why Eq.
is not the right Maxwell second group of the theory — in addition to
the hard fact that it leads to charge production/destruction at high rates.
Recall that, at least for a dust, the equation of continuum dynamics ([14])
is derived from Newton’s second law, hence it should apply to the charged
medium. Thus to avoid Eq. and the discarded second group , either

|Assumption (i)| or |[Assumption (ii)| has to be abandoned.

9 The solution of the problem

We can’t leave [Assumption (ii), because the concept of a “total” energy-
momentum tensor obeying Eq. @I} is necessary to the theory of gravitation.
So it is [Assumption (i)| that has to be abandoned. This means that there
must exist an additional energy-momentum-stress tensor, let us call it the
“interaction tensor”, such that the total tensor obeying Eq. is given by

T= Tcharged medium 1 Tﬁeld + Tinter- (93>

We note that, in general, at an event X for which T charged medium 7 0, We
have also T'seq # 0, so that we are in the presence of a mizture (in the precise
sense used in the theory of diffusion): the two constituents of that mixture
are the charged medium and the e.m. field. It is then standard that in-
deed the effective energy-momentum-stress tensor of the mixture as a whole
is not the sum of the energy-momentum-stress tensors of its constituents
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[14, [15]. (It thus does not mean that there is an additional medium present
beyond the charged medium and the e.m. field.) Now, given the necessary
[Assumption (ii)] and the equation of continuum dynamics (14), Eq. is
equivalent to the opposite, i.e., to [Assumption (i)} This is another concep-
tual reason why Eq. is not the right Maxwell second group of the theory.

With Eq. replacing Eq. , it is clear that the equation for con-
tinuum dynamics applied to the charged medium, together with
, do not imply Eq. any more; hence they do not deter-
mine the modified Maxwell second group any more. Therefore, the usual
“gravitationally-modified” second group valid in GR and in the other “met-
ric theories of gravitation”:

FF = —pgJ”, (94)

v

is not precluded any more, as it was before in the investigated theory. We
show in Appendix |A| that Eq. , as well as the first group , can be
written in terms of the spatial metric and the local time in the synchronized
preferred reference frame &, and then take nearly the usual form of the flat-
spacetime Maxwell equations for 3-vectors. Thus the standard 2nd group
is well compatible with the present theory. As is known, it leads to
exact charge conservation. At the present stage, other forms of the modified
Maxwell second group can not be excluded either, provided they would be
found to lead to low-enough charge production in usual situations. We will
now show how the compatibility with geometrical optics, which was proved
in Sect. 6 of Ref. [I] with the discarded second group (21)), holds true in
a more general situation, with emphasis on the case of the standard second

group (94).

The main modification to be made to the argument there, is that one
needs to assume that an external force density fhaq is indeed acting on the
field continuum, as the “reaction” of the charged medium to the Lorentz force
exerted on it by the field continuum. For the link with geometrical optics
i.e. with Newton’s second law applied to individual photons, we have only to
consider the case of a “null field”, i.e. the case that the T-tensor of the
eam. field has the form (81). In that case, as shown in Ref. [1], the spatial
part 2 of the continuum dynamical equation is equivalent to Newton’s
second law for a “substantial” volume element of the field continuum, in the
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form ([1], Eq. (25) with f' = f for a dust):

i
(‘LEV) , (96)

OF 1 D
F+ —g=——
g +02g 8 Dt \ ¢
where
SF =15V, 6E=T°46V. Vzld—:lu (97)
= : =T%0V, =3u =%

This equivalence is valid if the T-tensor has the form (81)), independently of
the nature of the continuum. [f| Therefore, as noted in Ref. [I], it is valid also
for a null e.m. field, and this indeed behaves as a “dust of photons”. In Ref.
[1], it was also proved that the time part 1 of the continuum dynamical
equation is equivalent to the energy equation. The latter is transposed to a
continuum from the following form valid for a test particle [I]:
d(F 0 o

(EP) = E—ﬂ + B°F.v, Fv=gF,v) =g, Fv. (98)
dt ot
While the proof of that equivalence in Ref. [1] was limited to the case without
external force density, i.e. the case that £ = 0 in (96)), it is straightforward
to extend it to show that 1 is equivalent to

A(EB) . 08

2
= — F.
P OF T + f0F.v, (99)

in which 0F and 0F are defined by Eq. @ E|

T Here the spatial vector gravity acceleration g is given by [I]

2 grad, 8
g

with (grad, )" = g* 8 ; where (¢) is the inverse matrix of matrix (g;;), and 5; is the
relevant time derivative ensuring that Leibniz’ rule for the derivation of a scalar product
is verified [, 2]. In terms of the T-tensor, the coordinate velocity u is given by .

8 This was noted in Ref. [I], Sect. 6, though in the case that the external force density
field is f = 0. However, the proof given in Ref. [I], Sect. 3.2, applies with the definitions
p=T%/(32c2) and v’ = T /T to a medium for which the T-tensor has the form ,
independently of its nature, provided there is no force internal to this continuum, f = f’.

9 By the way, it is not difficult to check that Egs. f are covariant under any
change , thus including any change 2/ = ¢(2°), even though for this has not
been noted in Ref. [1].

(95)
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Thus, when the T-tensor of the e.m. field has the form , the dynam-
ics of a volume element that is followed in its motion is just the same as
that of an individual photon subjected to the gravitation and to an external
force (detailed in Appendix , and it may equivalently be defined by the
dynamical equation , as applied to the field continuum:

fheld. Ve ; p
Teha 0 = b (Thela) + ﬁldc—/@ﬁldv Tita o = V' (Thela) + fhewa- (100)

Note that in the latter equation we have always, in view of :
/’LOTféLeqd w o _Fﬂ)\ FV};\V‘ (101>

(This is Eq. (61) of Ref. [1], rewritten in the MKSA system.) Therefore,
with the standard second group , we get the well-known equation

ng;d L =—F" TN (102)
In vacuo (J* = 0), Egs. and (102)) give us:
fhield- Ve i i
0= Tﬁeld o bO(Tﬁeld> T %ﬁﬁld’ 0= Tﬁeld w = b"(Theid) + fiera-

(103)
This shows that there must indeed be an external force acting on the photon
dust (the “reaction” to the Lorentz force), in addition to the gravitation.

10 Discussion

The main conclusions of this work are as follows:

(i) The formerly proposed modification of Maxwell’s second group in
a gravitational field [I] in the investigated theory predicts unrealistically
high rates of production/destruction of electric charge. Therefore, that
gravitationally-modified Maxwell 2nd group has to be discarded.

(ii) The theoretical reason for that is the former assumption [I] accord-
ing to which the total energy tensor which obeys the dynamical equation
in a gravitational field , is the sum of the energy tensor of the charged
medium and that of the e.m. field, Eq. . This assumption is not consis-
tent with the fact that [these two media form a mixtureland, in addition, has
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a |consequence| which has no reason to be verified in general.

(iii) Therefore, one must assume an additional, “interaction” energy-
momentum tensor, such that Eq. is replaced by Eq. . With this,
Maxwell’s second group in a gravitational field is less constrained, in partic-
ular the standard version (94)) valid in GR becomes well compatible with the
investigated theory.

(iv) Also, one must assume that, at least for a null e.m. field (which
indeed can be considered as a continuous medium with a well-defined veloc-
ity field, and to which one may definitely apply Newton’s second law of the
present theory), there is a reaction force exerted on the e.m. field by the
charged medium.

Equation (93)) means that the presence of usual matter producing an e.m.
field necessarily gives rise (according to the present theory) to the presence
of an additional kind of energy, with energy tensor T.... The latter does
not generally vanish outside the charged medium that emits the e.m. field.
If the standard 2nd group is assumed, we get immediately from ,

@0). and (102):
T = bH(Tﬁe]d> + bu(Tinter)~ (104)

inter ;v
Without the 0*(T'geq) term, this equation would be identical with the dy-
namical equation in a gravitational field , with the energy tensor T'jer
in the place of the total tensor T'. The time component of Eq. (104]) rewrites
as: [] .
(ﬂ(r)lger)ﬁ + (ﬂ?ljter),j = (LOg B)ﬂﬂ?l%er + b0<Tﬁeld)’ (105)
or

(Tier) o+ (Titer) ; = (Log 8) 0 (Tiker = B~ Waeaa) - (106)

Each of the two source terms on the r.h.s. is proportional to the variation of
the gravitational field in the preferred reference frame: (Log ) ~ —c¢?0rU
in a weak field. However, the first term (with T2 ) expresses the usual
energy conservation in the investigated theory: the conservation of the total
energy has just the same form as , without the term involving Wgqq and

with the total tensor T in the place of T'.;. That usual energy conservation

10 One sees that by using Egs. (23) and (25) in Ref. [5] plus Egs. and (30)) above.
The second step uses also Eq. .
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is a balance between matter energy and gravitational energy [5]. Thus, one
may consider that the source of the interaction energy really is the second
term that is proportional to the e.m. energy Wseq, Eq. (51)). The e.m. energy
should have grossly an ellipsoidal distribution around the center of a galaxy,
which should be much less flat than the mass distribution of the luminous
objects, since the e.m. energy decreases as 1/7? from each of these objects.
Hence we may a priori expect that the same applies to the interaction energy
T% . As is well known, to explain the motions at a galactic scale one is
led to assume a distribution of unseen, “dark” matter, which should fill a
“halo” around the center of a galaxy or a cluster of galaxies. Therefore, it
seems natural to conjecture that the interaction energy, which is necessarily
present according to the present theory, is a contribution to dark matter.
This is worth a further investigation.

A Meaning of the standard gravitationally-
modified Maxwell equations

First, let us observe that, with the definitions (7)) for the electric and magnetic
fields, Maxwell’s first group can be rewritten almost exactly in the usual
form of the Maxwell-Gauss and Maxwell-Faraday equations, namely:

0B
Oty
the mere difference being thus in the use of the local time (i.e., % =
m%) of the synchronized reference frame & (i.e., 7p; = 0) and in the fact
that the operators are defined with the help of the spatial metric g in the

frame &:

divy B =0, rotg E = — (107)

1
NG

with |; the covariant derivative associated with g. Indeed, as one easily checks
from the definition (7)), Eq. (107)) coincides with (2)) in coordinates z* such

that, at the event X considered, we have
9i5(X) = 6ij,  gi;1(X) =0, B(X)=1 (109)

(see Eq. (24.14) of Fock []). Starting from one coordinate system that is
adapted to the preferred frame and that verifies the synchronization condition

divyB = B = — (VgB'),,  (rotgE)' =¢” Ef, (108)
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~0; = 0, one can get to another one that in addition verifies ((109)), by a change

=il 2% a), o = (). (110)

Since each of the two equations in (107)) is invariant under such a change,
our statement is proved. In nearly the same way, from the relation valid in
any coordinates for the antisymmetric tensor F*":

1
P, =
’ V=

and using Eq. for , we find that the g = 0 component of Eq. (94) [the
standardly-modified second group] rewrites as the Maxwell-Poisson equation
in terms of metric g:

(\/—_VF’“’)W, (111)

div,E = poc?pa = @, (112)
€o

whereas the spatial components of Eq. rewrite as a space vector equation

involving an additional term as compared with the flat-spacetime Maxwell-
Ampere equation:

10E 1

t¢s B— —— — =g AB = ] 113

Tro g 02 atx 02 g Hol, ( )

where j° = J' and the spatial vector g is given by Eq. (95)). To rewrite

as (112)) and (113), we use coordinates that, in addition to (109)), are such

that
(0B8/02°)(X) = 0. (114)

The full set (109) and (114) can be fulfilled by a change (110)); cf. Ref.
[3], around Eq. (85.18). Equations (112]) and (113) are invariant under a

change (110]). Note that the derivation applies in any synchronized reference
frame, but the gravity acceleration vector (95 makes little sense in a general
situation unless one assumes the preferred-frame dynamics of the investigated
theory.

27



B Dynamics of a photon under gravitational
and non-gravitational forces

Our extension of Newton’s second law has exactly the same form for a mass
particle and for a photon, i.e. [ 2] [16]
E 1 D(Ev 1 D(Ev
Py Byl 1DV (Bv)
c 2 Diy cp Dt

(115)

For a photon, we define £ = hv, h being Planck’s constant and v the fre-
quency as measured with the local time: v = dn/dty = (1/5)dn/dt with n
the number of periods. The energy equation derived from ((115)) is also the
same for a mass particle and for a photon, i.e., Eq. . In the case without
an external force F, the proof has been given in full for a mass particle in
Ref. [16], and has been outlined also in Ref. [I6] for a photon. Here we give
the proof with F for a photon, for completeness. Equation is equivalent
to:

Dv n dF
Dt,  di4

whence by taking the scalar product g with v, using Leibniz’ rule verified
[2, 16] by the D/Dt derivative:

Eg+cF=FE v, (116)

2 dE
Egv=F— (V—> + —v? —*F.v. (117)

Eg.u =c (@ - F.v) : (118)

From (95]), we have
,g(gradgf,u) 6261dxi B _0_2 (% _ %) . (119)

sU=TCT s T 3% T s \at o
Hence, (118]) is
dg 08\ ,dE
E (dt at) =B~ BFv, (120)

whence follows Eq. .
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Thus, for a photon, to deduce the energy equation from Newton’s
second law ([115), we used the property v? = c2. Now we show that the
energy equation allows us to rewrite Newton’s second law in a form which
ensures that v? = ¢? is indeed maintained at all times. Equation (98] is

equivalent to

+mw):E£§+WFv. (121)

dE 3
( ;

ﬂEJrE g

Removing the term present on both sides and using again ((119)), this gives
us

dE E
With this, Newton’s second law ({116|) rewrites as
D E
ED;; + (F.V + C—2g.v> v = Fg + ’F, (123)
or n - )
v g.v v c
—g— (24— —F. 124
Di,  © ( Z 1 E )V E (124)
It follows from the latter equation that
d [v? Dv s o (gv Fuv
— (=) =V = (¢ — =4+ —. 125
dtx<2) Vo~ V)(c2+E (125)

Note that all of this is true for a mass particle as well as for a photon. Thus, if
we have v = ¢? at the initial time, this condition is maintained at all times.
In general relativity, the condition v = ¢? (i.e., ds? = 0) for a photon is not
dynamically implied by the (geodesic) law of motion, instead it is assumed
from the outset as one considers a “null geodesic”.
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