Theoretical Analysis of Flows Estimating Eigenfunctions of One-homogeneous Functionals

Abstract : Nonlinear eigenfunctions, induced by subgradients of one-homogeneous functionals (such as the 1-Laplacian), have shown to be instrumental in segmentation, clustering and image decomposition. We present a class of flows for finding such eigenfunctions, generalizing a method recently suggested by Nossek and Gilboa. We analyze the flows on grids and graphs in the time-continuous and time-discrete settings. For a specific type of flow within this class, we prove convergence of the numerical iterations procedure and prove existence and uniqueness of the time-continuous case. Several toy examples are provided for illustrating the theoretical results, showing how such flows can be used on images and graphs.
Type de document :
Article dans une revue
SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2018, 11 (2), pp.1416-1440
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01563922
Contributeur : Nicolas Papadakis <>
Soumis le : mardi 18 juillet 2017 - 11:55:59
Dernière modification le : vendredi 13 juillet 2018 - 01:09:11
Document(s) archivé(s) le : samedi 27 janvier 2018 - 06:05:15

Fichier

estimation-eigenfunctions_hal....
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01563922, version 1

Collections

IMB

Citation

Jean-François Aujol, Guy Gilboa, Nicolas Papadakis. Theoretical Analysis of Flows Estimating Eigenfunctions of One-homogeneous Functionals . SIAM Journal on Imaging Sciences, Society for Industrial and Applied Mathematics, 2018, 11 (2), pp.1416-1440. 〈hal-01563922〉

Partager

Métriques

Consultations de la notice

194

Téléchargements de fichiers

152