Cost-Efficient Laparoscopic Haptic Trainer based on Affine Velocity Analysis.

Charles Barnouin, Benjamin de Witte, Richard Moreau, Arnaud Lelevé, Xavier Martin

To cite this version:
Charles Barnouin, Benjamin de Witte, Richard Moreau, Arnaud Lelevé, Xavier Martin. Cost-Efficient Laparoscopic Haptic Trainer based on Affine Velocity Analysis.. Surgetica 2017, Nov 2017, Strasbourg, France. hal-01563262

HAL Id: hal-01563262
https://hal.archives-ouvertes.fr/hal-01563262
Submitted on 4 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Learning minimal invasive surgery (MIS) skills is young surgeons' major concern.

Objective: design a basic skill training simulator which objectively evaluate trainees' level.

Use of Affine velocity as an assessment variable.

INTRODUCTION

- Observation and analyses of surgeons in situ
- Inclusion of literatures’ recommendations

Step 1 - Cognitive conception

Step 2 - Simulator conception

Step 3 - Simulator validation

METHODS

- Use of materials enabling haptic feedback and developing a VR environment (Phantom Omni, CHAISD, laparoscopic devices...)

WHAT IS AFFINE VELOCITY

Relationship between geometry and kinematic first shown in 2D drawing:

\[v = v_0 K^{1/3} \]

- With the curvature \(K \)

RESULTS

Panel of 77 subjects separated initially into 4 groups:

- Expert surgeon: more than 100 interventions
- Intermediate: between 5 and 20
- Unexperienced intern (BSS): witnessed but never performed
- Novice

<table>
<thead>
<tr>
<th>Groups</th>
<th>Intern</th>
<th>Expert</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td>P<0.05</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Intermediate</td>
<td>P<0.05</td>
<td>0.43</td>
<td>P<0.05</td>
</tr>
<tr>
<td>Novice</td>
<td>P<0.05</td>
<td>P<0.05</td>
<td>P<0.05</td>
</tr>
</tbody>
</table>

Statistical test Kruskal and Wallis on affine velocity (above) can separate every group but Experts and Intermediates, whereas collision alone could also not separate Novices from Unexperience Interns.

CONCLUSION

- A cognitive analysis of MIS enables to design a reliable and valid simulator.
- Affine velocity is a valid tool and another objective variable to evaluate a trainee skill on his trajectory.
- Once a certain level of skill is reached, it becomes harder to differentiate individuals.
- As feedback about skill level is displayed, the simulator should be effective in learning, this needs however to be confirmed by future investigations.

REFERENCES

