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Abstract. It is well known that variable pitch cutters may 

improve stability of a given milling operation. Several 

methods are known for tuning the consecutive pitch angles 

to approach idealistic phase shift on regeneration. Most of 

the tuning procedures are based on the measurement of the 

chatter frequency. However, these design procedures 

completely disregard the effect of the harmonics of the 

milling process. In this study, the efficiency of these 

methods is verified in milling for an interrupted cutting 

engagement. The critical analysis of different tuning 

methodologies are carried out by means of accurate stability 

charts constructed with semi-discretization. It is shown that 

the effectiveness of tuning can be improved further with 

numerical optimization techniques.  
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1 Introduction 

The dynamic behavior of regenerative cutting 

processes can be influenced through the generated cutting 

force. Apart from the material properties, it is the edge 

geometry that affects the most the relative magnitude and 

the regeneration of the instantaneous cutting force. In this 

manner, any attempt to distort both the strength and the 

length of the regenerative delays most likely leads to 

better conditions for stable stationary cutting [1]. As 

impacts are reduced by introducing helices, regenerative 

delays can be distorted by irregular spacing of edge 

portions in the direction of the cutting speed, or by the 

variation of the spindle speed [2]. Discrete variation of 

regenerative delays can be introduced by simple uneven 

pitch angles or by irregularities in local subsequent radii 

causing missed cuts e.g. in case of serrated cutters [3, 4]. 

While continuous variation on the delay’s weights can be 

introduced by helix angle variations [5].  

Due to the uneven pitch geometry, the corresponding 

milling processes are subject to the effect of the irregular 

interaction of the time-periodicity and the distorted 

constant delays. This special geometry changes the 

regenerative phases between the past and the present 

vibration pattern in modulo, which effect was historically 

modelled by unevenly displaced multi-edge orthogonal 

planing operation by Slavicek [6]. In this work significant 

gain was achieved in depth of cut compared to 

conventional multi-edge-planing. Average directional 

factors were used by Opitz et al [7] to model the 

experimentally observed increase on stability by 

considering the simplest uneven pitch case with two 

teeth. In terms of rectilinear tool motions, computer 

simulations were carried out by Vanherck [8] for different 

set of varying pitch angles showing the behavior of 

distinct non-conventional tool geometries. Also, applying 

numerical simulations, stability properties of variable 

pitch cutters were simulated in the work of Tlusty et al 

[9]. Significant changes in stability were shown in [10] 

without mentioning geometrical design strategies: 

improved mechanical model was used by fully respecting 

the varying directional orientations of the variable pitch 

geometry.  

Single frequency variable pitch model was presented 

by Altintas et al [11] where the eigenvalue problem is 

formulated and the stability behavior is shown with 

respect to the pitch angles introducing real case 

dynamics. Based on time averaged single frequency 

solution Budak [12, 13, 14] introduced an analytical 

design methodology based on the phase differences 

between consecutive constant delays, the effectiveness of 

which was confirmed with in industrial application. In the 

work of Olgac and Sipahi [15], a unique scheme, the so-

called cluster treatment of characteristic roots paradigm 

was used to investigate the effect of two constant delays 

on the time-averaged dynamics of milling operation with 

variable pitch cutters. Time finite element method and 

time averaged semi-discretization were used by Sims et al 

[16] to build general models of variable pitch and helix 

tools, around which optimization process was established 

in [17, 18] based on genetic algorithms.  

The inconsistency of the time period and the 

regenerative delays in case of variable pitch cutters 

results in that higher harmonics can have significant 

strength in the regenerative force even in the case of non-

interrupted cutting operations, causing discrepancies in 

time averaging methods showed in Sellmeier and 

Denkena [19]. The importance of the optimization of 

variable pitch was pointed out in the experimental work 

of [20]. The construction of transition matrix and the 

unavoidable eigenvalue calculation were joined by 



 

subspace iteration in order to decrease the overall order of 

the numerical methods (see [21]).  

Similar effect can also be reached in drilling and in 

turning processes, when multiple regenerative delays are 

introduced instead of the conventional single one. In case 

of turning, optimized multi edge cutting can disturb the 

regenerative phase between consecutive edges as 

presented in Budak and Ozturk [22]. 

2 Model Description 

For simplicity, helix is not considered in this study 

which can practically correspond to inserted milling with 

slight helix angle. In this case the regenerative delays τi 

can be calculated with the help of the period of the tool 

T = 2 π/Ω and the pitch angles φp,i between consecutive 

edges as 
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where the spindle speed is 

Ω (rad/s) = 2 π n (rpm) / (60 s/min). Due to the successive 

regenerative waves, phase can be defined absolutely as εi 

and in modulo as ϑi in the following way 

 iii l   π2:  (2.2) 

for each (i mod Z) and (i+1 mod Z) pair of teeth. The 

integers li = 0, 1, … are the number of whole waves 

copied in the surface originated from the main chatter 

angular frequency ω of the self-excitation. Thus, the 

different properties of the regenerative phases can be 

expressed for uneven pitch cutters as (round down is ) 

 ii   ,  π2
i
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  and π2modii   . (2.3) 

Unlike regular cutters, the principle period Tp of the 

milling process is not the tooth passing period TZ = T/Z. 

Depending on the actual configuration, it is determined 

by the natural number divisor 
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as Tp = T / N. 

In this framework, we assume momentary chip 

thickness variation between two consecutive edges as 
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for a milling operation with feed fi = f φp,i /(2 π) in x 

direction. Thus, fi = col(fi, 0, 0) and 

n (i(t)) = col(sin i(t), cos i(t), 0). The feed per 

revolution is f (m/rev), while the position angle 
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determines the position of the ith tooth geometrically. 

Assuming (for simplicity) linear cutting force 

characteristics with edge coefficients Ke and cutting 

coefficients Kc = col(1, Kc,r, Kc,a) (see Table 2.1.), the 

regenerative cutting force has the form:  
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for lead angle  = 90 (deg), where the transformation 

matrix T and the screen function g is defined in [3], and 

k = 1, 2, …, N. The regenerative cutting force in (2.7) 

depends on the present x(t) and the delayed x(tk) 

positions of the tool where x(t) = col (x(t), y(t), z(t)). 

Furthermore, it can be separated into periodic state 

independent part G(t) = G( t + Tp), and linear state 

dependent part with periodic coefficient matrices 

Ai (t) = Ai ( t + Tp) [23]. 

2.1 Milling Dynamics 

By using the same procedure described in [13, 23], 

the determination of asymptotic stability of the periodic 

stationary solution with Ωp = 2 π / Tp leads to the 

following characteristic equation  
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Considering h harmonics in (2.8), we have 
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Basically, (2.8) is a truncated Hill’s representation by 

using the frequency response function (FRF) H(ω) at the 

tool tip [24], which describes the dynamics of the milling 

process. This solution is referred to in the literature as 

multi-frequency solution [25, 26, 27].  

In order to deal with the analytical literary cases, the 

single frequency solution is introduced here for  
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corresponding to the model in [13], where the 

harmonics 
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while  k,i =1 if k = i , otherwise  k,i = 0 with 

k = 1, 2, …, N . The radial immersion is simply given by 

the entry en and exit ex angles (see Fig. 2.1.a). 

Generally, the solution of (2.8) and (2.10) can be 

calculated by solving the eigenvalue problem for the 

depth of cut a [13] or by using the bisection method [28] 

in the parameter space (a, Ω, ω). 

2.2 Simplified Case 

In this work, we deal with the differences between the 

historical analytical tuning procedures and the possibly 

best achievable one. Considering that every new pitch 

angle increases the dimension of the optimization 

parameter space by one, a simple and practical one-

parameter case (with φp,1) can be introduced with the 

symmetric arrangement of Z = 4 flutes with κ = 90 deg 

lead angle (see Fig. 2.1.a). In this case the following 

notation can be introduced φp,i = φp,1, π  φp,1, φp,1, π  φp,1 

with N = 2 in (2.4). Also the notation can be introduced 

describing the angle differences as φp,2 = φp,1+Δφp,2. 

 

Fig. 2.1. a) simplified symmetric teeth arrangement, b) phase shifts 

As further simplification, only one spatial direction is 

considered in the x direction, which makes the matrices at 

(2.9) scalars along with the considered single mode (see 

Table 2.1.) in (2.10), resulting in 
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The milling process is chosen to be interrupted to show 

the discrepancies on analytical tuning procedures that are 

all based to some extent in the single frequency solution 

(2.10). Moreover, this interrupted case is more practical 

process-wise, since it models finishing operation for 

which vibration needs to be attenuated to achieve good 

surface quality.  Further details of the considered case can 

be followed in Table 2.1. 

Table 2.1. Technological parameters of the cutting process under 

consideration 

Z 
κ 

(deg) 

η 

(deg) 

ar 

(mm) 
feed direction 

4 90 0 1 (1, 0, 0) 

Kc,t 

(MPa) 

Kc,r 

(1) 

Kc,a 

(1) 

ωn, x 

(Hz) 

ξx 

(%) 

kx 

(N/μm) 

804 0.314 0.150 178 0.54 19.78 

3 Different Tuning Schemas  

The three main literary analytical tuning techniques 

are discussed in this section in chronological order. We 

mention these solutions as Slaviček’s [6], Engin’s [11] 

and Budak’s [13] tuning methods referring to the main 

contributors’ names. Although strictly speaking, 

Slaviček’s dealt with planing only in his work, his tuning 

methodology can easily be applied for milling. All 

methodologies are simplified to the case introduced in 

Section 2.  

3.1 Slaviček’s tuning 

Originally, this method is a graphical way of tuning 

based on the different phase shifts in the scalar single 

frequency formulation introduced in (2.12). Substituting 

H(ω) = r (ω)e 
j ψ(ω)

, considering the regenerative phases at 

(2.3), and keeping in mind that the geometric 

arrangement introduced in Fig. 2.1.a) with (N = 2), the 

following expression is obtained: 
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Contrary to the original work, the force does not 

introduce additional phase shift represented by ρ in 

[6]. By using the intricate trigonometrical 

manipulations in [6], (3.1) can be rearranged as  
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where the average regenerative phase is 

ε = (ε1 + ε2)/2, and the phase difference is 

Δ = (ε2  ε1)/2 = Δε2. The resultant phase shift δ in (3.2) 

has the least chance (see [6]) to “intersect” with ψ if δ 

varies in the slightest way, that is cos Δ  0. Taking into 

account (2.1) and (2.3), the tuning criterion is given as  
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where historically n = 1, 3, 5, … and k = 1, 2, 3, … . That 

is, knowing the main vibration (chatter) frequency ω and 

the spindle speed Ω the pitch difference Δφp,2 can be 

designed setting k considering geometric design 

restrictions (φp,min, φp,max and Δφp,min).  

Bearing in mind (3.2) and (3.3), the methodology for 

this simple one dimensional, single frequency and simple 

pitch arrangement case (Fig. 2.1.a) can be generalized for 

multiple modes, too. 

3.2 Engin’s tuning 

The tuning methodology presented in [11] is based on 

an initial stability calculation (e.g. with single frequency 

or semi-discretization) where the regenerative phase is 

“picked up” from the diagram to ensure the positioning of 

the stability pockets (sweet spots or stability resonances, 

e.g. n = 2670 rpm in Fig. 3.1.d). A stability pocket 

actually corresponds to two different regenerative phase 

shifts. In the simple case presented in Fig. 3.1.c), these 

are actually ϑsp =180 deg or 360 deg. According to [11] 

the one which changes less with the spindle speed ensures 

more robust solution.  

In this manner the design criterion is to have the 

regenerative phase shift (in modulo) for the stability 

pockets ensured by the first pitch angle 

 π2sp1,p k

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 and k = 1, 2, 3, … . (3.4) 

This design criterion is taking the complicated 

dynamics (even multi-dimensional one) into account by 

an initial calculation, predicting the necessary 

regenerative phase in modulo ϑsp. The integer k has to be 

set to satisfy geometrical design criteria (see previous 

subsection) and to have φp,1 as close to 2π/Z as it is 

possible. 

3.3 Budak’s tuning 

This tuning procedure is based on the eigenvalue 

consideration of single frequency solution at (2.10). This 

results in parametric solution for the depth of cut a as 

explained in [13]. Considering 3 spatial dimensions (xyz) 

in (2.10) the following holds 
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The basic idea here is that, the limit depth of cut a at 

(3.5) is maximal if S is minimal or in extreme cases 0. 

Applying geometry in Fig. 2.1.a) results in the following 

 
.0

2
cos0πsin

2
cos2

)(sinsin)(

22

211














S

 (3.6) 

In this case, this methodology gives the same criterion as 

Slaviček’s tuning at (3.3).  
The tuning is general since the eigenvalue solution of 

(2.10) can be made for multi-dimension and multi modal 

cases, too. However, the S(ω) = 0 would be true only in 

limiting case which might interfere with ΛI (ω). 

3.4 Comparison of analytical methods 

In this simplified one-parameter optimization case 

Slaviček’s and Budak’s tunings are identical. The 

comparison of these can be followed in Fig. 3.1. where 

the first pitch angle was designed to be smaller and closer 

to 2π/Z. 

 

Fig. 3.1. a) tuned first pitch angle, b) designed pitch differences, c) 
regenerative phase and d) ideal single frequency solution for the 

process in Table 2.1. 

This means Engin’s and the other two tuning 

methodologies introduce opposite trends in φp,1 seemingly 

resulting in identical tuning for the minimum in this one 

DOF single frequency case. Also toward the larger lobe 

number the modulo of regenerative phase eventuates 

smaller deviation for Δφp,2 (see Fig. 3.1.b). This makes 

variable pitch milling tools extremely difficult to 

accurately tune and produce in low spindle speed zone. 

4 Applying semi-discretization 

In order to have the accurate stability chart even for 

the described interrupted case (Table 2.1.), semi-

discretization (SD) [29] method is applied. By applying 



  

SD, the prediction of the main vibration frequency is not 

trivial at all. This is because the critical multiplier μc 

(closest to magnitude 1) refers directly only to the 

smallest possible modulation (base frequency, ωb) of the 

main vibration frequency ω described in [30], that is 

 jb,ccc    and ||ln cpc  T , cpbc, arg  T .(4.1) 

The main vibration frequency can be determined by 

performing low resolution fast Fourier transform (FFT) 

on the periodic part of the critical eigenvector of the 

transition matrix [30]. Thus, it can be set by the largest 

modulation number q on the low resolution FFT as 

 || pbc,  q .  (4.2) 

In this way, it is possible to apply tuning criteria (3.3), 
(3.4) and (3.6) by using a preliminary calculation 

determining the corresponding main vibration (chatter) 

frequency ω. Also it is worth to mention that after the 

tuning, the ω can slightly change, but in this one DOF 

case this effect is negligible. 

A brute-force iterative (BFI) method is also 

implemented, which only relies on the SD method. The 

optimum is achieved by applying basically bisection 

scanning on φp,1 minimizing the magnitude of the 

corresponding critical multiplier | μc |. Afterwards this 

method is referred as “BFI tuning”. 

4.1 Applying for one specific tuning 

By using the SD method, the quality of the tuning can 

be rated by calculating the accurate stability behavior of 

the introduced interrupted milling process (Table 2.1.). In 

Fig. 4.1., the different tuning techniques are compared 

away from the single frequency minimum of the first lobe 

at n = 1800 rpm. In this case, Budak’s and Slaviček’s 

tuning (afterwards “BS-tuning”) serve different pitch 

arrangement than Engin’s tuning (afterwards “E-tuning”). 

Table 4.1. The results of different tuning techniques for 

n = 1800 rpm 

tuning technique pitch angles, φp,i (deg) 

BS tuning 75.4180, 104.5820, 75.4180, 104.5820 

E tuning 87.4852, 92.5148, 87.4852, 92.5148 

BFI tuning 50.5373, 129.4627, 50.5373, 129.4627 

 

It can be followed in Fig. 4.1. that E-tuning 

completely fails for this given case, while BS-tuning 

really improves the stability properties, in spite of the fact 

that it is “chopped off” by the now more intricate flip 

instability corresponding to the principle period Tp. The 

best tuning is given by the BFI tuning that eliminates the 

effect of the flip instability in this case. The actual tuning 

results are listed in Table 4.1. 

 

 

Fig. 4.1. The effect of different tuning methodologies for 

n = 1800 rpm 

4.2 Optimal tuning along the stability limit 

This subchapter compares the tuning strategies by 

their trends along the linear stability limits similarly to 

Fig. 3.1., in which only the analytical tuning 

methodologies are compared using ideal single frequency 

solution.  

It can be recognized immediately the E tuning 

methodology does not serve good geometrical 

arrangement in pitch spaces to gain stability. The 

BS tuning results in better optimized geometry, however, 

the BFI tuning induces even higher stability limits (see 

Fig. 4.2.). 

Similarly to Fig. 3.1. opposite trend between BS and 

E tunings are appearing. Not surprisingly, the brute force 

method (BFI tuning) follows different optimized 

geometric arrangement ensuring the best possible tuning. 

5 Conclusions 

In this paper, a simple variable pitch tool arrangement 

was investigated. It was shown, that the single-frequency 

based analytical solutions of the literature are not efficient 

enough to find optimal tuning. Based on the semi-

discretization method, a brute force methodology was 

developed that is able to determine the best tuning for 

each parameter configuration by minimizing the critical 

characteristic multiplier of the corresponding time-

periodic delayed system. The simple practical case-study 

showed that there is a potential in developing improved 

tuning algorithms for variable pitch cutters. 

 



 

 

Fig. 4.2. Continuous optimal tuning: a) first pitch angle φp,1, b) 
corresponding stability charts. 
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