Cost-Efficient Laparoscopic Haptic Trainer based on Affine Velocity Analysis.
Charles Barnouin, Benjamin De Witte, Richard Moreau, Arnaud Lelevé, Xavier Martin

To cite this version:
Learning minimal invasive surgery (MIS) skills is young surgeons’ major concern. Cognitive load elicited by simulators’ use and trainees’ spatial abilities seem to impact efficient learning process(1). Objectives: design a basic skill training simulator which objectively evaluate trainees’ level. Use of Affine velocity(2-3) as assessment variable.

INTRODUCTION
Learning minimal invasive surgery (MIS) skills is young surgeons’ major concern. Cognitive load elicited by simulators’ use and trainees’ spatial abilities seem to impact efficient learning process(1). Objectives: design a basic skill training simulator which objectively evaluate trainees’ level. Use of Affine velocity(2-3) as assessment variable.

METHODS
Step 1 - Cognitive conception
Observation and analyses of surgeons in situ
Inclusion of literatures’ recommendations

Step 2 - Simulator conception
Use of materials enabling haptic feedback and developing a VR environment (Phantom Omni, CHAID, laparoscopic devices...)

Step 3 - Simulator validation
Define assessment variables to evaluate the trajectory:
• Time taken to complete the level
• Number of errors (collisions)
• Affine Velocity

RESULTS
Panel of 77 subjects separated initially into 4 groups:
• Expert surgeon: more than 100 interventions
• Intermediate: between 5 and 20
• Unexperienced intern (BSS): witnessed but never performed
• Novice

Statistical test Kruskal and Wallis on affine velocity (above) can separate every groups but Experts and Intermediates, whereas collision alone could also not separate Novices from Unexperienced Interns.

CONCLUSION
A cognitive analysis of MIS enables to design a reliable and valid simulator. Affine velocity is a valid tool and another objective variable to evaluate a trainee skill on his trajectory. Once a certain level of skill is reached, it becomes harder to differentiate individuals. As feedback about skill level is displayed, the simulator should be effective in learning, this needs however to be confirmed by future investigations.

REFERENCES