F. Andreu, C. Ballester, V. Caselles, and J. M. Mazón, Minimizing total variation flow, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.331, issue.11, pp.321-360, 2001.
DOI : 10.1016/S0764-4442(00)01729-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Andreu, V. Caselles, J. D?az, and J. Mazón, Some Qualitative Properties for the Total Variation Flow, Journal of Functional Analysis, vol.188, issue.2, pp.516-547, 2002.
DOI : 10.1006/jfan.2001.3829

V. Apidopoulos, J. Aujol, and C. Dossal, On a second order differential inclusion modeling the FISTA algorithm, p.2017
URL : https://hal.archives-ouvertes.fr/hal-01517708

G. Aubert and J. Aujol, A Variational Approach to Removing Multiplicative Noise, SIAM Journal on Applied Mathematics, vol.68, issue.4, pp.925-946, 2008.
DOI : 10.1137/060671814

J. Aujol, G. Gilboa, and N. Papadakis, Fundamentals of Non-Local Total Variation Spectral Theory, Proceedings of the 5th International Conference on Scale Space and Variational Methods in Computer Vision (SSVM'15), pp.66-77, 2015.
DOI : 10.1007/978-3-319-18461-6_6

URL : https://hal.archives-ouvertes.fr/hal-01199080

A. Belahmidi and A. Chambolle, Time-delay regularization of anisotropic diffusion and image processing, ESSAIM: M2AN, pp.231-251, 2005.
DOI : 10.1051/m2an:2005010

URL : https://hal.archives-ouvertes.fr/hal-00001401

G. Bellettini, V. Caselles, and M. Novaga, The Total Variation Flow in RN, Journal of Differential Equations, vol.184, issue.2, pp.475-525, 2002.
DOI : 10.1006/jdeq.2001.4150

M. Benning, C. Brune, M. Burger, and J. Müller, Higher-Order TV Methods???Enhancement via Bregman Iteration, Journal of Scientific Computing, vol.46, issue.1, pp.269-310, 2013.
DOI : 10.1007/s10915-010-9408-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

M. Benning and M. Burger, Ground states and singular vectors of convex variational regularization methods, Methods and Applications of Analysis, vol.20, issue.4, pp.295-334, 2013.
DOI : 10.4310/MAA.2013.v20.n4.a1

URL : http://arxiv.org/abs/1211.2057

M. Benning, M. Möller, R. Z. Nossek, M. Burger, D. Cremers et al., Nonlinear spectral image fusion. arXiv preprint, 2017.
DOI : 10.1007/978-3-319-58771-4_4

K. Bredies, K. Kunisch, and T. Pock, Total Generalized Variation, SIAM Journal on Imaging Sciences, vol.3, issue.3, pp.492-526, 2010.
DOI : 10.1137/090769521

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

X. Bresson, T. Laurent, D. Uminsky, and J. V. Brecht, Convergence and energy landscape for cheeger cut clustering, Advances in Neural Information Processing Systems, pp.1385-1393, 2012.
DOI : 10.21236/ADA612749

X. Bresson, T. Laurent, D. Uminsky, and J. V. Brecht, Multiclass total variation clustering, Advances in Neural Information Processing Systems, pp.1421-1429, 2013.
DOI : 10.21236/ADA612811

X. Bresson and A. D. Szlam, Total variation, cheeger cuts, Proceedings of the 27th International Conference on Machine Learning (ICML- 10), pp.1039-1046, 2010.

X. Bresson, X. Tai, T. F. Chan, and A. Szlam, Multi-class Transductive Learning Based on ??? 1 Relaxations of Cheeger Cut and Mumford-Shah-Potts Model, Journal of Mathematical Imaging and Vision, vol.127, issue.3, pp.191-201, 2014.
DOI : 10.1006/jcph.1996.0167

H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, 1973.

T. Bühler and M. Hein, Spectral clustering based on the graph plaplacian, Proceedings of the 26th Annual International Conference on Machine Learning, pp.81-88, 2009.

M. Burger, G. Gilboa, M. Moeller, L. Eckardt, and D. Cremers, Spectral Decompositions Using One-Homogeneous Functionals, SIAM Journal on Imaging Sciences, vol.9, issue.3, pp.1374-1408, 2016.
DOI : 10.1137/15M1054687

URL : http://arxiv.org/abs/1601.02912

M. Burger, G. Gilboa, S. Osher, and J. Xu, Nonlinear inverse scale space methods, Communications in Mathematical Sciences, vol.4, issue.1, pp.179-212, 2006.
DOI : 10.4310/CMS.2006.v4.n1.a7

G. Carlier, M. Comte, and G. Peyré, Approximation of maximal Cheeger sets by projection, ESAIM: Mathematical Modelling and Numerical Analysis, vol.43, issue.1, pp.139-150, 2009.
DOI : 10.1051/m2an/2008040

URL : https://hal.archives-ouvertes.fr/hal-00359736

V. Caselles, A. Chambolle, and M. Novaga, Some Remarks on Uniqueness and Regularity of Cheeger Sets, Rendiconti del Seminario Matematico della Universit?? di Padova, vol.123, pp.191-201, 2010.
DOI : 10.4171/RSMUP/123-9

A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, vol.76, issue.2, pp.167-188, 1997.
DOI : 10.1007/s002110050258

J. Duran, M. Moeller, C. Sbert, and D. Cremers, Collaborative Total Variation: A General Framework for Vectorial TV Models, SIAM Journal on Imaging Sciences, vol.9, issue.1, pp.116-151, 2016.
DOI : 10.1137/15M102873X

URL : http://arxiv.org/abs/1508.01308

G. Gilboa, A Total Variation Spectral Framework for Scale and Texture Analysis, SIAM Journal on Imaging Sciences, vol.7, issue.4, pp.1937-1961, 2014.
DOI : 10.1137/130930704

G. Gilboa and S. Osher, Nonlocal Operators with Applications to Image Processing, Multiscale Modeling & Simulation, vol.7, issue.3, pp.1005-1028, 2008.
DOI : 10.1137/070698592

M. Hein and T. Bühler, An inverse power method for nonlinear eigenproblems with applications in 1-spectral clustering and sparse pca, Advances in Neural Information Processing Systems 23, pp.847-855, 2010.

D. Horesh and G. Gilboa, Separation Surfaces in the Spectral TV Domain for Texture Decomposition, IEEE Transactions on Image Processing, vol.25, issue.9, pp.4260-4270, 2016.
DOI : 10.1109/TIP.2016.2587121

E. Merkurjev, E. Bae, A. L. Bertozzi, and X. Tai, Global Binary Optimization on Graphs for Classification of High-Dimensional Data, Journal of Mathematical Imaging and Vision, vol.16, issue.3, pp.414-435, 2015.
DOI : 10.1007/s00211-013-0569-x

E. Merkurjev, T. Kostic, and A. L. Bertozzi, An MBO Scheme on Graphs for Classification and Image Processing, SIAM Journal on Imaging Sciences, vol.6, issue.4, pp.1903-1930, 2013.
DOI : 10.1137/120886935

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

B. Merriman, J. Bence, and S. J. Osher, Diffusion generated motion by mean curvature, Proceedings of the Computational Crystal Growers Workshop, pp.73-83, 1992.

Y. Meyer, Oscillating patterns in image processing and in some nonlinear evolution equations, 2001.

M. Moeller, J. Diebold, G. Gilboa, and D. Cremers, Learning Nonlinear Spectral Filters for Color Image Reconstruction, 2015 IEEE International Conference on Computer Vision (ICCV), pp.289-297, 2015.
DOI : 10.1109/ICCV.2015.41

J. Müller, Advanced image reconstruction and denoising: Bregmanized (higher order) total variation and application in pet, 2013

R. Z. Nossek and G. Gilboa, Flows generating nonlinear eigenfunctions. CoRR, abs, 1609.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An Iterative Regularization Method for Total Variation-Based Image Restoration, Multiscale Modeling & Simulation, vol.4, issue.2, pp.460-489, 2005.
DOI : 10.1137/040605412

L. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003.
DOI : 10.1137/1.9780898718003

M. Schmidt, M. Benning, and C. Schönlieb, Inverse scale space decomposition. arXiv preprint, 2016.

R. Temam, Navier Stokes equations, 1984.
DOI : 10.1090/chel/343

L. Zeune, G. Van-dalum, L. Wmm-terstappen, S. A. Van-gils, and C. Brune, Multiscale Segmentation via Bregman Distances and Nonlinear Spectral Analysis, SIAM Journal on Imaging Sciences, vol.10, issue.1, pp.111-146, 2017.
DOI : 10.1137/16M1074503

URL : http://arxiv.org/abs/1604.06665