Cost-Efficient Laparoscopic Haptic Trainer based on Affine Velocity Analysis.

Charles Barnouin, Benjamin de Witte, Richard Moreau, Arnaud Lelevé, Xavier Martin

To cite this version:
Charles Barnouin, Benjamin de Witte, Richard Moreau, Arnaud Lelevé, Xavier Martin. Cost-Efficient Laparoscopic Haptic Trainer based on Affine Velocity Analysis.. Surgetica 2017, Nov 2017, Strasbourg, France. hal-01563262
Learning minimal invasive surgery (MIS) skills is young surgeons’ major concern. Cognitive load elicited by simulators’ use and trainees’ spatial abilities seem to impact efficient learning process(1). Objectives: design a basic skill training simulator which objectively evaluate trainees’ level. Use of Affine velocity(2–3) as assessment variable.

INTRODUCTION

- Observation and analyses of surgeons in situ
- Inclusion of literatures’ recommendations

METHODS

Step 1 - Cognitive conception
- Spatial Abilities
- Fundamentals of Laparoscopic Surgery
- Cognitive Load

Step 2 - Simulator conception
- Use of materials enabling haptic feedback and developing a VR environment (Phantom Omni, CHAID, laparoscopic devices…)

WHAT IS AFFINE VELOCITY

Relationship between geometry and kinematic:

\[v = v_0 K^{-1/3} \]

- With the curvature \(K \)

- New power law for 3D movement:

\[v = v_0 K^\alpha |\tau|^{\beta} \]

- With the torsion \(\tau \)
- \(\alpha \) and \(\beta \) are exponents that depend on the studied movement

RESULTS

Panel of 77 subjects separated initially into 4 groups:
- Expert surgeon: more than 100 interventions
- Intermediate: between 5 and 20
- Unexperienced intern (BSS): witnessed but never performed
- Novice

<table>
<thead>
<tr>
<th></th>
<th>Intern</th>
<th>Expert</th>
<th>Intermediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expert</td>
<td>P<0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Intermediate</td>
<td>P<0.05</td>
<td>0.43</td>
<td>-</td>
</tr>
<tr>
<td>Novice</td>
<td>P<0.05</td>
<td>P<0.05</td>
<td>P<0.05</td>
</tr>
</tbody>
</table>

Statistical test Kruskal and Wallis on affine velocity (above) can separate every groups but Experts and Intermediates, whereas collision alone could also not separate Novices from Unexperience Interns.

CONCLUSION

- A cognitive analysis of MIS enables to design a reliable and valid simulator.
- Affine velocity is a valid tool and another objective variable to evaluate a trainee skill on his trajectory.
- Once a certain level of skill is reached, it becomes harder to differentiate individuals.
- As feedback about skill level is displayed, the simulator should be effective in learning, this needs however to be confirmed by future investigations.

REFERENCES