W. Finch-savage and G. Bassel, Seed vigour and crop establishment: extending performance beyond adaptation, Journal of Experimental Botany, vol.67, issue.3, pp.567-91, 2016.
DOI : 10.1093/jxb/erv490

URL : http://wrap.warwick.ac.uk/74767/1/WRAP_0380014-lf-271115-revised_darwin_review_for_submission_.pdf

C. Walters, L. Wheeler, and J. Grotenhuis, Longevity of seeds stored in a genebank: species characteristics, Seed Science Research, vol.15, issue.1, pp.1-20, 2005.
DOI : 10.1079/SSR2004195

E. Kueneman, Genetic Control of Seed Longevity in Soybeans1, Crop Science, vol.23, issue.1, pp.5-8, 1983.
DOI : 10.2135/cropsci1983.0011183X002300010002x

J. Marcos-filho, Seed physiology of cultivated plants. 2 nd Edition. Londrina: Associação Brasileira de Tecnologia de Sementes-ABRATES, 2016.

D. Li and H. Pritchard, The science and economics of ex situ plant conservation, Trends in Plant Science, vol.14, issue.11, pp.614-635, 2009.
DOI : 10.1016/j.tplants.2009.09.005

F. Hay and R. Probert, Advances in seed conservation of wild plant species: a review of recent research, Conservation Physiology, vol.1, issue.1, pp.30-27293614, 2013.
DOI : 10.1093/conphys/cot030

C. Walters, D. Ballesteros, and V. Vertucci, Structural mechanics of seed deterioration: Standing the test of time, Plant Science, vol.179, issue.6, pp.565-73, 2010.
DOI : 10.1016/j.plantsci.2010.06.016

J. Buitink, O. Leprince, M. Hemminga, and F. Hoekstra, Molecular mobility in the cytoplasm: An approach to describe and predict lifespan of dry germplasm, Proceedings of the National Academy of Sciences, vol.29, issue.4, pp.2385-90, 2000.
DOI : 10.1021/ma960024j

S. Jones, D. Gonzalez, and L. Vodkin, Flux of transcript patterns during soybean seed development, BMC Genomics, vol.11, issue.1, p.20181280, 2010.
DOI : 10.1186/1471-2164-11-136

A. Severin, J. Woody, Y. Bolon, J. B. Diers, B. Farmer et al., RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome, BMC Plant Biology, vol.10, issue.1, pp.160-20687943, 2010.
DOI : 10.1186/1471-2229-10-160

T. Asakura, T. Tamura, K. Terauchi, T. Narikawa, K. Yagasaki et al., Global gene expression profiles in developing soybean seeds, Plant Physiology and Biochemistry, vol.52, pp.147-53, 2012.
DOI : 10.1016/j.plaphy.2011.12.007

M. Shamimuzzama and L. Vodkin, Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing, BMC Genomics, vol.13, issue.1, pp.310-22799740, 2012.
DOI : 10.1186/gb-2009-10-3-r25

S. Jones and L. Vodkin, Using RNA-Seq to Profile Soybean Seed Development from Fertilization to Maturity, PLoS ONE, vol.5, issue.3, pp.59270-23555009, 2013.
DOI : 10.1371/journal.pone.0059270.s005

URL : http://doi.org/10.1371/journal.pone.0059270

L. Li, M. Hur, J. Lee, W. Zhou, Z. Song et al., A systems biology approach toward understanding seed composition in soybean, BMC Genomics, vol.16, issue.Suppl 3, p.59, 2015.
DOI : 10.1016/j.pbi.2012.01.006

S. Ritchie, J. Hanway, H. Thompson, and G. Benson, How a Soybean Plant Develops, In: Special Report, vol.53, pp.1-20, 1985.

C. Rosnoblet, C. Aubry, O. Leprince, B. Vu, H. Rogniaux et al., The regulatory gamma subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds, The Plant Journal, vol.28, issue.1, pp.47-59, 2007.
DOI : 10.1128/MCB.17.4.2099

B. Langmead, C. Trapnell, M. Pop, and S. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biology, vol.10, issue.3, pp.25-32, 2009.
DOI : 10.1186/gb-2009-10-3-r25

M. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biology, vol.14, issue.12, pp.550-25516281, 2014.
DOI : 10.1186/gb-2013-14-4-r36

S. Horvath and J. Dong, Geometric Interpretation of Gene Coexpression Network Analysis, PLoS Computational Biology, vol.3, issue.8, pp.1000117-18704157, 2008.
DOI : 10.1371/journal.pcbi.1000117.s004

J. Ruijter, C. Ramakers, W. Hoogaars, Y. Karlen, O. Bakker et al., Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data, Nucleic Acids Research, vol.37, issue.6, p.45, 2009.
DOI : 10.1093/nar/gkp045

T. Schmittgen and K. Livak, Analyzing real-time PCR data by the comparative CT method, Nature Protocols, vol.2, issue.6, pp.1101-1109, 2008.
DOI : 10.1593/neo.07916

R. Teixeira, W. Ligterink, J. França-neto, H. Hilhorst, and E. Da-silva, Gene expression profiling of the green seed problem in Soybean, BMC Plant Biology, vol.52, issue.1, pp.37-26829931, 2016.
DOI : 10.1016/j.plaphy.2011.12.007

C. Lowell and T. Kuo, Oligosaccharide Metabolism and Accumulation in Developing Soybean Seeds, Crop Science, vol.29, issue.2, pp.459-65, 1989.
DOI : 10.2135/cropsci1989.0011183X002900020044x

URL : https://naldc.nal.usda.gov/naldc/download.xhtml?id=32763&content=PDF

D. Saravitz, D. Pharr, T. Carter, and . Jr, Galactinol Synthase Activity and Soluble Sugars in Developing Seeds of Four Soybean Genotypes, PLANT PHYSIOLOGY, vol.83, issue.1, pp.185-194, 1987.
DOI : 10.1104/pp.83.1.185

R. Obendorf, A. Zimmerman, Q. Zhang, A. Castillo, S. Kosina et al., Accumulation of Soluble Carbohydrates during Seed Development and Maturation of Low-Raffinose, Low-Stachyose Soybean, Crop Science, vol.49, issue.1, pp.329-370, 2009.
DOI : 10.2135/cropsci2008.06.0370

Y. Sakuraba, S. Schelbert, S. Park, S. Han, B. Lee et al., STAY-GREEN and Chlorophyll Catabolic Enzymes Interact at Light-Harvesting Complex II for Chlorophyll Detoxification during Leaf Senescence in Arabidopsis, THE PLANT CELL ONLINE, vol.24, issue.2, pp.507-525, 2012.
DOI : 10.1105/tpc.111.089474

M. Cheng, E. Hsieh, J. Chen, H. Chen, and T. Lin, Arabidopsis RGLG2, Functioning as a RING E3 Ligase, Interacts with AtERF53 and Negatively Regulates the Plant Drought Stress Response, PLANT PHYSIOLOGY, vol.158, issue.1, pp.363-75, 2012.
DOI : 10.1104/pp.111.189738

R. Angelovici, G. Galili, A. Fernie, and A. Fait, Seed desiccation: a bridge between maturation and germination, Trends in Plant Science, vol.15, issue.4, pp.211-219, 2010.
DOI : 10.1016/j.tplants.2010.01.003

K. Nakabayashi, M. Okamoto, T. Koshiba, Y. Kamiya, and E. Nambara, Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed, The Plant Journal, vol.124, issue.5, pp.697-709, 2005.
DOI : 10.1093/pcp/41.5.541

K. Dietz, M. Vogel, and A. Viehhauser, AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling, Protoplasma, vol.40, issue.5, pp.3-14, 2010.
DOI : 10.1016/B978-1-4832-2734-4.50017-6

Y. Huang, C. Feng, Q. Ye, W. Wu, and Y. Chen, Arabidopsis WRKY6 Transcription Factor Acts as a Positive Regulator of Abscisic Acid Signaling during Seed Germination and Early Seedling Development, PLOS Genetics, vol.16, issue.2, p.26829043, 2016.
DOI : 10.1371/journal.pgen.1005833.s002

M. Capella, P. Ribone, A. L. Arce, and R. Chan, HomeoBox 1 (AtHB1), a Homedomain-Leucine Zipper I (HD-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation, New Phytologist, vol.26, issue.3, pp.669-82, 2015.
DOI : 10.1105/tpc.114.125591

J. Feurtado, D. Huang, L. Wicki-stordeur, L. Hemstock, M. Potentier et al., C2H2 Zinc Finger INDETERMINATE DOMAIN1/ENHYDROUS Promotes the Transition to Germination by Regulating Light and Hormonal Signaling during Seed Maturation, The Plant Cell, vol.23, issue.5, pp.1772-94, 2011.
DOI : 10.1105/tpc.111.085134

V. Duplan and S. Rivas, E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity, Frontiers in Plant Science, vol.5, pp.45-24592270, 2014.
DOI : 10.3389/fpls.2014.00042

C. Almoguera, P. Prieto-dapena, J. Diaz-martin, J. Espinosa, R. Carranco et al., The HaDREB2 transcription factor enhances basal thermotolerance and longevity of seeds through functional interaction with HaHSFA9, BMC Plant Biology, vol.9, issue.1, p.75, 2009.
DOI : 10.1186/1471-2229-9-75

J. Lisso, T. Altmann, and C. Müssig, gene encodes a NF-X1 type zinc finger protein required for growth under salt stress, FEBS Letters, vol.1, issue.20, pp.4851-4857, 2006.
DOI : 10.1111/j.1438-8677.1999.tb00775.x

C. Schuster, C. Gaillochet, and J. Lohmann, Arabidopsis HECATE genes function in phytohormone control during gynoecium development, Development, vol.142, issue.19, pp.3343-50, 2015.
DOI : 10.1242/dev.120444

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631749

K. Kaufmann, J. Muiño, R. Jauregui, C. Airoldi, C. Smaczniak et al., Target Genes of the MADS Transcription Factor SEPALLATA3: Integration of Developmental and Hormonal Pathways in the Arabidopsis Flower, PLoS Biology, vol.66, issue.4, 2009.
DOI : 10.1371/journal.pbio.1000090.st006

N. Yamaguchi, C. Jeong, S. Nole-wilson, B. Krizek, D. Wagner et al., Expression in Response to Auxin to Promote the Onset of Flower Formation in Arabidopsis, Plant Physiology, vol.170, issue.1, pp.283-93, 2016.
DOI : 10.1104/pp.15.00969

N. Fulcher and R. Sablowski, Hypersensitivity to DNA damage in plant stem cell niches, Proceedings of the National Academy of Sciences, vol.14, issue.16, pp.20984-20992, 2009.
DOI : 10.1016/S0960-9822(98)70061-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791609

E. Waters, The evolution, function, structure, and expression of the plant sHSPs, Journal of Experimental Botany, vol.64, issue.2, pp.39-403, 2013.
DOI : 10.1093/jxb/ers355

H. Kaur, B. Petla, N. Kamble, A. Singh, V. Rao et al., Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor, longevity and improves germination and seedling establishment under abiotic stress, Frontiers in Plant Science, vol.235, issue.e77, pp.713-26442027, 2015.
DOI : 10.1007/s00425-011-1527-4

URL : http://doi.org/10.3389/fpls.2015.00713

K. Bilyeu and W. Wiebold, Environmental Stability of Seed Carbohydrate Profiles in Soybeans Containing Different Alleles of the Raffinose Synthase 2 (RS2) Gene, Journal of Agricultural and Food Chemistry, vol.64, issue.5, pp.1071-1079, 2016.
DOI : 10.1021/acs.jafc.5b04779

D. De-souza-vigidal, L. Willems, J. Van-arkel, B. Dekkers, H. Hilhorst et al., Galactinol as marker for seed longevity, Plant Science, vol.246, pp.112-120, 2016.
DOI : 10.1016/j.plantsci.2016.02.015

A. Nishizawa, Y. Yabuta, and S. Shigeoka, Galactinol and Raffinose Constitute a Novel Function to Protect Plants from Oxidative Damage, PLANT PHYSIOLOGY, vol.147, issue.3, pp.1251-63, 2008.
DOI : 10.1104/pp.108.122465

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2442551

G. Padua, J. França-neto, M. Carvalho, O. Costa, F. Krzyzanowski et al., Tolerance level of green seed in soybean seed lots after storage, Revista Brasileira de Sementes, vol.13, issue.3, pp.128-166, 2007.
DOI : 10.4141/cjps95-069

D. Ballesteros and C. Walters, Detailed characterization of mechanical properties and molecular mobility within dry seed glasses: relevance to the physiology of dry biological systems, The Plant Journal, vol.6, issue.133, pp.607-626, 2011.
DOI : 10.1021/bm049213x

M. Niedzielski, C. Walters, W. Luczak, L. Hill, L. Wheeler et al., Assessment of variation in seed longevity within rye, wheat and the intergeneric hybrid triticale, Seed Science Research, vol.16, issue.04, pp.213-237, 2009.
DOI : 10.1104/pp.94.3.1019

E. Roberts and R. Ellis, Water and Seed Survival, Annals of Botany, vol.63, issue.1, pp.39-52, 1989.
DOI : 10.1093/oxfordjournals.aob.a087727

A. Schwember and K. Bradford, Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions, Journal of Experimental Botany, vol.61, issue.15, pp.4423-4459, 2010.
DOI : 10.1093/jxb/erq248

C. Vertucci and A. Leopold, Bound Water in Soybean Seed and Its Relation to Respiration and Imbibitional Damage, PLANT PHYSIOLOGY, vol.75, issue.1, pp.114-121, 1984.
DOI : 10.1104/pp.75.1.114

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1066845/pdf